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OPERATOR k-TONE FUNCTIONS AND ANALYTIC
FUNCTIONAL CALCULUS

FUMIO HIAI

ABSTRACT. Operator k-tone functions on an open interval of the real line, which
are higher order extensions of operator monotone and convex functions, are char-
acterized via certain inequalities for the real and imaginary parts of analytic
functional calculus by those functions.

1. INTRODUCTION

Theory of operator/matrix monotone and convex functions initiated by Léwner
[11] and Kraus [10] has been a significant topic both theoretically and in applica-
tions in Hilbert space operator theory and matrix analysis. In [6] we introduced
the notion of operator/matrix k-tone functions, which is a higher order extension of
operator/matrix monotone and convex functions, and obtained several characteri-
zations and integral representations of those functions. An operator k-tone function
f on an open interval (a,b) is automatically analytic and is characterized, among
others, in terms of positivity of the kth derivative of functional calculus for f in

such a way that
k

DF¥f(A;B) := % f(A+1tB)

for bounded self-adjoint operators A, B such that the spectrum o(A) is in (a,b) and
B > 0. Moreover, this property enables us to compare f(A + B) with its Taylor
form as

>0
t=0

k—1
1
(1.1) fLA+B) = > — D" f(4; B)
m=0
whenever the operator norm ||B|| is small enough so that o(A + B) is in (a,b).

In the present paper we characterize operator k-tone functions in terms of analytic
functional calculus of non-self-adjoint operators, instead of functional calculus of
self-adjoint operators as in (1.1). We consider a continuous real function f on (a,b)
which is analytically continued to the upper half-plane Im z > 0. For an operator
X = A+iB with self-adjoint A, B, if either 0(A) C (a,b) or B > 0 (i.e., B is positive
and invertible), then we can define the analytic functional calculus f(X). Our
main theorem says that the condition of f being operator k-tone is characterized
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by inequalities between the real part Re f(X) and a certain Taylor form of even
powers, or between the imaginary part Im f(X) and a Taylor form of odd powers.
A remarkable point here is that our characterizing inequalities are of four different
kinds with inequality signs and even/odd powers, depending on k (mod 4). For
instance, the operator 4k-tonicity of f is characterized by the inequality

2k1

(1.2) Re f(A+iB) (A; B)

m=0

for every self-adjoint operators A, B with o(A) C (a,b).

The paper is organized as follows. Section 2 contains brief accounts on analytic
functional calculus and operator k-tone functions. In Section 3 we present the main
theorem characterizing operator k-tone functions in terms of analytic functional
calculus as in (1.2). Finally in Section 4 we restrict our considerations to operator
monotone and convex functions, and obtain further characterization results.

2. PRELIMINARIES

2.1. Notations. In this paper H is a separable infinite-dimensional Hilbert space
and B(H) is the set of all bounded linear operators on H. We denote by B(H)*
the set of all self-adjoint A € B(H) and B(H)" the set of all positive A € B(H)**
In addition, M, is the n x n complex matrix algebra (i.e., M,, = B(C") on the
n-dimensional Hilbert space C"), M5% the n x n Hermitian matrices, and M the
n X n positive semidefinite matrices. For A € B(H)*® (also A € M) we write
A > 0 when A is positive and invertible. For any open interval (a, b) of R we denote
by B(H)**(a,b) the set of all A € B(H)** whose spectrum o(A) is in (a,b), and
similarly by M?%(a,b) the set of all A € M* with eigenvalues in (a,b).

2.2. Analytic functional calculus. Let f be a continuous real function on an
interval (a, b), where —oo < a < b < 0o, and assume that f is analytically continued
to the upper half-plane CT, that is, there is a continuous function f (2), 2€ CTU
(a,b), such that f is analytic in C* and f(x) = f(z) for all z € (a,b). For simplicity
we denote the extension f by the same f. By reflection principle, f is further
extended to the lower half-plane C™ in such a way that f(z) = f(z), z € C7, so
that f is analytic in (C\ R) U (a,b).

Let X € B(H) or, in particular, X € M,, with o(X) C (C\ R) U (a,b). For the
above f one can define the analytic functional calculus of X as

X): (CI—-Xx)tda
F) = 5 [ 1T =307
where I' is a piecewise smooth closed curve in (C \ R) U (a,b) surrounding o(X).

Furthermore, for any Z € B(H) and any z € C with sufficiently small |z| so that
o(X + zZ) is inside T, the analytic functional calculus f(X + zZ) is also defined as

P+ 22) = 5 [ HORT =X =22 dc,
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and the B(H)-valued analytic function z — f(X +27) admits the Taylor expansion

[e.9]

(2.1) f(X 4 22) = n;)j;:Dmf(X;Z)’
where
DX 2) = (X 42|
(2.2) — oo [ foer - e - Xy mzo.

Furthermore, when A € M?%(a, b), for any m € N one has the mth Fréchet derivative
D™ f(A), an m-multilinear map of M3? x -+ x M3®* (m times) to M*, of the usual
functional calculus A € M5*(a,b) — f(A) € MJ® (see, e.g., [9, §2.3]). Then it is
well-known that
D" f(A;B)=D"f(A)(B,...,B), B e M;".
——
Lemma 2.1. Let X € B(H).
(1) If Im X > 0, then o(X) C CT,
(2) If o(Re X) C (a,b), then o(X) C (C\R) U (a,b).
Proof. (1) was given in [5]. In fact, if X = A+ iB with A, B € B(H)** and B > 0,
then the inverse of X is
X1 = B~ YXBY2AB~V2 4 i[)"1B 12,
This implies that X — z[I is invertible for every z € C with Im z < 0.
(2) Assume that X = A+ i¢B where A, B € B(H)** with al < A < bl. Then,
for every A € R with A < a, we have A — Al > 0 and
X =M= (A= MDY {T+i(A—=XI)"YV2B(A = XI)"Y/2} (A — AI)V/?
is invertible. Also, for every A € R with A > b, we have Al — A > 0 and
M — A= (M — YT — i\ — A)7V2BN — A~V (AT — A)Y?
is invertible. Hence o(X) C (C\ R) U (a,b). O

Therefore, we can define the analytic functional calculus f(X) in the cases (1)
and (2) of the above lemma.

2.3. Operator k-tone functions. A real function f on (a,b) is said to be operator
monotoneif A < B implies f(A) < f(B) for every A, B € B(H)**(a,b), and operator
monotone decreasing if —f is operator monotone. Also, f is said to be operator
conver if

FOA+ (1 =NB) < Af(A)+(1=Nf(B), 0<A<I1,

for all A,B € B(H)**(a,b), and operator concave if —f is operator convex. The
theory of operator monotone and operator convex functions was initiated by Lowner
[11] and Kraus [10], which was further developed in [8] and others. For details, see,
e.g., [3, §V.4] and also [1,4,9].
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In [6] we introduced the notion of operator k-tone functions for k£ € N, extending
operator monotone functions (when k£ = 1) and operator convex functions (when
k = 2). Since the definition itself of operator k-tone functions in [6, Definition 4.1] is
a bit long to state in detail, we here recall its equivalent conditions for convenience.
For a real continuous function on (a,b), among several equivalent conditions of f
being operator k-tone are the following;:

(a) fis C* on (a,b) and

dk
i

A+tB)‘t >0

for every A € M*(a,b), B € M}, and for every n € N.
(b) f is analytic on (a,b) and
k

ik I

for every A € B(H)*(a,b) and every B € B(H)", where the above deriva-

tive of order k is well defined in the operator norm.
(c) fis C* on (a,b) and

A+tB)‘t_O >0

k—1
1 m
f(A+B) > mZom!D f(A)B,...,B)

for every A € M2*(a,b) and B € M, such that A + B € M$%(a,b), and for
every n € N.

The above conditions (a)—(c) equivalent to operator k-tonicity are found in [6,
Proposition 2.6, Theorem 3.3]. In the above conditions, if k is even, then B can be
a general matrix in M?* or operator in B(H)®.

Furthermore, it is seen from [6, Corollary 3.4] that an operator k-tone function
on (a,b) is analytically continued to C* UC~ so that the extended f is analytic in
(C\R) U (a,b), as an operator monotone function on (a, b) does so.

3. CHARACTERIZATION OF OPERATOR k-TONE FUNCTIONS VIA ANALYTIC
FUNCTIONAL CALCULUS

The aim of this section is to prove the next theorem, which is our main result of
the paper characterizing operator k-tone functions on (a,b) via analytic functional
calculus. The statements are divided into four cases depending on k (mod 4).

Theorem 3.1. Let f be a continuous real function on (a,b), —oo < a < b < oo,
analytically continued to C*. Then for each k € N the following assertions hold:

(1) f is operator (4k — 2)-tone if and only if
k

Re f(A+iB) < i
m=0

[\

2

(_1)m m .
(2m)! D" f(4; B)

for every A € B(H)**(a,b) and every B € B(H)**, or equivalently, for every
A € M3 (a,b) and every B € M} of any n € N.
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(2) f is operator 4k-tone if and only if

2k—1 (—1)m
A+iB) > D?™f(A; B
Re f(A+iB) > m}_jo Gy 2" (4 B)
for every A € B(H)%*(a,b) and every B € B(H)**, or equivalently, for every
A € M3 (a,b) and every B € M} of any n € N.
(3) f is operator (4k — 3)-tone if and only if

2k—2 (—1)m1

Im f(A+iB) > Z m
m=1

D*1f(A; B)

for every A € B(H)%*(a,b) and every B € B(H)*, or equivalently, for every
A € M*(a,b) and every B € Ml of any n € N. (The above right-hand side
is0ifk=1.)
(4) f is operator (4k — 1)-tone if and only if
2%k—1

Im f(A+iB) < >

_1\ym—1
((277;[)_ 1)'D2m71f(14, B)

for every A € B(H)*%(a,b) and every B € B(H)™, or equivalently, for every
A € M*(a,b) and every B € M} of any n € N.

Proof. As mentioned at the beginning of Section 2.2, the assumption on f says
that f becomes an analytic function in (C\ R) U (a,b). Hence by Lemma 2.1 the
analytic functional calculus f(A 4 iB) can be defined whenever A € B(H)%*(a,b)
and B € B(H)**.

Let us first prove the “if” part. Let n € N be arbitrary, and let A € M?%(a, b)
and B € M. By the Taylor expansion (2.1) with (2.2), for every | € N we have

L (ieym
J(A+ieB) =Y "2 D™ f(A;B) + O(1)  as e \,0.
= m!

Since D™ f(A; B) € M* for all m > 0, this implies that, for every [ € N,

l m m
(3.1) Ref(A+ieB)=>_ (_(12)771;2 D*™f(A; B) + O(e%72) as e \, 0,
m=0 ’
! (_1)m—1€2m—1
(3.2) Im f(A+ieB) = m T D*™ 1 f(A; B) + O(2™)  as e \, 0.
m=1 ’

Let k € N. When [ = 2k — 1, formula (3.1) is rewritten as

2k—2 (_1)m 2m ) €4k_2 b n
Re f(A+ieB) = ~————— D*"f(A;B) — ——= D*""“f(A;B) + O
e (A +isB) = 3 S0 DA B) = gy DY (A B) + O
as € N\, 0. If the condition in (1) for matrices is satisfied, then this implies that

D" 72f(A;B) > 0
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for every A € M*(a,b) and B € M} of any n € N. Hence f is operator (4k—2)-tone
by condition (a) of Section 2.2 or [6, Theorem 3.3]. When [ = 2k, formula (3.1) is
rewritten as

2k—1 _1\ym_2m k
Re f(A+ieB) = Y mef(m B+ =

! D* f(A; B) + O(*+?)
m=0 ’

as € \, 0. Hence, the condition in (2) for matrices implies that f is operator 4k-
tone. Similarly, from (3.2) when [ = 2k — 1 (resp., when | = 2k) we see that the
condition in (3) (resp., in (4)) for matrices implies that f is operator (4k — 3)-tone
(resp., operator (4k — 1)-tone). So the “if” parts of (1)—(4) have been proved.

To prove the “only if” part, we need to give some lemmas.

Lemma 3.2. Let k € N and let P(x) be a polynomial with real coefficients and
degree < k. Then for every A, B € B(H)%?,

[k/2]

—1)m
Re P(A+iB) =Y (( Qm))‘ D*™P(A; B),
m=0 ’
(/2 jyme
Im P(A +iB) = Zl mD?m—lp(A;B).

Proof. Since the assertion is obvious when P(z) is a constant, we may assume that
P(x) = 2! where I € {1,...,k}. Then

l

m=0

where Fj_,, (A, B) denotes the sum of all products of [ —m A’s and m B’s. So
we have

(/2]
Re {(A -+ ZB)Z} = Z (*1)mﬂ—2m,2m(A7 B),
m=0
[(+1)/2]
Im {(A + z'B)l} = Z (=)™ 'F_ami1,2m—1(4, B).
m=1

On the other hand, it is obvious that

MIF)_pym(A,B) i 0<m<I,
0 if m > 1.

dm
D™s'(A;B) = —

(A+BY| = {

Hence we have the desired formulas for Re {(4 +iB)'} and Im {(4 +iB)'}. O
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Lemma 3.3. Let k € N and A € [—1,1]. Let A € B(H)**(—1,1) and B € B(H)*“
and set X := A+ iB. Then

2% R O e
Re { X**(I — AX) }<W0 @m) D <1_)\x>(A;B) if k is odd,
Re {X%(I - )\X)_l} > 5 (=)™ D2m( o >(A B) if k is even.
— A= (2m)! 11—z /)7

Proof. First, note that 22¥/(1 — A\z) has the analytic continuation 2%¥ /(1 — \z) that
is analytic in (C\R)U (—1,1), so X?*(I —AX)~! is well defined. When \ = 0, the
required inequalities hold with equality by Lemma 3.2. So assume that A # 0; then
we write

z2k 1 {1-1-=-xx)}* 1 1
1— Az A% -y T e T @)
where
1 2k
Py(z) := )\Zk ( ) M1 = Ax)t
Hence we have
_ 1 _
Re {X*#(I-)X)'} = 1ar Re {(I-2X)"'} +ReP\(X),
k-1
(=)™ o 2
D™ A; B
(2m)! 1-\z (4; B)

Therefore, it suffices to show that

k—1
_ (=)™ om( 1 . e
Re {(I — \X) 1}<m§ Oj( ] D? (1_)\w>(A,B) if k is odd,

k—1
Re {(I - X)"'} > Z (

Since I — AA > 0, we define an operator C € B(H)** by
Cy:= MI — MA)"YV2B(I — x4)~Y/2,

1 e s
(1 — )\x> (A;B) if k is even.

We then have
(83) (I =AX)" = {(T - )21 —iCy)(1 - A2
= (I - AA)TV2(I+C3) T (I +i0n)(I — AA) ™12
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so that )
Re{(I - AX)"'} = (I - MA)V2(I+C}) " (I —2A)~V2,
On the other hand, for ¢t € R sufficiently near 0, we have

(T =XNA+tB)} " = {(I = XA)Y2(I —tCy) (I — AA)/2}

=) ™I — NA)TVECR(I - AA)TH?
m=0
so that

1
(3.4) Dm<1 — Ax) (A;B) = m!I(I — NA)"Y2C(I — XA)V2, m>o.

Therefore,
k—1
— (_1)m m 1 .
Re {(I - X)7'} —m§:0j @] D? (1 — )\3:>(A’B)

— (I = XA (1 +C3) 7 (1 —rA)~1/?

k—1
= (=)™ = AA) TR - AA) T
m=0

= (- )\A)‘W{(I +C) T —(I+c) I - (—1)’fc§’f)}(1 —AA)12
= (~D)F(I = AA)TV2(1+ CF) T O - ATV,

which yields the desired conclusion. O

Lemma 3.4. Let k € N and A\ € [-1,1]. Let A € B(H)**(—1,1) and B € B(H)T,
and set X := A+ iB. Then

k-1 (_1)m—1 p2k—1
Im {XQR:fl(I . )\X)fl} > Z ﬁDmel <> (A’B) ’Lfk 18 Odd7
m=1 ’

2m —1 1—- XAz
k—1 (_1)m—1 p2k—1
Im{X%_l(I — )\X)_l} < Z mD2m_1 (1 — Al') <A7 B) lfk 18 even.
m=1 ’

(The right-hand side of the first inequality is 0 if k =1.)

Proof. By Lemma 3.2 we may assume that A # 0. Since
x?k*l 1 1
T—Az AT 1-)
with a polynomial P(z) of degree 2k — 2, it suffices as in the proof of Lemma 3.3
to prove that

—+ Py(x)

—1 — (D™ o1 e
Am {(I = AX)"'} > A mD g J(AB) itk s odd,
=1

_1\ym—1
L' D2m1< ! >(A; B) if k is even.
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(Here, the inequalities with the factor 1/A%*~! are equivalent to those with \.) With
the same C as in the proof of Lemma 3.3, it follows from (??) that

Im {(I = AX)""} = (I = AA)"V2(I 4+ C3) ' Ca(I — AA) "2,
From (3.4) we obtain

-1 2m—1 1 .
AMm {(I - X)) - )\Z 2m—1 (1_)\$>(A,B)

= \I — AA)‘1/2 (I+ CA) LONI = AA) 12

—)\Z )T = MA)TVPOTT I — AA) T2

—A(I - /\A)*1/2{ (I+C3) 70— (T+C3)7H(Ch — (—1)F 1o }(1 —AA)T2
= (1P NI = 2A) V(1 4+ C3) T ACEHY (1 — AA) V2,
Thanks to B € B(H)' we have
ACZE=E = NR{(T — NA)"V2B(I — AA) /22! >,
and hence the desired conclusion follows. g

Now let us prove the “only if” part of Theorem 3.1. Assume that f is operator
l-tone on (a,b) where [ € N, and let A € B(H)**(a,b) and B € B(H)**. By taking
a finite open interval (a’,t') C (a,b) such that o(4) C (a/,V’), we may assume
that (a,b) itself is a finite interval. We have a linear transformation ax +  with
a >0 and § € R which transforms (a,b) to (—1,1). By replacing f and A, B with
f(z) = f((x — B)/a) and A := oA+ BI, B := aB respectively, we have

f(A+iB) = f(A+iB), D"™f(4B)=D"f(AB), m>0,

so we end up by assuming that (a,b) = (—=1,1). Then by [6, Theorem 4.1], f admits
the integral expression

l

f(z) = Px) + /[ (), we(-11),

—1,1] 1— Az
where P(z) is a polynomial (with real coefficients) of degree < [ and p is a finite
positive measure on [—1,1]. For A € [-1,1] and = € (—1,1) we set

l 7!

(@)= and g(a) = /H T du() = /H 9 (@) dp().

It is immediate to see that if H € B(H)**(—1,1), then g\(H) = H'(I — \H)™!
continuous in A € [—1, 1] in the operator norm and

(3.5) o) = [ o,
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where the integral may be considered in the weak sense (in fact, it can be also in
the strong sense). We here prove that

(3.6) DUgiB) = [ DM(AB)du(N),  m=0.
[7171]

Let o ;= max{|A|: A€ o(A)} (< 1), r1:=(ro+1)/2,and 'y :={{ € C: || = r1}.
Moreover, choose a 6y > 0 such that &o||B|| < (1 — r1)/2, where || - || denotes
the operator norm. By (2.1) and (2.2), for every A € [—1,1] we have the Taylor
expansion of gy(A + tB) as

X m

(3.7) gA(A+tB) =) % D™g\(A;B), teR, |t| < do,
m=0
where
Dy(i5) = 5 [ O - AT BT - )G
Since

oA (O)((CT — AL B)™ (¢ — A)7Y
<1gA(Q)] - | €I = A~Y ™ B|™

1 1 m+1 1 m—+2
< 1B = +—— 1B, (e,
1—ri\r—1rg 1—-7m

it follows that

(56n ™1 (5()HBH m 1 1\
— || DMg\(A; B)|| < < — —1,1].
m‘ H g)\( ’ )H - (1—7“1)2(1—7“1 - (1—7‘1)2 2 ’ )\E [ ’ ]

Hence the Taylor expansion in (3.7) is absolutely convergent in the operator norm
uniformly for A € [—1,1]. So, by (3.5) (for H = A+tB) and the termwise integration
of (3.7) we obtain

g4 +tB) = [ (A +tB)du()
[_171]

[ DB, ter J <,
m. [_1’1]

m=0

and the power series in the above right-hand side is convergent in the operator norm
for |t| < 0g. Therefore, (3.6) follows.

Furthermore, choose a smooth closed curve I' in (C \ R) U (—1,1) surrounding
o(A+iB). Since ||gx(¢)(¢I — A —iB)~!|| is uniformly bounded for ( € I' and
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A € [—1,1], by applying Fubini’s theorem we have

68)  oa+iB) =5 [ 0O - A=iB) &

_ 1 (/[—171} 9x(C) du(A))(C]_A_Z.B)_ldC

- 27

_ /[_1’1] (;m /F QT — A—iB)™ dc) dp(N)

:/ Gr(A+iB)du(N).
11

Now we are in a position to complete the proof of Theorem 3.1. Assume that
[ =4k —2, so f is an operator (4k — 2)-tone function on (—1,1). By (??), Lemmas
3.2, 3.3, and (3.6) we obtain

Re f(A+iB) =ReP(A+iB) +/ Re gr(A+iB) du(N)

[_171}
2k—2 m 2k—2 _1\ym
< ((;2)! D" P(A; B) + /[ > ((2:”))! D gy (A B du(h)
m=0 — 5 m=0
2k—2 (_1)m o .
- Z (2m)! {D P(A; B) + D*"g(A; B)}
m=0
2k—2 m
m=0

which completes the proof of (1). The proof of (2) is similar with { = 4k. On the
other hand, when [ = 4k —3 or [ = 4k —1, by using (??7), Lemmas 3.2, 3.4, and (3.6)
we can similarly prove (3) or (4) under an additional assumption B € B(H)". O

Remark 3.5. In [6, Definition 1.4] we also introduced the notion of matriz k-tone
functions of order n for each fixed n € N. As shown in [6, Proposition 2.6], a
function on (a,b) is matrix k-tone of order n if and only if condition (a) in Section
2.3 holds with n fixed. Thus, as seen from the proof of the “if” part of Theorem
3.1, if the inequality of (1) (or (2)—(4), respectively) holds for every A € M5%*(a,b)
and every B € M| of a fixed n € N, then f is matrix (4k — 2)-tone (or matrix 4k,
(4k — 3), (4k — 1)-tone, respectively) of order n. However, the converse direction
seems subtle even when n = 1. Consider simple monotone functions f(z) := a”
on (0,00), where p > 0. Inequality in (3) of Theorem 3.1 when £ = n = 1 means
that Im (a + )P > 0 for every a,b > 0. This holds if and only if (0 <) p < 2,
but 2P is matrix 1-tone of order 1 for any p > 0 since it means monotonicity in
the numerical sense. Inequality in (1) of Theorem 3.1 when k = n = 1 means that
Re (a + ib)P < aP for every a,b > 0. This holds if and only if 1 < p < 3, but 2P is
matrix 2-tone of order 1 for any p > 2 since it means convexity in the usual sense.
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4. OPERATOR MONOTONE AND OPERATOR CONVEX FUNCTIONS

In this section our consideration is specialized to operator monotone (also oper-
ator monotone decreasing) functions and operator convex functions, for which we
give further characterizations via analytic functional calculus.

First, we restate (1) of Theorem 3.1 in the particular case k = 1 as a corollary
for convenience of later references.

Corollary 4.1. Let f be as in Theorem 3.1. Then the following conditions are
equivalent:

(i) f is operator convex on (a,b);
(ii) Re f(A+1iB) < f(A) for every A € B(H)**(a,b) and every B € B(H)**;
(iii) Re f(A+iB) < f(A) for every A € M3%(a,b) and B € M} of any n € N.

The next theorem is considered as the operator-valued version of Lowner’s the-
orem. Indeed, condition (iv) is well-known Léwner’s characterization of operator
monotone functions in terms of analytic continuation as Pick functions, and (ii) is
its operator-valued version.

Theorem 4.2. Let f be as in Theorem 3.1. Then the following conditions are
equivalent:

(i) f is operator monotone on (a,b);

(ii) Im f(X) > 0 for every X € B(H) such that Im X > 0;
(iii) Im f(A+1iB) > 0 for every A, B € M?*(a,b) with B > 0 of any n € N;
(iv) Im f(2) > 0 for every z € C with Imz > 0.

Moreover, if f is a non-constant operator monotone function on (a,b), then
Im f(X) > 0 for every X € B(H) with Im X > 0.

Proof. The implications (ii) = (iii) and (ii) = (iv) are trivial, (i) < (iii) is the
particular k& = 1 case of (3) of Theorem 3.1, and (i) < (iv) is Lowner’s theorem.
So we may prove that (i) = (ii), which is not contained in Theorem 3.1. Note by
Lemma 2.1 that f(X) in (ii) is well defined.

As in the proof of Theorem 3.1 we may assume that (a,b) = (—1,1). So assume
that f is operator monotone on (—1,1); then the well-known integral expression of

fis

$@ =10+ [ g, e L,

where p is a finite positive measure on |

—1,1]. Assume that X = A + (B with
A,B € B(H)** and B > 0. For every A € [—1,1

,1], letting C := B~Y2(I-XA)B~1/?

we have
I — XX = BY?(Cy —i\)B'/?
so that
(4.1) (I —AX)"' = B Y2(C} + X21) "1 (C\ +iM) B/,

Since Cy = B~ > 0, it is clear that (C} + )\2I)_1(C>\ + iAI) is continuous in
the operator norm in A € [~1,1]. Hence |[( — AX)™!|| is uniformly bounded for
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A € [—1,1] so that the analytic functional calculus f(X) is given as
FOO = 5O+ [ X(T =237 dul),
[7171]
Therefore,
Im £(X) _/ Im {X(I —2X)"'}du(N).
[_171}
So it suffices to show that
Im{X(I-XX)""} >0, Ae[-11]
This is obvious for A = 0. For A € [—1,1], A # 0, since
1 1
X(I-2X)"t= I+ - AX)~L
we obtain, thanks to (4.1),

Im{X(I-XX)"'} = %Im {(I - X))} =B Y3(C3 + )\QI)_lB_l/2 > 0.

Moreover, the above proof shows that if Im f(X) > 0 is not satisfied, then p = 0
and so f is a constant function, implying the second assertion of the theorem. [

In the next theorem we have some further characterization results when (a,b) =
(0, 00).

Theorem 4.3. Let f be a continuous real function on (0,00) analytically continued
to C*. Then:

(1) The following conditions are equivalent:
(i) f is non-negative and operator monotone on (0,00);
(ii) f admits the integral expression

(4.2) flz) = a+5az+/

(0,00)

xXr
—du(y), @€ (0,00)

where a, f > 0 and p is a positive measure on (0,00) such that

1
——du()\) < +oo;
/<o7oo)1+k p(A) < +o0

(i) 0 < f(Re X) < Re f(X) for every X € B(H) with Re X > 0.
(2) The following conditions are equivalent:
(i) there are a > 0 and a non-negative operator monotone decreasing
function g on (0,00) such that f(x) = px + g(x) for all z € (0,00);
(ii) f admits the integral expression

f(x):a+5x+/

[0,00)

1
Y, wE(0,00),
where a, f > 0 and p is a positive measure on [0,00) such that

1

(iii) 0 < Re f(X) < f(Re X) for every X € B(H) with Re X > 0;
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(iv) Re f(X) < f(Re X) for every X € B(H) withRe X > 0, and Re f(z) >
0 for every z € C with Rez > 0.
Moreover, if the above equivalent conditions are satisfied, then Re f(X) >
0 for every X € B(H) with Re X > 0 unless f is identically zero.
(3) Assume that f is non-negative on (0,00) and it is not identically zero. Then
the following conditions are equivalent:
(i) f is operator monotone decreasing on (0,00);
(ii) f admits the integral expression

1
S =at [ oS, (o)

where a > 0 and p is a positive measure on [0,00) such that

1

——du(\) < ;

/[0700)1+)\ p(A) < o0

(iii) Im f(X) > 0 for every X € B(H) with Im X < 0;

(iv) 0 < Re f(X) < f(ReX) and Re(log f(X)) < log f(Re X) for every
X € B(H) with Re X > 0.

Proof. (1) (i) & (ii) is well-known (see, e.g., [3, §V.4], [9, §2,7]); we state it just
for the sake of completeness. The first inequality of (iii) is of course equivalent to
the non-negativity of f. Hence (i) < (iii) follows from Corollary 4.1 since operator
monotonicity and operator concavity are equivalent for a function on (0, c0).

(2) (i) < (ii) here is also well-known (see [7], [2, Theorems 3.1]). Assume (ii).
Since f is operator convex, Corollary 4.1 implies that the second inequality of (iii)
holds for every X € B(H) with ReX > 0. Moreover, write X = A + iB with
A,B € B(H)** and A > 0. We then have

Ref(X):aI—i—ﬁA—l—/ Re {(X + AI)~'}du(N).
[0,00)
For every A > 0 we have

(X + A" = (A+ADV2(IT4+C3) (I —iCy)(A+ A)72,
where C := (A + \)~Y2B(A + XI)~'/2, so that

Re {(X + A1)} = (A+ MDY (1+C3) A+ AD) /2 > 0.
Therefore, the first inequality of (iii) follows. Moreover, if Re f(X) > 0 does not
hold for some X as above, then « = 8 =0 and pu =0, i.e., f is identically zero.

(iii) = (iv) is trivial. Finally, assume (iv). By Corollary 4.1, f is operator convex

so that by [6, Theorem 5.1] it admits the integral expression

r—1)2
PR =10+ P a0 [ EE a0, e 00

where v > 0 and p is a positive measure on [0, co) such that f[o OO)(1 +A)"tdu(\) <
+o00. For z =1+ b € C with any b € R, (iv) gives

2
0 < Re f(z) = f(1) — 1B - /[0 | m au(N).
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This implies that 4 = 0. Furthermore, since (1 + \)b?/{(1 + \)? +b%} A/ 1+ ) as
b?> 7 00, by the monotone convergence theorem we have

/[ (X)) < (1) < o
0,00

Since
(z —1)°
T+ A

(1+X)?
=z —(24+ X\ -
T- 24N+ T+ A
we can write

Fe) = FO) + F ) - 1)
+ ([0, 00))a /

[0,00)
1+ A

:a—l—ﬂx—l—/[oyoo)x%_)\du()\),

where a, 5 € R and dv(\) := (1 + X) du(X) is a finite positive measure on [0, 00).
For every z = a 4 b with @ > 0 and b € R we have

A1+ A
0§Ref<z>=a+5a+/[0 )M

24+ A)du(h) + —
eeNa+ [ SIS

dv ().

By the bounded convergence theorem the above integral term converges to 0 as
b? 00, 50 @+ Ba > 0 for all @ > 0. This gives a, 8 > 0. Hence (iv) = (ii) is
proved.

(3) (i) < (ii) is well-known as in the proof of (2). (i) < (iii) immediately follows
from Theorem 4.2 when applied to f(z~!) on (0, 00) since Im X < 0 is equivalent
to that X is invertible and Im X! > 0. It is known [2, Theorem 3.1] that a
continuous function f > 0 on (0, 00) is operator monotone decreasing if and only if
both f and log f are operator convex. Moreover, since f is not identically zero, (i)
implies from (2) that 0 < Re f(X) < f(Re X) for every X € B(H) with Re X > 0.
Hence (i) < (iv) follows from Corollary 4.1. (Here, note that log f(X) is well
defined for Re X > 0 since Re f(X) > 0 implies that the spectrum o(f(X)) is in
{z€C:Rez>0}.) O

According to [6, Proposition 3.9], if f is an operator ko-tone function on (a,b)
for some ko € N, then it is operator (ko + 2k)-tone on (a,b) for any k € N. Hence,
if f is operator 2kg-tone on (a,b) for some ko € N, then the inequalities in (1) and
in (2) of Theorem 3.1 hold for every k > [ko/2] + 1 and for every k > [(ko + 1)/2],
respectively. Also, if f is operator (2kg — 1)-tone on (a,b) for some ky € N, then the
inequalities in (3) and in (4) of Theorem 3.1 hold for every k > [ko/2] + 1 and for
every k > [(ko+1)/2], respectively. Moreover, according to [6, Proposition 5.2], if f
is operator kg-tone on (0, 00) for some ko € N, then (—1)¥ f is operator (kg + k)-tone
on (0,00) for any k € N. Therefore, Theorem 3.1 yields the following:
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Corollary 4.4. Assume that f is operator monotone on (0,00). Then for every
keN,

%2 qym 21
> m )Dme(A B) <Ref(A+iB) < (A; B)
m=0 m=0
for every A, B € B(H)** with A >0, and
=~ (D" o = (D™ o
Z mp F(A;B) <Imf(A+iB) < Zl 7)!17 f(A; B)

for every A, B € B(H)** with A >0 and B > 0.

Corollary 4.5. Assume that f is operator convex on (0,00). Then for every k € N,

%Z_l U™ pam (4; B) < Re f(A +1B) < %22 D™ pom r(4; B)
= (2m)! = (2m)!
for every A, B € B(H)** with A >0, and
ka_l &Dm Lf(A4;B) <Im f(A+iB) < i &DQ’” Lf(A; B)
— (2m —1)! < (2m —1)!

for every A, B € B(H)** with A >0 and B > 0.

In the rest of this section let us strengthen (ii) of Theorem 4.2 in the case (a,b) =
(0,00). Assume that f is a non-negative operator monotone function on (0, c0),
and let f(z) be the analytic continuation (a Pick function) to C\ (—o0,0]. It is
rather well-known (and easily verified by using the integral expression (4.2) of f)
that if z € C\ {0} and 0 < argz < pm where 0 < p < 1, then f(2) € [0,00) or
0 < arg f(z) < pm, that is, the argument of f(z) does not exceed that of z for every
z € C with Imz > 0. The theorem below is the operator-valued version of this
result. For each p € (0, 1] define

Vor :={X € B(H) : ImX >0, Im (e"?"X) < 0},
Vopr = {X € B(H) : ImX < 0, Im (¢""X) > 0},
where A < 0 means that —4 > 0. Obviously, V,r and V_,, are the operator

counterparts of {z € C\ {0} : 0 < argz < pr} and {z € C\ {0} : 0 > argz > —pm},
respectively.

Theorem 4.6. Let 0 <p < 1.

(1) Assume that f is a non-negative and operator monotone function on (0, 00).
If X € Vpr (resp., X € V_pr), then f(X) € Vpr (resp., f(X) € V_pr), or
else f(X) = ol with o > 0. Moreover, f(X) € Vyr (resp., f(X) € V_pr)
for every X € Vpr (resp., X € V_,x) unless f is a constant function.

(2) Assume that f is a non-negative and operator monotone decreasing function

n (0,00). If X € Vi (resp., X € V_pr), then f(X) € V_pr (resp., f(X) €
Vpr ), or else f(X) = al with « > 0. Moreover, f(X) € V_px (resp.,
[(X) € Vpr) for every X € Vpr (resp., X € V_pr) unless f is a constant
function.



OPERATOR k-TONE FUNCTIONS AND ANALYTIC FUNCTIONAL CALCULUS 217

Proof. (1) By assumption f admits the integral expression (4.2) as in (ii) of Theo-
rem 4.3 (1). Assume that X € V,, so Im X > 0 and Im (e "X ) < 0. Theorem 4.2
says that Im f(X) > 0 and that if Im f(X) > 0 is not satisfied, then f is a constant
function. As before we have

f(X)=al +BX + om0 X(X + M) tdu(N).
0,00

Let us prove that
(4.3) Im{e """ X (X + )"} <0, € (0,00).

Write X = A +iB with A, B € B(H)**. Letting Cy := B~Y2(A + MX)B~1/2 we
compute

XX+ =T-NX+AD)!
=1 - X{BYV*Cy+iB?} 7!
=1 -ABTY(C} + 1) (C\ i) B™V?
=1 -ABTY(C} + 1) OB+ iABTV2(CR 4+ 1) BTV
so that
(44) Im{e "X (X +A)7'}
= Acospr - B~1/2 (C}+ I)*lB_l/2
—sinpr - {1 = ABTV2(C}+ 1) B2
=B V2(ci 1)
X {)\cospw I 4+ Asinpr - Cy —sinpm - (C/% + I)l/zB(C/% + I)1/2}
x (C3+1)"*B12,
The assumption Im (e~#™X) < 0 means that cospr - B —sinpm - A < 0 so that
cospm - I <sinpm - B~ Y2ABY? = sin prr - (C’A — )\Bfl).
Thanks to A > 0 and sin pm > 0 we hence have
(4.5)
Acosprm - I + Asinpm - Cy — sinpm - (C’f + 1)1/23(03 + I)
< Asinpm- (Cy — AB™Y) + Asinpr - Cy — sinpr - (C3 + 1)/*B(C2 + 1)
= sinpr - BV2{ 021 4 20BY2C\BY2 — (BYA(C3 + 1) 2BV B2,

1/2

1/2

Furthermore, since C) < (C; + 1 ) 1 2, we have
(4.6) — NI +2)\BY?C\BY? — (B2(C3 +1)"/*BY/?)?
< —NT+2)\BY?(C} + 1)'*BY2 — (BV2(C3 +1)'/*BY/?)?

- —{)\I — BY2(C2+ 1)1/231/2}2 <.
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Combining (4.4)—(4.6) altogether we arrive at (4.3).

Since Im (e~#"a) < 0 and Im (e ?"3X) < 0 (< 0 if B > 0), we see by (4.3)
that Im {e P"f(X)} < 0. Moreover, if Im {e~®7f(X)} < 0 is not satisfied, then
B =0 and p = 0; hence f is a constant « so that f(X) = af. This implies that
f(X) € Vi, or else f is a constant. The assertion of (1) with V_p. in place of Vr
is immediately seen since we have f(X) = f(X™)* by reflection principle.

(2) Note that f is operator monotone on (0, cc) if and only if f(x~!) is operator
monotone decreasing on (0,00). Also, if X € Vr (resp., X € V_,r), then X is
invertible and X ! € V_,; (resp., X ! € V,,z). Hence (2) is immediately seen from
(1). O

Remark 4.7. Assume that f is a non-negative and non-decreasing operator convex
function on (0, 00). One has the integral expression

2

— 2 r
flx) =a+pt+t +/(07w)x+Adu(A>’ z € (0,00),

where a, 8,7 > 0 and pu is a positive measure on (0, 00) such that

1

(see ]9, §82.7-2.8]). From this expression it is easily verified that if z € C\ {0} and
0 < argz < pm where 0 < p < 1/2, then f(z) € [0,00) or 0 < arg f(z) < 2pm, that
is, the argument of f(z) does not exceed 2 times that of z for every z in the first
quadrant of C. The operator-valued version of this like Theorem 4.6 holds under the
assumption that X is normal, but it is not true in general. Indeed, if this holds for
f(x) := 22, then we must have Im {(A +iB)?} = AB+ BA > 0 for A, B € B(H)*
with A, B > 0. However, this is not valid in general.
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