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ON SEQUENTIAL OPTIMALITY CONDITIONS FOR ROBUST
MULTIOBJECTIVE CONVEX OPTIMIZATION PROBLEMS

JAE HYOUNG LEE AND GUE MYUNG LEE*

ABSTRACT. An uncertain multiobjective convex optimization problem (UMP)
and its robust counterpart (RUMP) of (UMP) are considered. We present se-
quential optimality conditions for (weakly, properly) robust efficient solutions of
(RUMP) which hold without any constraint qualification, which are expressed in
terms of sequences with subdifferentials and e-subdifferentials for involved con-
vex functions. The interesting feature of the Lagrange optimality conditions for
(RUMP) is that the number of the Lagrangian multipliers coincides with the
number of constraint functions. Moreover, we give a sufficient condition that a
robust efficient solution of (RUMP) can be a properly robust efficient solution of
(RUMP). We present examples illustrating our results.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, R"” denotes the Euclidean space with dimension n. The
inner product in R” is defined by (z,) := 2y for all z,y € R”. The nonnegative
orthant of R™ is denoted by R’!. For a set A in R™, the closure (resp. convex hull) of
A is denoted by cl(A) (resp. coA). We say A is convex whenever paj+(1—p)ag € A
for all u € [0,1], a1,a2 € A. The indicator function d4 : R” — RU{+o0} is defined
by

0, if xe€A,
00, otherwise.

da(x) == {

For an extended real-valued function f on R”, the effective domain and the epigraph
are respectively defined by domf := {z € R" | f(z) < +oo} and epif := {(z,7) €
R™ x R | f(z) < r}. We say that f is proper if f(z) > —oo for all x € R™ and
domf # (). Moreover, if lirpjnff(x’) > f(x) for all x € R™, we say f is a lower

semicontinuous function. A function f : R™ — RU {+o0} is said to be convex if for
all € [0,1], f(1—pa+py) <1 —p)f(x)+ pf(y) for all z,y € R™. Moreover,
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we say f is concave if —f is convex. The subdifferential of f at x € R" is defined
by

— {l'*GRn ’ <x*,y—x>§f(y)—f(x), VyeR"}, ifxedomf,
0f(x) = { 0, otherwise.

More generally, for any € > 0, the e-subdifferential of f at z € R" is defined by

_ {.I'*GRTL’ <$*,y—$>§f(y)—f($)+€, VyERn}, if.’IJGdOHlf,
Ocf(z) = { 0, otherwise.

For any proper convex function f on R", its conjugate function f* : R"™ — RU{+4o00}
is defined by f*(z*) = sup {(z*,z) — f(x)} for all z* € R". For details of conjugate
]Rn

xe
function, see [17]. Clearly, f* is a proper lower semicontinuous convex function and

Aepif* = epi(Af)* for any A > 0. If one of the convex functions fi, f2 is continuous,
then we have

(1.1) epi(f1 + f2)" = epiff +epifs.
For details see [16].

Lemma 1.1 (cf. [9]). Let I be an arbitrary index set and let f;, i € I, be proper
lower semicontinuous convex functions on R™. Suppose that there exists xg € R"

such that sup fi(xg) < co. Then
el
epi(sup f;)* = Cl< col J epifi") ;
tel il
where sup f; : R™ — RU {400} is defined by (sup fi)(z) = sup fi(z) for all z € R".
iel iel iel

We recall a version of the Brondsted-Rockafellar theorem which was established

in [18].

Proposition 1.1 (Brondsted-Rockafellar Theorem [6,18]). Let f : R" — RU{+o0}
be a proper lower semi-continuous convez function. Then for any real number € > 0
and any x* € O.f(Z) there exist e € R"™ and x} € 0f(xe) such that

lze =zl < Ve, |[lz7 —a*[| < Ve and |[f(ze) — @i(ze — ) — f(7)| < 26
A standard form of multiobjective optimization problem is as follows:
(MP) min  (fi(@)...., i)
st.  gj(x) <0, j=1,...,m,
where f; : R" = R,¢:=1,...,l,and g; : R" = R, j =1,...,m, are functions.

A multiobjective optimization problem (MP) in the face of data uncertainty both
in the objective and constraints can be captured by the problem

(UMP) min (fl(x)ul)a-”vfl(xvul))
st. gj(z,v;) <0, j=1,...,m,
where f; : R" x R - R, i =1,...,[,and gj : R" xR®” = R, j =1,...,m, are

functions, U;, ¢ = 1,...,[, are nonempty subsets in R and u; € U;, i = 1,...,1,
and V;, j = 1,...,m, are nonempty subsets in R? and v; € V;, j = 1,...,m.
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Here we suppose that we do not know the exact values of u;, ¢ = 1,...,[ and vy,
j=1,...,m, but we know that u;, ¢ = 1,...,[, belongs to some uncertainty sets U;,
i=1,...,land, vj, j = 1,...,m, belongs to some uncertainty sets V;, j = 1,...,m.

For the worst case of (UMP), the robust counterpart of (UMP) is given as follows
(see [2]):
(RUMP)  min (gg&i fil@,ur), ... , max fl(377ul))
st. gj(z,v;) <0, Yo, €V, j=1,...,m.
Let the robust feasible set of (RUMP) defined by
F:={zeR"|gj(z,vj) <0, Vv €V;, j=1,...,m}.

Then 7 € F is said to be a robust efficient solution of (RUMP) if there does not
exist a robust feasible solution x of (RUMP) such that
. N\ < (Z.ow). i=1....
max fi(z,ui) < max fi(Z,u), i =1,...,1,
, < T, uy), f k.
urzleazick fre(z,ug) ul;?gzi(k fr(Z,ug), for some
Also, € F is called a weakly robust efficient solution of (RUMP) if there does not
exist a robust feasible solution z of (RUMP) such that

Also, T € F is said to be a properly robust efficient solution of (RUMP) if it is an
efficient robust solution of (RUMP) and there is a number M > 0 such that for all

i€ {l,...,l} and z € F satisfying max filz,u) < max fi(Z,u;), there exists an
i1 €U; ui €U;
index k € {1,...,l} such that max fi(Z,ur) < max f;(z,ux) and moreover
u €U, ug €U
max f;(Z,u;) — max fi(x,u;)
u; EU; u; EU;
f(:vu)—maxf(i“u)SM'
urilgb}li R Bk up €U AT Tk

Convex programs that are affected by data uncertainty ([2-5,12,15]) have been
intensively studied. Recently, the duality theory for convex programs under uncer-
tainty via robust approach(worst-case approach) have been studied ([2,12,15]). It
was shown that primal worst equals dual best ([2,12]).

On the other hand, recently, new sequential Lagrange multiplier conditions char-
acterizing optimality without any constraint qualification for convex programs are
presented in terms of the convex subdifferentials and the e-subdifferentials ([9, 10,
13,14]). It was also shown how the sequential conditions are related to the standard
Lagrange multiplier condition ([9,14]).

In this paper, we present sequential optimality conditions for (weakly, properly)
robust efficient solutions for (RUMP) which hold without any constraint quali-
fication, which are expressed in terms of sequences with subdifferentials and e-
subdifferentials for convex functions. The interesting feature of the Lagrange opti-
mality conditions is that the number of the Lagrangian multipliers coincides with
the number of constraint functions. We give a sufficient condition that a robust
efficient solution of (RUMP) can be a properly robust efficient solution of (RUMP).
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Furthermore, we introduce a constraint qualification for (RUMP) and give Lagrange
optimality conditions for (weakly, properly) robust efficient solutions for (RUMP)
which hold under the constraint qualification. We present examples illustrating our
results.

2. SEQUENTIAL OPTIMALITY CONDITIONS I

The following proposition, which describes the relationship between the epigraph
of a conjugate function and the e-subdifferential and which plays a key role in
deriving the main results, was recently given in [8].

Proposition 2.1. Let h: R" — RU {400} be a proper, lower semicontinuous and
convex function and let a € domf. Then

epih* = U {(v,vTa +e—h(a)):veE aeh(a)}.

0

The following theorem, which is the robust version of an alternative theorem,
can be obtained from Proposition 2.3 and Theorem 2.4 in [12]. For the sake of
completeness, we give a short proof here.

Theorem 2.1 (Robust Theorem of the Alternative). Let f; : R” x R — R,
i=1,...,1, be continuous functions such that f;(-,u;) is a convex function for each

€ R and let gj : R" xR®” = R, j =1,...,m, be continuous functions such that
9i(-,v5) is a convex function for each v; € R®. Let U; be a nonempty convex and
compact subset of R, ¢ = 1,....,1, and let V; be a nonempty conver and compact
subset of R, j = 1,...,m. Let F := {z € R" | gj(z,v;) <0, Yv; € V}, j =
1,...,m} # 0. Suppose that for each v € R™, gj(x,-) is a concave function. Then
exact one of the following two statements holds:

(i) (3= € R"™) Zmaxfzxuz ) <0, gj(z,v;) <0, Vo €V, j=1,...,m;

u; €EU;
(i) (0,0) Eepl(ZiHEaX fi(- m)) +cl< U epi(z)‘jgj('7”j)> )
i€t viev; j=1
;>0

Proof. Suppose that (i) does not hold. Then for any = € F,

ma <0,75=1,....m = ma 0.

max g;(,v;) <0, j = Zulexlfz x,up) >

So, we have infxeRn{Zﬁzl maxy, ey, fi(z,u;) + op(x)} > 0. By assumptions,

Zi:l maxy,ey; fi(z,u;) is continuous. So, (0,0) € epl(Z _ymaxy, ey fils, ui) +

op)* = epi(Ziz1 maxy, ey, fi(+ui))*+epidp. Since p(x) = sup,,ev, ijl Ajgi(x,v;),
>0

it follows from Lemma 1.1 that "~

epidyp = epi< sup Z)\jgj('vvj)>

Vij=1
A>0J
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= o <c0< U | epi(ji::l)\jgj(.’ vj)>*>

viEV;
X;>0
Moreover, we can check that the concavity assumption on the functions g;(z,-) im-
plies the convexity of the set [ J.,ev, epi(> 72 Ajg;(+,v5))* (see the proof of Propo-
X;>0
sition 2.3 in [12]). Thus (ii) holds.
Conversely, suppose that (ii) holds. Then (0,0) € epl(zZ L maxy, ey, fiswi) +
dr)* and hence infcgn {Zizl maxy, ey, fi(z,u;) + 0p(x)} > 0. Thus for any z € F,
22:1 maxy,ey; fi(z,u;) > 0. Hence (i) does not hold. O

By using Proposition 2.1 and Theorem 2.1, we can obtain the following sequential
optimality theorems:

Theorem 2.2. LetU; be a nonempty convex and compact subset of R%, 4 =1,...,1,
and let V; be a nonempty convex and compact subset of R®, j = 1,...,m. Let
fi : R" xR - R, i=1,...,1, be functions such that for each u; € U;, fi(-,u;) is a
convex function on R™ and for each x € R™, fi(x,-) is a concave function on RI.
Let g; : R"xR% = R, j =1,...,m, be functions such that for each vj € V;, g;(-,v;)
is a convex function on R™ and for each x € R"™, g;(x,-) is a concave function on
R%. Let F := {z € R" | gj(z,v;) <0, Yv; € V;, j=1,....,m} #0. Let & € F.
Then the following statements are equivalent:
(i) the point T is a robust efficient solution of (RUMP);

(i)
(0 —Zggg{iﬁ T, u; ) € ep1<z maxfz uz)>*

u; €U;
—I—cl[ U <epi<ZMifi(-,Ui)> + (0, Z,ui max fl(a_c,ul)>>
u; €U; i=1 i—1 u; €U;
1i=>0
m *
+ U epi(Z%Qg‘(»Uﬂ) }
ev; =1
X;>0
(iii) there exist w; € Us, vi € 0f;(wi)(@), puff > 0, w} €Uy, i =1,...,1, 6, > 0
€n € 05, (XL W fi( u)) (@), v € Vj, X220, j = L,enym, 7 2 0 nd
Cn € Oy, (32721 ATg5 (5 v]))(Z) such that
i_u i) — Ji\d, ’7.:1,...7l7
max (2, w) = [:(@,w), i
!
0= ;w + lim (€ +¢n), lim §, =0, lim , =0,
TLILH;O[M fi(@,ui') — i fi(Z,0;)] = 0, i = , 1 and T}L)II;OZ)\ g;(z ) =0.



226 J. H. LEE AND G. M. LEE
Proof. Notice that Z is a robust efficient solution of (RUMP) if and only if z is a
solution of the following problem:

!
minimize Z max f;(x,u;)

u; EU;
subject to max filx,uy) — mmax fi(z,u) <0, i=1,...,1,

maxg](x v;) <0, j=1,...,m.
V€V

Let Z be a robust efficient solution of (RUMP). Let F':= {z € R™ | max,, ey, fi(z, u;)—
maxy, ey, [i(T,ui) <0, i =1,...,1, maxyey, gj(z,v;) <0, j =1,...,m}. Then,

for any = € F, Zizl maxy, ey, fi(z,ui) — Zﬁ:l maxy, ey, fi(ZT,u;)) > 0. So, from
Theorem 2.1,

l *
<O,—Z max f;(Z, u; ) € ep1<z max f;(- ul))

i ui €U; u; €U;

+Cl|: U ( (Z/Lz fz uz mEaX fz X, u; > +Z>‘Jgj UJ >:|

u €U v €V,
1i=0,X;2>0

Hence, from (1.1), we have

(0 —Zm&Xer (T, u; > Eepl(ZmaXfl ul)>*

u; EU;
+C1[ U (epi<zuifi(’auz Z“l max f, T u,)) >
ui €Uy =1
;=0
+ U epi(Z%‘Qy‘(ﬂj)) }
€V j=1
X;>0

So, by the definition of epigraph, we have
<0 —Zgg&i fi(@, u; ) € epl<2$§% fi(- uz)>
l
+Cl U < <Zuzfz , U > <07 Zﬂzgllea)ifz x uz)))

u; €U,
;>0

+ U epi(é Aig; (- Uj))? ,

X;>0
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and so, by Proposition 2.1, we have

I
> v E D, < 2 max fi(-,%‘)) (i‘)}

+UJLerj <7L>JO { (C,CT:E+7 - gkjgj(i‘,vjo ’ ¢ < a”<j§)‘lgj("vj))(j)})]'
X;>0

Hence, there exist ¢ > 0, v € 6€(Eé:1 maxy, ey, il ui))(Z), ul € Uy, pl* > 0,

i=1,...,0, 00 >0, & € 95, iy pifiC,ul))(@), vF € Vy, AP >0, j = 1,...,m,

Yo > 0 and (, € Oy, (3271, ATg;(+,v}))(Z) such that

l
(0.3 mgp e

=1

u; EU;
= v i=1

! !
- (u, 2t e— Y max fi<x,ui>> £ lm [(sn,gffx . Zu?fm,u?))
=1

l m
+<0,Zu? ma fi<x,uz~>) " (cn,d E -+ — nygm,vy))].
i=1 e j=1
Thus, there exist € > 0, v € 8€(Z§:1 maxy, ey, fi(,ui))(Z), ul € Uy, p > 0,
1= 1,...,1, 577. > 07 gn € at%(Zi:l szz(a“?))(f% ’U;L € Vj? )‘? > Oa ] = 17"'7m7
Yo > 0 and ¢, € 0y, (3271 ATg;(+,v}))(Z) such that

J=17"
v+ lim (& +Gn)
n—oo

and

l l m

¢+ lim [an = DK@ ) Y max fi(@ i) = Y Njgy(3, vy>] .

=1 =1 7j=1
Since € > 0, 0, > 0, v > 0, —pf fi(ZT,uf) + pi maxy,ey, fi(z,u;) > 0, i =
1,...,1, and A?gi(f,v?) <0, 7 =1,...,m, we have ¢ = 0, lim, ,000, = O,
limy, o0 ¥ = 0, limy, oo [pl fi(Z, u]') — pf maxy, ey, fi(ZT,u)] = 0,4 =1,...,1, and

limy, o0 Z;"’:l Agj(z,v7) = 0. Notice that for each i = 1,...,l, by Lemma 2.1
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in [11],

22) 0 masx fi(- u)(7) = u {00 1) (@) | max fi(z,w) = fi(@,7) }.
Thus, there exist u; € U;, v; € O(fi(,w))(Z), p' > 0,4 = 1,...,1, 6, > 0,
0 0

&n € 05, (Cicy HPSi(ul))(@), W] €V, A >
(o € 8%(2?1:1 )\?gj(-, UJ”))(:T:) such that

(&, w) = fil@, @), i=1,...,1
l{?gg{ifz(xauz) fl(w7ul)7 ? , )by

l
0=> vi+ lim (& + (), lim 6, =0, lim 5, =0,
n—oo n—oo n—oo

=1

lim [pf fi(Z,ui) — pi fi(Z,u;)] =0, i=1,...,l and lim Z)\?gj(:ﬁ,v?) =0.
j=1

n—00 n—00 4

So, (i) = (ii) = (iii).
Now we will prove that (iii) = (i). Suppose that if the sequential condition holds.

Then, from (2.2), for any = € F,

l

l
2; max fi(w,u;) - 2; max (7, u;)
1= 1=

A\

l
<ZV¢,$—$> :_JLHQO<§"+C”’x_CE>
i=1

Y

l l
~ limsup [Zu?‘fi(fc, a2y = 3 @) + b
=1 =1

n—oo

m m
3 Xeg (o) — S g (@, o) + %}
=1 j=1

Y

l l
i=1 i=1

n—o0

+ lim inf(—d,,) + lim inf < — Z A?gﬂa:,v?))
j=1

n—o0 n—o0

m
+linrr_1>'}>rolf (Z)\?Qj(f,l)?)) +linrr_1>2gf(—7n)
j=1

v

l l
tmint [t fe) — o)
=1 =1

A\

l l
it | 5o o)~ Y-t s i)
=1 =1

n—o0 u €U;
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l l
> timinf | 3 i@ ) = 3 ma fi(7, )
n—00 7 —1 u; EU;
1= 1=

l l
— it | oA - 3l i)
i=1 i=1
= 0.
Hence, for any z € F, 2221 maxy, ey, fi(z, ui) > 22:1 maxy, ey, [i(Z,ui). So, T is a
robust efficient solution of (RUMP). O

Remark 2.1. Following the semi-infinite program approach, we can obtain the
above type sequential optimality conditions with finite multipliers \j, but we can not
fix the number of the multipliers as the constant m in the above Theorem 2.2 (see
Theorem 5.2 in [9]).

Theorem 2.3. Let x € F. Under the assumptions of Theorem 2.2, the following
statements are equivalent:

(i) the point T is a weakly robust efficient solution of (RUMP);
(ii) there exist p; >0, i =1,...,1, not all zero, such that

l l *
<0,—;uigg£ fi(f,ui)> € epi(;uzgg&i fi(-,uz-)>
+Cl< U epi(Z)‘jgj<'7Uj)> );
j=1

viEV;
A; >0

(iii) there exist p; > 0, not all zero, u; € U;, v; € Ofi(,u;)(Z), i = 1,...,1,
vl € Vi, AT >0, 5 =1,...,m, v >0 and ¢, € 0, (37, Nlg;(+,07))(T)

j=1
such that
gleaz/){i fi(@,w) = fi(z,u;), i=1,...,1,
l m
0= ;Mil/i + lim G, lim 7, =0 and nli_{gloz:l)\?gj(f,vy) —0.
1= 1=

Proof. Suppose that z € F is a weakly robust efficient solution of (RUMP). Equiv-
alently, there exist u; > 0,4 =1,...,l, not all zero, such that z € F' is a solution of
the following problem:

!

minimize Z i max f;(x, u;)
] u; EU;

subject to g;(z,v;) <0, Yv; €V}, j=1,...,m.

By approaches similar to the proof of Theorem 2.2, we can obtain the desired
results. O

Theorem 2.4. Let x € F. Under the assumptions of Theorem 2.2, the following
statements are equivalent:
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(i) the point T is a properly robust efficient solution of (RUMP);
(ii) there exist p; > 0,3 =1,...,1, such that

l l *
<0, —~ ;Mi ma fi(7, ui)) € epi(; s ma i ui))

+Cl< U epi<§;)\j9j(~, Uj)>*>;

vi€V;
A; >0

(iii) there exist u; > 0, u; € U, v; € Ofl(,ﬂl)(i), =1,...,1, U;-] € V]’, )\gb >0,
j=1...,m, v >0 and (u € Oy, (3271, A7g;(+v]))(Z) such that

gg&iﬁ(f’uz):fl(j’m)’ 1=1,...,1,
l m
0= Z;uiyi + nh_}rrolo Cn, nh_{rgo Yo = 0 and nh_{rgoz; Nigi(z,v7) = 0.
1= 1=

Proof. Suppose that T € F is a properly robust efficient solution of (RUMP). Equiv-
alently, there exist u; > 0,4 =1,...,[, not all zero, such that & € F' is a solution of

the following problem:
l
minimize i max fi(x,u;)
i—1 u; EU;
subject to g;(z,v;) <0, Yv; € V), j=1,...,m.
By approaches similar to the proof of Theorem 2.2, we can obtain the desired
results. 0

Now, we give an example illustrating Theorem 2.2 and Theorem 2.4:

Example 2.1. Let U; = [-2,-1], Us = [0,1], V1 = [0,1], fi(z,u1) = wiz and
fa(x, uz) = usx®. For any vy € Vi, we define g1(z,v1) = 0if z > 0 and g1 (z,v1) =
viz? if £ < 0. Then for each vy € V1, g1(-,v1) is convex and for each z € R, g;(z,-)
is affine. Moreover, for each A1 > 0 and v, € V,

a2 .
_a” fa<o
\ . * VSN 1 >~ Y,
( lgl( Ul)) { _{_oo’ elsewhere.

So, we see that

U epiugi(,v1))" = {(a.7) €R* [ a <0, 7 > 0}_J{0} x [0, +-00)
220

is not closed.
Consider the following multiobjective optimization problem with uncertainty
(UMP):
(UMP) min (fi(z,w1), fo(z,u2))
s.t. gl(xavl) < Oa
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where u; € Uy, uz € Uy and vy € V;. Its robust counterpart (RUMP) of (UMP):

(RUMP) min ( max fi(r,ur). max fo(e, uz) )

u1 €U

st. gi(z,v1) <0, Yo, € V.

Then the robust feasible set of (RUMP) is [0, +00). So, we can easily see that the set
of the robust efficient solutions and the set of the weakly robust efficient solutions
of (RUMP) are the same set [0, +00), and the set of the properly robust efficient
solutions of (RUMP) is (0, +00).

Let £ = 0. Then Z is a robust efficient solution for (RUMP). Let u; =
—1 and 4y = 1. Then Y2 ymaxyey fi(Z,u;)) = 0. Now, we will check
ep1(Z:Z i maxy, ey, fi(-,u;))*.  Since for all x € R, 21221 maxy, ey, fi(T,ui) =
MaXy, ey W1T + MaAXy,cify ux?,

Zmaxfxu —x+a%, if x>0,
weld;” " YT 2z 422, if 2 <0.

So, we see that for each u; € U;, i = 1,2,

LT)Q, a<—1,
(Zmaxfz ul)(): 07 _QSGS_L
’qu T 2
Ltf) , a>—2

and

<Zmaxfz “l) :{(G»T)|a<—2, WST}

a 2
23 )| —2<a<-10<nJ{@n a>—1,% <rh

Now we will calculate (J., ey, (epi(Z?zl i fi(euq))*+(0, Z?:l i maxy, ey, fi(T,ui))).
;>0

Since maxy, ey, fi(Z,u;) =0, i = 1,2, we see that (0, 25:1 s maxy, ey, fi(T,u;)) =

(0,0) and

U (o smstom) + (0 mm ) )

u; €EU;
;=0

- U (S}

u; €EU;
M1>0

Moreover, we see that

<§;Mf"("“i)>* _

2

if o # 0 and ug £ 0, )

dpgug
07 a = i1y,

if o =0or ug =0, 400, aF prug.
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and

(S5t )

u; €U,

i >0
2
a — u
= U ({(%”‘WS% /-1'27&07 UQ#O}
0

U{(a,r) | a=prur, 0 <7, pg =0 oruy :0})

= {(a,r) la<0, r>0H J{(a,r) | a>0, r>0}.

So, we have

2 *
U eni( Smsttu) + U epitut.on)

u; €U, =1 v1 €V
;>0 A120

= {(a,r) la<0, r>0} J{(a,r) | a>0, r>0},

which is not closed. Since cl({Ju,ey; epi(Z?zl pifisui))* +U»U1€V1 epi(A1g1(-,v1))*) =
11:>0 A1>0
R x R4, from (2.3), we see that

(0,0) = Zmaxflxul

u; €U;

/,LZ>0

+ U epi(Algl<-,v1>>*]
v] €V
A1>0

= RXR+.

Now, we calculate afl(a ﬁz)('f)a = 1,2 a5n (Z?:l M f’t( u; ))(7) and
Oy (ATg1(-,07))(Z).  We can easily calculate that Jfi(-,u1)(z) = {—1} and
dfa(-,u2)(Z) = {0}. Moreover, we can easily check that

%, (iu?fic,u?))(f:)

={§ e R | pfuf — 2/ bppyuy <& < piuf + 21/ npyuy}
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and

Oy, (AT g1 (- 01)(Z) ={¢ € R [ = 2y/Afofyn < ¢ <0}

-mo_ 1 =n N 1 -n _ 1 _ 1 =n _ 1 yn _
Let,u?—ﬁ,,ug—n,’LL?f——l—ﬁ,Ug—].—ﬁ75n_R,’Ul—57)\1—71/341'1(1

n = #. Then we have

0 (gﬁ?ﬁ(-,a?))@)

and

Let vy = -1, 15 =0, fn:—%—#—l—wl—%and@:—%. Then, we have

max fl(:f:,ul) =0=wz = fl(fz‘,l_bl),
u1 €UL

max fg(i‘,UQ) =0= ﬂgi’Q = fg(i’,’l]g),
uz €U

vi + o+ lim (§,+ ) =0, lim §, =0, lim v, =0,
n—oo n—oo n—oo
nh_{glo[”?fl (jv uTIL) - M?fl(j7 ﬂl)] = 07
Jim (15 f2(%, up) — p3 f2(Z,U2)] = 0 and lim A7g1(Z,07) = 0.

So, Theorem 2.2 holds.
Let # = 1. Then % is a properly robust efficient solution for (RUMP). Let

@1 = —1, 4p = 1, fu = 2 and fip = 1. Then Y7 ji maxyey, fi(#,u;) =
—1. Now, we will check epi(Z?:1 fii maxy, ey, fi(,ui))*. Since for all z € R,
Z?:l [:LZ maXuieui fZ (:’Ua ul) =2 maXy, ey, U1T + maXqy,ctfy ’LLQLUQ,

iA.me'( y_ [ el ez,
: 1“lui2ui W)= —dr 422, if 2 < 0.
1=

So, we see that for each u; € U;, i = 1,2,

2 * (a22)2, a> —2,
<Zﬂz‘ max fz‘(',ui)> (@) =4 0, —4<a< -2,
o e et 0 < .

and
2 * (a+4)?
e Sima i) ={an fo< 4 B <o)

a 2
U{(a,r)\ —4<a< -2 Ogr}U{(a,T) | a>—2,(z2> ST‘}.
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Since cl(|Jv, ev, €pi(A1g1(-,v1))*) = —Ry x Ry, we have
A1>0

2
0,1) = (Oa—;ﬂiggg{ifi(ﬁ,m))
2 *
epi(gﬂigg&iﬁ(ww)> +cl< U epi()\lgl(.7yl))*>

S
v1 €V
A1>0
22
= {(a,7) | a <=2, 0§T}U{(a,7“) a>—2,(a—z)§r}.

Now, we calculate Of;(-,4;)(Z), i = 1,2 and 8%()\191(-,11?))(@). We can easily
calculate that 0f1(-,41)(2) = {—1} and Ofa(-,u )( ) = {2}. Moreover, we can
easily check that 9y, (ATg1(-,v}))(2) = {0}. Let o7 = 1, \? = n and 4, = oy
= —1, 00 =2 and (, = 0. Then we have

= —1 = U1 = U1 = .U
511[135{( f1(Z,u) = ﬂlé%zi ur = Uy =z = fi1(2,01),
max fo(&,ug) = max up = 1 = 1y = tgd? = fo(&, Gy),
U2 EUs ug EUz

fivy + figve + lim ¢, =0, lim~y, =0 and lim A'g¢;(Z,07) = 0.
n—oo n—0o0
So, Theorem 2.4 holds.

The following proposition, which is a generalization of the Isermann’s result(
[7,14]), gives a sufficient condition that a robust efficient solution of (RUMP) can
be a properly robust efficient solution of (RUMP).

Proposition 2.2. Let £ € F. Suppose that the assumptions of Theorem 2.2 hold.
Assume that

U <epi(iz_l;uif¢(wui)>* + (O’ZZI;M el fi(x7Ui)>>

u; €U,
;=0
m *
+ U i Lot
viEV; ]:1
X;>0

is closed. Then if T is a robust efficient solution of (RUMP), then T is a properly
robust efficient solution of (RUMP).

Proof. Let & be a robust efficient solution of (RUMP). Then, by Theorem 2.2,
0 - 7 1 E (A 1
¢ Z%ﬁf ) em(Z;?é‘%f )
+ (em(;mﬂ(-,ui)) + (0, ;Mi max fi(:v,ui)>>

u; €U,
1i=>0
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+ U epi(Z/\jgj(ij)) :
i€V j=1
X;>0
By Proposition 2.1, there exist u; € U;, p; > 0,1 = 1,...,1, v € Vj, A; > 0,
j=1,....m,eg >0, e >0,€e3 >0, 0 € 851(22 L maxy, ey, fi(-ui)) (), € €
552(Zi:1 :uzfz( ,%:))(%) and ¢ € 9, (3272, Ajg5(-, 77))(Z) such that

(0 —Zmax filz ul)>

uze T

l
= <V v’ Zglea)i fz T, Uq > + (fvéTI+€2 _Z;szz(m’uz)>
+<0, Zm max fi(JU,Ui)) + (C, Tt ey — ZAJ‘QJ‘(%%‘))
i—1 i i =

Since €; > 0, e2 > 0, e3 > 0, pi(fi(Z,w;) — fi(z,u;)) > 0, ¢ = 1,...,1, and
— Z;nzl )\jgj(.f,f)j) >0, we have ¢4 =0, e =0, €3 =0, m(fl(i",ul) - fl(f,ﬂl)) =0,
i=1,...,0,and — Z;nzl )\jgj(f:,ﬂj) =0.

Notice that if pu; # 0, maxy,cy, fi(Z,u;) = fi(Z,u;). So, there exist w; € U;,
wi > 0,0=1,...,1, v; € Vj, )\j >0,5=1,....m, v € 6(21 1 MaXy, ey, fz(,u,))(a’c),
£ € O(X!_y it 1) (x) and & € D(X, Aggi(-,5;))(x) such that

max fi(z,w;) = fi(z,u;) (if p; #0),
U, €EU;
= ﬁ—i—g-l- E, and Z)\jgj(a?,@j) =0.
j=1
Notice that for each i = 1,...,l, by Lemma 2.1 in [11],
a(gg&i fils = |J {0l m))(@) | max fil@,ui) = fi(2, u)}
u; EU;
So, there exist p; > 0,0 =1,...,1,0; € Vj, A\; >0, j—l ,m, 7 € R, € € R” and

C € DS, Aggy(07)) (@) such that 5+ & € O(X_y (1 + pg) masuy e, (- 00))(2),
v+&+C=0and > 7, \jg;(7,v;) = 0. Thus, for any z € F,

0 > > Njgila,v)) = > Ajg;(%,9;)
=1 j=1
> Mz 1)
~(r =& (z 1)

v

l
Z(l +Mz) mng{( fz Z, Uz z; 1+Mz max fz(x uz)
1=

=1
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So, for any & € F, 32t (14 3) maxy, e, fi(,ui) > SO (14 ) maxy, cry, fi(Z, us).
Hence Z is a properly robust efficient solution of (RUMP). O

The following example illustrates that Proposition 2.2 holds.

Example 2.2. Let Uy = [-2,—1], U2 = [0,1], V1 = [0,1], fi(z,u1) = wiz and
fo(x,u2) = ugx®. For any vy € Vi, we define g1(z,v1) = 0if z > 0 and g1(z,v1) =
vz? if z < 0. Then for each vy € V1, g1(-,v1) is convex and for each z € R, g1(z, )
is affine. Moreover we already checked that

U epithgi(,v))* = {(a,r) € R? | a <0, r > 0} J{0} x [0,00)
PR

is not closed in Example 2.1.
Consider the following multiobjective optimization problem with uncertainty
(UMP):

(UMP) min (fi(x,u1), f2(z,u2))
s.t. gl(xa Ul) < 07
where u; € Uy, uz € Uy and vy € V;. Its robust counterpart (RUMP) of (UMP):
(RUMP) min (max fi(x,u1), max fao(z,us))
u1 €UL uz €U
sit. gi(x,v1) <0, Yoy € V5.

Then the robust feasible set of (RUMP) is [0,+00). So, we can easily see that
the set of robust efficient solution of (RUMP) are [0,400), and the set of properly
robust efficient solution of (RUMP) is (0, 4+00).

Let £ = 1. Then 2 is a robust efficient solution for (RUMP). Moreover & is a
properly robust efficient solution for (RUMP). Now we will calculate

U <epi<§mfi('»ui)>* + (0’24:“@'7216% fi(iff,ui)>> + | epithgi(vn)

u; EU; v EV]
;=0 A12>0

In Example 2.1, we already calculated

2
i T (a — pur)?
epl(iz;mfi(.,ui)) = {(a,r) ‘ e <1, o #0, ug # 0}

U{(a,r) | @ = paur, 0 <r, puy =0 or ug = 0}.

Moreover, we can easily see that (0, Z?:l i maxy, ey, fi(Z,ui)) = (0, u2 — p1). So,
2 * 2
epi(ZMz’fi(',“i)) + (QZM?S&? fi(&%’))
i=1 i=1 R

- {(@n :

(@ — pur)
U{(a,r) | a = piuy, —p1 <7, pe =0 or ug = 0}.

1 +pe—p1 <ryopg #0, u27£0}
H2uU2
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Since p1 > 0 and u; € [—-2,—1],
(2.4) U {(a,r) | a=pmu1, —p1 <7, pp=0o0rus =0} ={(a,r) | a<0, a<r}.

u; €Uy
>0

Now we will calculate

a — u 2
U {(aﬂ“) ’ (4M11)+/~L2—M1 <7, pz #0, U2750}-
H2U2

u; €U,
;>0

Define ¢(a) = % + po — w1, where pp > 0, pg > 0, uy € [—2,—1] and
ug € (0,1]. Let L = {(a,y) € RxR |y = ¢(ap)+¢'(ap)(a—ap)}. Then, by Theorem
3.2.5 in [1], the line L supports epi¢ at (ag, ¢(ag)). Moreover, since u; € [—2, —1]

and uy € (0, 1], we see that the ¢(a)-intercept is
(M1U1)2 1 2
0) = +po—pr > — +po—pp = —(pg —2 > 0.
¢( ) 4N2U2 2T M 4/1,2 H2 ! 4/1,2 (Ml 'u2)

In particular, ¢(0) = 0 as u; = —1, ug = 1 and p1 = 2u2. So, we see that (0,0)
belongs to the line L. Hence we have

(ag — p1ug)? 2(ag — puy)
0= ¢(ag) + ¢'(0)(0 — ag) = ~—————— + g — i1 — ———aj,
¢(ao) + ¢'(0)( ) Tiniz igiia
and so, we have ag = :l:\/(ulul)2 — 41 pous + 4p3us. Thus, we have
y = i\/(ﬂlul)Q — Ay prgug + Apdug — piuy a
2pu2
= 20—
First, we consider vy V(n)? —usaus tAygus a, ie., ay =

2p2uz ’

v/ (1ur)? — 4y pous + 4pdus. Then, we have

\/(MM)2 — 4dpy proug + 4M§U2 — piuy
a
2p0u2

( < iUy )2 M1 1 H1u >
= —~ +— -
2p2us Motz Uz 2pous

Let p = £1. Then y = (\/(;lep)Q - %p + 712 — ga=p)a. So, we see that the slope of

y:

yis,/%asp—)Oandtheslopeofyis+ooasp—>+oo. Since 1 < ,/u—12<+oo,the

infimum of the slope of y is 1. It means that the line L1 = {(a,y) e RxR |y = a}

supports epi¢ at all (ag, ¢(ag)), where ag = \/(,ulul)z — 4y pous + 4psug. Secondly,

we consider y = —££&% ¢ ie., a9 = 0, that is, u; = —1, us = 1 and p; = 2us. So
Yy 2uzuz ) ) ) ) H H )

we have y = a. It means that the line L; = {(a,y) € R x R | y = a} supports

v/ (p1u1)2 =4 pous +4p3us —piug
2p2u2

epi¢ at (0,0). Finally, we consider y = — a, ie., ag =

—\/(ulul)Q — 4y pous + 4p3us. Then, we have

_ _\/(M1U1)2 — 4dpy proug + 4M§U2 — H1U a
2pgug

)
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_ 201 — 2p2 “
V (p1un)? — g poug + 4p3uy — pau
9 _ou
— M1 a.

2
\/(U1)2 — 4(%)’1@ + 4(%) U — U

So, we can easily see that the slope of y is 0 as u; = uo and the slope of y is small
than 0 as p1 < pe. Now, we consider the slope of y as 1 > pa. Let 0 = Z—f Then

— 2—20
O<o<landy= Y B v
and the slope of y is —u—ll as 0 — 0. Since % < _u% < 1, the supremum of the slope

of y is 1. It means that the line L; = {(a,y) € R x R | y = a} supports epi¢ at all
(ag, p(ap)), where ag = —\/(Mul)z — 4y pous + 4psus. Hence, we see that

a. So, we see that the slopeof yisOaso — 1

_ 2
25) U {ian) | U2 < £ 0,0 £ 0} € o) fasr)

u; EU;
;=0

Let (ap,y0) = (2u2 — p1,2u2 — p1) € Ly be any fixed. Let u; = —1 and ug = 1.
Then ¢(ap) = ap. So,

a+ 2
(ao,y0) € {(aﬂ“) ‘ (4;;1)4-#2—#1 <7, p2 #0, uz#o}

2
a— pi1ug
- U {(aﬂ“) ’ (4M2u2)+uz—u1ér, p2 # 0, U27é0}-

Hence, we see that

_ 2
(26) {(a,r) [a<r}c |J{lar) | U5l 4y — iy <7, pp £ 0, ug # 0}
s

So, from (2.5) and (2.6),
2

27 {(a, r) ’ la=mu)”

— < 0 0, = <rj.
Ty < g 20w 20} = (@) [ 1)

u; €EU;
;=0

Thus, from (2.4) and (2.7),

2 * 2
U (eni( Emfiteu) + (0.3 s mas o)) ) = f(ar) [ a <),
u; €U, i=1 =1

Hi=0
Consequently, we see that

U <epi<guz‘fz’('7uz‘)>* + <O’§;ﬂi el fi(fwi)))

u; €U
Hi=>0
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+ U epithgi(, o))" = {(a,r) a <r}
v1 €V
A1>0

is closed, and so, Proposition 2.2 holds.

Now we consider the closed cone constraint qualification which requires that the

cone,
m *

U eni( Svmt)

1)j€Vj ]:1

x>0
is closed.
Remark 2.2. Let g; : R" x R? — R, j = 1,...,m, be continuous functions
such that for all v; € R, g;(-,v;) is a convex function. Suppose that each V;,
j=1,....,m, is compact and convex, and the Slater type condition holds, that is,

there exists g € R™ such that gj(xo,v;) < 0, Yv; € V;, j = 1,...,m. Then
Ussev, epi(2o7212595(, 7)) is closed ([12]).

X;>0

Following the proof in [13], we can obtain the following Kuhn-Tucker theorems
for (RUMP) under the closed cone constraint qualification:

Theorem 2.5. Let T € F. Assume that the closed cone constraint qualification
holds. Under assumptions of Theorem 2.2, the following statements are equivalent:

(i) the point T is a weakly robust efficient solution of (RUMP);
(ii) there exist p; > 0, not all zero, u; € Us, i = 1,...,1, A\j; > 0 and v; € V},
j=1,...,m, such that

l m
0€ ) mdfi( ) (@) + Y A09;(,0;)(7),
i=1 =1
max fz(i‘,uz) Zfi(.f,ﬂi), i=1,...,l, and Z)\ij(Q_?,l_)j) =0.

u; EU; =

Theorem 2.6. Let T € F. Assume that the closed cone constraint qualification
holds. Under assumptions of Theorem 2.2, the following statements are equivalent:

(i) the point T is a properly robust efficient solution of (RUMP);
(ii) there exist p; >0, u; € Uy, i=1,...,1, \; >0 andv; € V;, j=1,...,m,
such that

l m
0> widfi( ) (T) + Y A\j0g;(-7)(Z),
=1

j=1

m
]:

The following example illustrates that Theorem 2.5 and Theorem 2.6 holds.
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Example 2.3. Consider the following multiobjective optimization problem problem
with uncertainty (UMP):

(UMP) min (ujx1, usxs)
s.t. wvixy +vere —1<0,

where uy € Uy = [0,1], uz € Us = [0,1] and (v1,ve) € V := {(v1,v2) € Ry | v? +v3 <
1}. Its robust counterpart (RUMP) of (UMP):

(RUMP) min ( max wuqixi, max uQa:2>
u1€[0,1] u2€(0,1]
st. viry +vawe — 1 <0, V(vg,v2) € V.
Then the robust feasible set of (RUMP) is {(z1,x2) | \/2% + 23 < 1}. We can easily
see that the set of robust efficient solutions (RUMP) is

{(1)31,.’E2) ‘ \/ ﬂj% +SC% < ]-a x1 < 0) xg < O}a

the set of robust weakly efficient solutions of (RUMP) is

{(1U1,1»‘2) ‘ \/5U%+55% <1, m SO}U{(%,M) ‘ Vot +a3 <1, x SO}

and the set of properly robust efficient solutions of (RUMP) is

{(:Ul,xg) ‘ i+ 23 <1, 21 <0, x9 SO}.

Let fi(z,u1) = urz1, fa(x,uz) = ugwe and g1(x,v1,v2) = viz1 + vexy — 1. Then we
can easily find points which hold the Slater condition. Since for each (vq,v2) € V,
g1(+,v1,v2) is convex and V is compact, [,y 5, >0 €Pi(A1g1(+,v))" is closed. In fact,
for each v € V and each A\; > 0,
(Mg1(,v)) (a1,a2) =  sup  {a1w1 + agre — \viw1 — A\jvaTa + A1}
(z1,x2)ER2

A, if ap = Mvr, a2 = Ao,
400, elsewhere.

So, we see that

U epitugio)* = | epithgi(0)* [ J{0} x {0} x [0, 00))

veEV veEV
A120 A1>0
= U {(a.a2,7) | a1 = Mwi, ag = Mg, Ay <7}
(v1,v9)EV
A1>0

J{0} x {0} x [0,00))

= {(al,ag,r) ‘ \/a%—i—a% Sr}

is closed.
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Let (Z1,22) = (1,0). Then (&1,&2) is a weakly efficient solution for (RUMP).
Let ’ELl = 1, ’112 = 0, ﬂl = 0, [LQ = 1, (’f)l,’f)g) = (1,0), )\1 = 0. Then we have
/\7 pr— h pr— 1 = { = ) 7 = 7 5 {l d
UI?QL}{? J1(Z,u1) Jllflgg{i U1 iy = U121 = f1(21,71) an
/\’ = h = 0 = 9 = {0 h = h 5 l .
Inax f2(Z, u2) max udy Uiy = Uo%g = fo(Z2, U2)

Moreover, we can easily calculate dfi(-,41)(2) = {(1,0)}, Ofa(-,u2)(z) = {(0,0)}
and 0g1(-,0)(z) = {(1,0)}. So, we have

(0,0) € 110 f1(, 1) (&) + 120 f2(-, ) (&) + Mg (-, 0)(2) and Ayg1(&,9) = 0.

So, Theorem 2.5 holds.

Let (Z1,%9) = (—%, —%) Then (Z1,Z2) is a properly robust efficient solution
for (RUMP). Let @y = 0, Gip = 0, fi1 = 1, fig = 1, (01, 02) = (—%,—%), A1 = 0.
Then we have

max fl(:E,ul) = Imax uli‘l =0= ﬂl = 111.%1 = fl(.f'l, 7:61) and

u1 €EUL u1 €EUL
max T,Uy) = max usZo = 0 = g = UgTy = To, Us).
u2€u2f2( ,u2) nax upks 2 2Z9 = fa(T2,2)

Moreover, we can easily see that dfi(-,u1)(Z) = {(0,0)}, dfa(-,a2)(z) = {(0,0)}
and 0g1(-,0)(2) = {(—%, —%)} So, we have

(0,0) € i1df1(-,@1)(Z) + figd fa (-, t2) (%) + Mdg1(-,9)(&) and A1g1(F,) = 0.
So, Theorem 2.6 holds.

3. SEQUENTIAL OPTIMALITY CONDITIONS II

By using Bronsted-Rockafellar theorem (Proposition 1.1), we can obtain the fol-
lowing sequential optimality theorems for (weakly, properly) robust efficient solu-
tions of (RUMP):

Theorem 3.1. Let T € F. Under assumptions of Theorem 2.2, the following
statements are equivalent:
(i) the point T is a robust efficient solution of (RUMP);
(ii) there exist u; € U;, v; € Ofi(-,u;)(Z), xp € R™, pl' >0, ul €Uy, i=1,...,1,
€n € OOy 1 fi(oul)) (), v € Vi, AP >0, j = 1,...,m and {, €
O 5 Ntgj(+v}))(zn) such that

j=1"39J
7}L>Iloloxn :jjv 111,?25{{1 fl('iaul) = fi(:fvﬂi)v 1= ]-7"'7l7

!
0= Zvi +7}LI£IO(§n +¢,) and

i=1

l l m
lim [Z p fim, ul) = > pl fi(@, ) + > Ngj(am, vg)} =0.
i=1 i=1 j=1

n—oo
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Proof. Suppose that (i) holds. Then, from Theorem 2.2, there exist u; € U;, v; €
Ofi(yui) (@), p > 0, u € Upy i = 1,01, 6, 2 0, & € 05, (S i il u)) (@),
v €V, AT 20,5 =1,...,m, v, > 0 and ¢, € 9,, (372, AJg; (-, v}))(Z) such that

(Z,u;), i=1,...,1
glleag{( fz(fr Uz) fz(xauz)a ? s y by

0= Zw + lim (& + ), lim 8, =0, lim 7, =0,
=1

m
j=1

Notice that

n+ o € O, <ZZI;M?J%(-,U?)) @)+, (iw-, )@
C D6y tym ( Zl: pi' fisui') + i A7 95 v}‘)) (Z).
i=1 Jj=1

So, by Proposition 1.1, there exist z,, € R™, &, € 05, (22:1 pi fi(cul)) (@), vl €V,
AP>0,j=1,...,m, and (, € 0y, (3721 A7g;(-,v7"))(Z) such that

Hmn_EH < VOn + Y, \\én—fnJrCn—an < V0 + v, and
l

? fi@n, ul) + Z N2 (20, 0F) = (€n + Cny T — )

< 2(6n + Yn)-

l
= fi(@, ) ZA"gJ
=1 j=1

Since 8, + 1, — 0 as n — 00, ||@, — Z|| = 0 as n — oo and ||€, — &, + Cu — Gl — 0
as n — 0o0. Thus we have

l
0= vi+ lim (& + )

i=1
and
nh—>n§o [,u?fz(x,u?) w fi(z, ug) Z)‘ngﬂ } =0.
Since limy, oo [ fi(T, uit) — pf fi(Z, ;)] =0, i=1, ... 1, and limy, 00 37701 A} g5 (2, v})

= 0, we have limy, o0 [ fi(Z, ul) — pl fi(Z, 0;) —i—z 1 A9 (T, v)] =0,i=1,...,1
Now we suppose that there exist u; € U;, v; € 8)‘}( u;)(Z ), z € R, pl 2 0,
ul € Uy, i =1,...,1, & € 95, (Xi_y uP fi (- uf)) (@), oI € Vy, AP >0, j = 1,...,m,
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and G, € 05, (X7 N g;(-,v7))(z) such that

nh_)m Tp = T, ggg{i fi(z,w) = fi(z,u;), 1=1,...,1,

l
0= Z v; + nh_)rgo(gn + @L) and
i=1

l l m
i | () - 3 (o) + 3 N =0
i=1 i=1 j=1

Then, since v; € Ofi(-, u;)(Z) and maxy, ey, fi(Z,ui) = fi(a’clﬂi), t=1,...,1, we have
v; € O(maxy,ey; fi(-,wi))(Z), i=1,...,1. So, for any z € F,

l
. o
Zgggfﬁmuz Z:glgiffzxuz = <;V7,,JZ {L’>
= — lim (&, + G,z — ).
n—oo
Since limnﬁoo(én + &1) = — 22:1 v; and lim,, oo 2, = T, we have
- nll_{go@n + Cny T — T)
= — lim (& + ¢,z — 2 + 2y — T)
n—oo

= - hm <gn+5n7x_xn>

I
> —llrl?jolip (Zm fi(@, i ;M?fi(fmugl)
+ Z Nigi(@,vf) — Z N gj (o, U?))
! m
llﬁglggf(Zul fi(xn, ui! ZM?fz’(%U?)+Z)‘§L9j($mvgl)>
1;1 J;l
lm nf (Zu?ﬁ(me?) = D) + 3 g St

—Zmax fi(z,ul) +Z)\?gj(xn,v;‘)>
j=1

AV

Y

uze T

l m
> limint (2 i) = Y @) + 3 N o))
i=1 i=1 j=1
= 0.

The last inequality holds since 22:1 w1 maxy, ey, fi(x,w;) — 22:1 pi fi(z,ul’) >0
and maxy, ey, fi(z,wi) = fi(z,u;), i = 1,...,1. Hence, for any =z € F,
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S maxy, e, filw,ui) > S P fi(z,ul). So, I is a robust efficient solution
of (RUMP). O

Theorem 3.2. Let € F. Under assumptions of Theorem 2.2, the following
statements are equivalent:

(1) the point T is a weakly robust efficient solution of (RUMP);
(ii) there exist p; > 0, not all zero, u; € U;, v; € ofi(-,u)(z), i = 1,...,1,
T, € R", W7 €V, AP >0, j=1,...,m, and (, € I Mg, v ))( )

j=19.
such that
nlin;oxn =T, gleazi filz,uy) = fi(z,ug), i=1,...,1,

l

O—Z,uluz+ hm Cn and hm Z)\ 9j(zn, J) 0.
=1

Proof. Suppose that (i) holds. Then, from Theorem 2.3, there exist ,u" > 0, not all
zero, u; € Uy, v; € Of;(-,u )()2—1 cs P EVH AT >0, =1,...,m, 7, 20

and ¢, € 9y, (3271 AJg; (-, v}))(Z) such that

u; €

HlaXfl( ) (j7ﬂi)7 izlv"'ala

l
0= ZMM’ + nh_}r{)lo Cns nli_>r207” =0 and
i=1

m
Jim N (2,07) =
j=1

Since ¢, € 8%(27‘ 1 A7gi (- v7))(Z), from Proposition 1.1, there exist z, € R" and
(n € (>, A2 gj(+,v}))(2,) such that

lzn =21l < VAns G = Gall < \/’Yn and
m

795 (20, 0F) = (Cpyn — T ZA”gJ )| < 29
Since lim, ,00v, = 0, we haYe lim, oo n, = 7, limn_ﬂxj(fn — (¢,) = 0 and
limnﬁoo[zgnl)\?g](:cn, vF) = Gy — T) — Z;nl)\?g](’ v?)] = 0. Since

limy, o0 Zz 1 iV + lim;, ;o0 ¢, = 0 and hmn—)oo(Cn Cn) =0, limy, 00 Zz 1 MV +
lim,, 00 Cx = 0, and hence im0 [P 2721 ATgj(@n, v]) — 3200 AT gs(7,07)] = 0.
Since » 0L AN7g;(7,07) = 0, limp o0 D52 )\?gj (zn,v}) = 0. Thus

l

lim z, = Z, Z,ulyz nh_}ngo fn =0 and

n—oo
=1

m
lim Y~ A7g;(zn, v]) = 0.
j=1

n—oo
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Now we suppose that (ii) holds. Then for any = € F,

Z:uz maX fz x Uz Z,U/Z maX fz z UZ)

> <Z,U1szx —l‘> = - h_>m <Cn7x —17> = _nh_{glo<§na$ — Tp + Tn _a_7>
5 m
_ : n_ . n
= —Jirgo(gn,x—x ) > _hgl—folip (Z)\ gj(z _Z/\jgﬂ(xnavj ))
7=1 7j=1
m
> liminf (Z A;‘gj(a:n,v?)>
j=1
= 0.
Hence, for any z € F, 25:1 i maxy, ey, fi(w,wi) > Zi’:1 i maxy, ey, fi(T, wi).
Thus, 7 is a weakly robust efficient solution of (RUMP). O

By using approaches similar to the proof of Theorem 3.2, we can obtain the
following sequential optimality theorem for a properly robust efficient solution of
(RUMP).

Theorem 3.3. Let € F. Under assumptions of Theorem 2.2, the following
statements are equivalent:
(i) the point T is a properly robust efficient solution of (RUMP);
(i) there exist u; >0, u; € Us, v; € Ofi(-,u)(x), i =1,...,1, z, € R, vl €V,
AP >0,j=1,...,m, and G, € 0y, (3772, A7g;(-,v7)) (%) such that

lim z, = 7, max fi(@,uy) = fi(z,w;), i=1,...,1,
€

n—oo Uj i

m
0= Z WiVi + nh_}ngo ¢n and nh_g)lo Z A} gj(xn,v]) = 0.
— ]:
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