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INFINITE PRODUCTS OF DISCONTINUOUS OPERATORS
IN BANACH AND METRIC SPACES

SIMEON REICH AND ZULY SALINAS

Dedicated to Professor Anthony To-Ming Lau on the occasion of his 70th birthday

ABSTRACT. We study the convergence, either strong or weak, of sequences gen-
erated by methods for solving the convex feasibility problem. These methods
involve infinite products of discontinuous operators and of their convex combina-
tions. We consider Banach spaces, the Hilbert ball and CAT(0) spaces.

1. INTRODUCTION

The problem of finding a point in the nonempty intersection of convex and closed
sets is referred to as the convex feasibility problem and has applications, for example,
in the image recovery field. One of the first algorithms for solving it was proposed
by J. von Neumann [21]. It concerned the intersection of two closed subspaces of
a Hilbert space. Years later, I. Halperin [17] extended von Neumann’s idea to the
intersection of a finite number of subspaces. Since then, the interest in this problem
has increased considerably and as a result, it has been studied in much more general
settings, for instance, in certain Banach and metric spaces.

In this connection, E. Pustylnik and S. Reich have recently proved the following
result [22]. Consider the orthogonal projections {Pg, : 1 < i < m} of a Hilbert
space H onto its closed subspaces {S; : 1 < i < m}. Consider also the possibly

nonlinear operators Aﬁf), i1 =1,2,...,m; n = 1,2,..., and suppose that for all
x € H, the inequalities

1Az — Ps,z|| < x|
hold for some positive numbers v, with ) >° | v, < co. Then, for each x € H, there
exists a point T € S1 NSy N ---N.S,, such that

. Tam) gme1) (D) - _
nh_)rglo HAj Aj ---Aj r—7| =0.
j=1

Our aim in this paper is to extend the Pustylnik—Reich result to possibly discon-
tinuous operators defined outside Hilbert space; more precisely, on Banach spaces,
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the Hilbert ball B and on CAT(0) spaces. To this purpose, we use norm-one projec-
tions, retractions and nearest point projections instead of orthogonal projections.
These operators are then approximated by other, possibly nonlinear and even dis-
continuous operators.

In Section 2 we present some known definitions and results regarding Banach
spaces and geodesic metric spaces, with more details in the case of the Hilbert ball
and CAT(0) spaces. In Section 3 we deal with concepts such as exact and inexact
orbits with summable errors of a nonexpansive operator and the relations among
various convergence results. We devote Section 4 to Banach spaces, where we deal
with the linear case, the nonlinear case and with weak convergence. In Section 5, we
deal with the problem in which we are interested in the Hilbert ball setting. Finally,
we consider CAT(0) spaces and prove convergence theorems in this framework in
Section 6.

2. PRELIMINARIES

In this section we collect several relevant definitions and results. We begin with
Banach spaces, continue with geodesic metric spaces and then we study in more
depth the particular cases of the Hilbert ball and more generally, CAT(0) spaces.
Throughout the paper we let N stand for the set {1,2,3,...} of natural numbers.
We denote by Fix(T') the set of all fixed points of an operator 7.

2.1. Banach spaces. For basic information about Banach spaces we refer the
reader to [6], [15] and [16]. Let E be a Banach space and S C E a nonempty
subset. Denote by I : E — FE the identity operator. We say that an operator
R : E — S is a retraction if the restriction R|g = I. If, in addition, a retraction
P : FE — S is linear, then we call it a projection.

When FE is uniformly convex and {Ps, : 1 < k < m} are norm-one projections
of E onto its subspaces {S; : 1 <k <m}, it is known ( [10, Lemma 2.1]) that

m m
(2.1) Fix (Ps,, Ps,,_, -+ Ps,) = [ | Fix(Ps,) = (] Sk-
k=1 k=1
In addition, for numbers aq,...,a, € (0,1) such that a; +as +--- + ap, = 1, it

follows from [26, Lemma 1.4] that

(2.2) Fix (Z akP5k> = ﬂ Fix (Ps,) = ﬂ Sp.
k=1

k=1 k=1

Let both C C E and F' C C be closed and convex subsets. Recall that a
retraction R : C' — F is called sunny [25] if R((1 —t)Rx +tx) = Rx for allt > 0
and z, (1 —t)Rx + tx € C.

If F is smooth and uniformly convex, and the subsets C' and F' are symmetric,
that is, C = —C and F = —F, and if F' is a sunny nonexpansive retract of C', then
the sunny nonexpansive retraction R : C' — F is odd. This fact follows from the
uniqueness of the sunny nonexpansive retraction from C' onto F' (see [9, Theorem

1]).
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Remark 2.1. Although a sunny nonexpansive retraction R : C — F' is neither
linear nor bounded in general, when C and F' are symmetric we do have ||Rz|| < ||z||
for all x € C.

If £ is uniformly convex and {Rp, : 1 k < m} are sunny nonexpansive
retractions of a closed and convex subset C C E onto closed and convex subsets
{Fr, C C : 1<k <m}, then by [10, Lemma 2.1],

<
C

m

(23> Fix (RFmRmel R RFl) = ﬂ Fix (RFk) = ﬂ F.
k=1 k=1

In addition, for numbers aq,...,a, € (0,1) such that a; + ag + -+ + a, = 1, it
follows from [26, Lemma 1.4] that

(2.4) Fix (Z akRFk> = (| Fix(Rr,) = ) Fr-
k=1 k=1

k=1

2.2. Geodesic metric spaces. Consider a metric space (X,d). A geodesic path
joining x € X to y € X is a function v : [0,/] C R — X such that v(0) = z,
v(0) = y and d(y(t1),v(t2)) = |t1 — to| for all t1,te € [0,€]. The set v([0,]) is
called a geodesic segment with endpoints x and y. We denote by [z, y] the geodesic
segment ([0, d(x,y)]). A subset C' C X is convez if [x,y] C C for all z,y € C. The
space (X, d) is called a (uniquely) geodesic metric space if every two points in X
are joined by a (unique) geodesic.

For any two points z,y € X, the geodesic segment [z,y] is convex. A point
z € [x,y] is denoted by z := (1 —t)x @ ty, where d(z, z) = td(z,y), and we say that
z is a convex combination of x and y.

Given a geodesic metric space (X,d), we denote by A(z,y,z) C X the geodesic
triangle with vertices x,y,z € X and geodesic segments (edges) [z,y], [y, z] and
[z,2]. Let A(z,y,2) C MZ (where Mg is the Euclidean plane) be a comparison
triangle for A(x,y,z) with vertices Z,7,Z € M2. A point p € [Z,7] is called a
comparison point in A(z,y, z) for p € [z,y] if d(z,p) = |T—p|. Comparison triangles
exist and are unique up to isometries (see [8, Chapter I]).

Hilbert and CAT(0) spaces are but two examples of (uniquely) geodesic metric
spaces. For more information on this topic, we refer the reader to [2], [8] and [16].

2.3. The Hilbert ball. Given a complex Hilbert space (H, (-,-)) with induced
norm | - |, consider the open unit ball B := {# € H : |z| < 1}. The function
p: B x B — R defined by p(z,y) := argtanh (1 — o(z, y))"/?, where
(== —[y*)
o(x,y) = = argtanh |[M_,(y)|,
( 1 (e)P M)
defines a metric on B. The complete metric space (B, p) is called the Hilbert ball. The
operator M, : B — B denotes the Mdbius transformation at u € B (see [16, Section
14, page 97]). It is a weakly continuous automorphism of B (see [16, Theorem 14.1,
page 98, and Lemma 21.3, page 115]). Hence M, is invertible, M_, o M, = I and
M_,(u) =0 for all u € B.
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The metric p is topologically equivalent to the norm metric. This is true because
for all z,y € B, the following inequalities hold:

|z —y] |z —y|
2. tanh | ——— | < <argtanh | —————
(2.5) argtan < 5 < p(z,y) < argtan Gist(2.08) )’
where dist(z,0B) := inf{|z — y| : y € OB} (see [16, Theorems 10.3 and 10.4, pages
89-90]). Another property of the metric p is stated below.

Proposition 2.2. Suppose that (n)neN, (Yn)neny C B converge weakly to z,y € B,
respectively. Then

p(z,y) < liminf p(zn, yn).
n—oo

For a proof of this theorem we refer the reader to [19, Theorem 3.2].

In particular, (B, p) is a (uniquely) geodesic metric space (see [16, pages 68-70
and 102-103]). So a subset C' C B is p-convez if the geodesic segment [z,y] C C
for all z,y € C . For any z,y € B and any ¢ € [0,1], there exists a unique
element z € B (see [16, Section 2.17, page 103]) such that p(x,z) = tp(x,y) and
p(y,z) = (1 —t)p(z,y). We denote this point z by (1 —t)x @ ty and say that z is a
p-convex combination of x and y. Note that this definition is compatible with the
definition of convex combinations in general geodesic metric spaces. Given a € B,
we have, for all x,y € B,

(2.6) M, @x & iy) = L Mo(2) & S Maly).

Given two operators 17,75 : B — B, we define their p-convex combination (1 —
Ty ®tTy by (1—)T1 @ tTe)x := (1 —t)Tyx G tThz for all z € B and ¢ € [0,1]. We
denote this operator by C(T1,Ts; (1 —1t),1).

For any z,y,a,b € B and t € [0, 1], the following inequality holds (see [16, Lemma
17.1, page 104)):
(2.7) p((L=thadtx, (1 —t)b D ty) < (1 —1t)p(a,b) + tp(z,y).

Given a p-closed and p-convex subset D C B, we define the nearest point projection
Pp : B — D by assigning z to z, where z € D is the unique point in D satisfying
p(x,z) = infyep p(x,y) (see [16, Theorem 19.1, page 108]). The operator Pp is
p-nonexpansive ( [16, Theorem 19.2, page 110]), that is,

p(Ppz, Ppy) < p(x,y) for all z,y € B.

If {Pg, : 1 < i < m} are the nearest point projections of B onto p-closed and
p-convex subsets {K; : 1 <i < m} with nonempty intersection, then

m
(2.8) Fix (Pk,, Pr,,_, -+ Pry) = [ | K.
=1

Moreover, when m = 2, we have
(2.9) Fix (tPx, ® (1 —t)Pk,) = K1 N Ky

for any ¢ € (0,1). For a proof of (2.8) and (2.9) we refer the reader to [27, Lemma
3] and [5, Theorem 9.5|, respectively.
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In [18], E. Kopecka and S. Reich inductively defined the p-convex combination of
more than two operators in the Hilbert ball, as presented below. Consider operators
Tv,...,T : B — B and numbers ay,...,an € (0,1) such that > ", a; = 1. The
p-convex combination of 11, ..., Ty, is defined inductively by

C(Ty, Ty, ..., Tyn;a1,a2,...,am) := C(U,Tn; 1 — am, am)

where U = C(T1,Ts, ..., Tin—1;¢1,¢2,...,cm—1) and ¢; = a;/(1 —ay,) for 1 < i <
m — 1. When Fix (71) N --- N Fix (T;,,) # 0, it turns out that

(2.10) Fix (C(T1, ..., Tm; a1, ..., am)) = [ | Fix (T}).
=1

For a proof of this equality we refer the reader to [18, Lemma 3.5]

2.4. CAT(0) spaces. Consider a geodesic metric space (X, d). A triangle A(z,y, z)
is said to satisfy the CAT(0)-inequality if for all p,q € A(z,y, z) and their compari-
son points p, g € A(z,y, 2), the inequality d(p,q) < |p —q| holds. A geodesic metric
space (X,d) is said to be CAT(0) if all its geodesic triangles satisfy the CAT(0)-
inequality.

It is known that any two points in a CAT(0) space (X, d) are joined by a unique
geodesic segment (see [8, Proposition II.1.4]). In addition, for any w,z,y,z € X
and any t € [0, 1], the following inequality holds ( [8, Proposition II.2.2]):

(2.11) d(1—tweate, (1 —t)ydtz) < (1 —t)d(w,y) + td(z, 2).

Consider points x,¥y,z € X and their comparison points 7,7,z € MOQ. We denote
by Z(z,y,z) the Alexandrov angle between the geodesic segments [x,y] and [y, 2]
(see [8, Section I.1]). We write Z(z, 3, 2) to denote the comparison angle of Z(z,, 2)
between the sides [T, 7] and [7,z] in MZ.

Remark 2.3. (X,d) is a CAT(0) space if and only if the Alexandrov angle between
the sides of any geodesic triangle in X, with distinct vertices, is no greater than
the angle between the corresponding sides of its comparison triangle in Mg. For a
proof of this fact we refer the reader to [8, Proposition I1.1.7].

When (X,d) is a complete CAT(0) space, for each closed and convex subset
C C X and each x € X, there exists a unique point Pox € C such that d(z, Pox) =
d(z,C) = infycc d(z,y). The operator Pc is called the nearest point projection of
X onto C. This operator is nonexpansive. In addition, given z ¢ C and y € C
such that y # Po(z), we have Z(x, Pox,y) > =/2. For a proof of the existence
and properties of nearest point projections in complete CAT(0) spaces we refer the
reader to [8, Proposition I1.2.4].

Remark 2.4. Since Z(z, Pcx,y) > 7/2, we also have /(x, Pox,y) > 7/2 (see Re-
mark 2.3).

Next, we delve into the study of some properties of nearest point projections in
complete CAT(0) spaces.

Lemma 2.5. Suppose (X,d) is a complete CAT(0) space and let C C X be a
closed and convex subset. If d(q, Po(z)) > 0 > 0 for some x € X and q € C, then

d(x,q) > V02 + 62, where ¢ := d(z, Pox).
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Proof. Take z € X and g € C for which there exists § > 0 such that d(q, Pc(x)) > §.
According to Remark 2.4, we have Z(z, Pox,q) > /2. Hence, using the cosine law
and the inequality d(q, Po(z)) > 6, we get d*(q,xz) > (2 + d*(q, Pox) > (% + 6°.
Therefore d(q,x) > V{2 + §2. O

Corollary 2.6. For each L > 0 and each € > 0, there exists n > 0 such that for

all complete CAT(0) spaces (X, d), for all closed and convex subsets C of X, for all

x € X satisfying the inequality d(x,C) < L and for all ¢ € C, we have
’d(.%',Pcl')—d(.iL‘,q” <n = d(q,PciL') <Eé.

Proof. Suppose that there are L. > 0 and £ > 0 for which no such > 0 exists.

Then, for each n € N, there exist a complete CAT(0) space (X, d,), a closed and
convex subset C,, C X,,, =, € X,, and ¢, € C,, such that

(2.12) lim [dy, (25, Pe, @) = dn(@n, gn)| = 0,

where d,,(qn, Po,xn) > € > 0 and dy(x,,C,) < L for all n € N. Hence by Lemma
2.5 we obtain

(2.13) d?(zn, qn) — d*(xp, Po,x,) > ?  for all n €N,

Note that d,(zn, Po,zn) = dp(zn,Cn) < dn(xn,qn) for all n € N, since Pg, is
the nearest point projection of X, onto C, and ¢, € C,. Hence d,(xn,q,) —
dn(xn, Po,xy) > 0 for all n € N. Since d,(z,,Cy) < L for all n € N and (2.12)
holds, we see that the sequence (dy(xn,qn))nen is bounded too. Combining this
fact with (2.12), we obtain

lim [d2 (2, qn) — d2 (2, Po, x,)] = 0,

n—o0

but this contradicts (2.13). O

Theorem 2.7. Suppose (X,d) is a complete CAT(0) space and consider a sequence
(yk)ken C X and a point y, € X such that limg_, oo d(yg, y«) = 0. For a fized z € X,
consider the geodesic segments [z, ys] and [z,yg], k € N. If P and P, are the nearest
point projections of X onto |z, yx| and [z, y.], respectively, then for each x € X,

lim d(Pyzx, Pyx) = 0.
k—o0

Moreover, the sequence (Px)gen converges to Py uniformly on bounded subsets of
X.

Proof. Take x € X. Since Pyx € [z,yx|, there exists tx € [0,1] such that Pz =
(1 — tg)z @ tryx for each k € N. Moreover, since (t;)ren is a bounded sequence,
there exists ¢, € [0, 1] such that limg_,o tx = t«, up to a subsequence. Now it is not
difficult to see that

lim Pyz = lim (1 —t;)z @ tgyr = (1 — t)2 @ toys = Pix.

k—o0 k—o0
So far we have proved pointwise convergence. To prove uniform convergence on
bounded subsets, we argue as follows. Consider the triangle A(z,yg, y«). For each

k € N, denote by Qz the nearest point projection of P,z onto [z, yx]. So by (2.11),
for all kK € N we have

(2.14) d(Qrr, Pux) < d((1 — ti)z @ tayr, (1 — te) 2 @ tsys) < d(Yr, Ys)-
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Given € > 0 and L > 0, let n = n(e, L) be determined by Corollary 2.6. Since
limg 00 d(yk, y«) = 0, there exists kg € N such that for all k > ko,

where ¢ = min{2¢,n}. Let ¢ := d(z,[z,yk]) and £, := d(x, [z, y«]). Since Qrz €
[z, Y], using the triangle inequality, (2.14) and (2.15), we see that for all & > ko,
d(z,Qrx) < d(x, Pix) + d(Pex, Qrpz) < lyx + (/2. Hence

(2.16) 0 <d(x,Qrr) — b < by — Ll + g for all k > k.

Note that £, = d(x,(1 — ti)z @ tyys) and £ = d(z, (1 — tg)z D tgyg) for some
ty,tr € [0,1], k € N. By the triangle inequality, (2.11) and (2.15), we obtain, for all
k > kOa

¢

(2.17) lp < d(z, (1 —t)z @ tayr) < e + d(yu, yr) < li + 3

because Pyx = (1 — t;)z @ tryx is the nearest point projection of X onto [z, yg].
Similarly, from the triangle inequality, (2.11) and (2.15) we also get, for all k& > ko,

(2.18) l < d(:l:, (1 — tk)z & tky*) </l + d(y*,yk) < b, + %

Combining (2.17) and (2.18), we see that for all k > ko, (. — lx] < (/2. So

limg o0 . = Ly, uniformly on X. Combining this fact with (2.16), we get for all
k > kOv

(219) |d(e, Qur) — d(x, Pea)| = d(x, Q) — b < L — i+ 5 < C <

According to Corollary 2.6, where the convex subsets under consideration are the
geodesic segments [z, yx], it follows from (2.19) that

(2.20) d(Qkx, Pkl‘) <e forall k> ko,

uniformly on bounded subsets of X. So by the triangle inequality, (2.14), (2.15)
and (2.20), it is not difficult to see that for all k > ko,

d(Pyx, Pix) < d(Pyx, Qpr) + d(Qrzx, Pux) < 2e

uniformly on bounded subsets of X. Since ¢ is arbitrary, the last inequality shows
that P indeed converges to P, uniformly on bounded subsets of X, as asserted. [

Remark 2.8. Lemma 2.5, Corollary 2.6 and Theorem 2.7 are all due to M. R.
Bridson [7].

If (X,d) is a CAT(0) space, an operator T' : X — X is said to be firmly non-
expansive if d(Tz,Ty) < d((1 — t)x @ tTz, (1 — t)y ® tTy) for all z,y € X and
t € [0,1]. For example, the nearest point projection operator is firmly nonexpan-
sive (see [1, Proposition 3.1]). It is clear that every firmly nonexpansive operator
is nonexpansive. If Fix (T') # () and T is nonexpansive, we say that T is strongly
nonezpansive if for any d-bounded sequence (x,)neny € X and any z € Fix (T)
such that lim, oo [d(2n, 2) — d(Txy, 2)] = 0, it follows that lim, e d(2y, Tx,) = 0.
These definitions extend those introduced in the Hilbert ball setting (see [27]).
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It is not difficult to see that in a CAT(0) space X, every firmly nonexpansive
operator with fixed points is also strongly nonexpansive. To show this, we can pro-
ceed as in [27, Lemma 1]. Moreover, if {7; : 1 <1i < m} are strongly nonexpansive
operators and Fix (T7) N --- NFix (T,,) # 0, then

(2.21) Fix (T T - - Th) = () Fix (T)).
=1

To prove this fact, we may proceed as in [27, Lemmata 3 and 4].

To finish this subsection, we recall the concept of weak convergence for CAT(0)
spaces, which was introduced by J. Jost (see [3] and references therein). Consider a
complete CAT(0) space X. A point z* € X is the asymptotic center of a bounded
sequence (Tp)nen in X if

limsup d(z,,z*) = inf limsup d(x,,x).
n—00 z€X n—oo
For a complete CAT(0) space X, a sequence (2, )nen C X is said to converge weakly
to a point x € X if x is the asymptotic center of each subsequence of (z,)pen. In
Hilbert spaces, this definition of weak convergence coincides with the classical weak
convergence in those spaces.

Proposition 2.9. Suppose X is a CAT(0) space and let (xp)pen C X be a
bounded sequence. Then (Tp)nen weakly converges to x € X if and only if
limy, o0 d(x, Py(xn)) = 0 for any geodesic segment ~ through x, that is, for any
geodesic segment v such that x € 7.

For a proof of this result we refer the reader to [14, Proposition 5.2].

Proposition 2.10. Suppose (X,d) is a complete CAT(0) space. Let (xp)nen and
(Yn)nen be bounded sequences of X converging weakly to x and y, respectively. Then
d(z,y) < liminf, o d(zpn,yn).

Proof. We know that lim,, ;o0 d(z, Py, 2n) = limy, 00 d(y, Py, yn) = 0 for all geodesic
segments 7, through « and all geodesic segments , through y (see Proposition 2.9).
Since there exists a (unique) geodesic segment ~ joining x and y, using the triangle
inequality, we obtain

d(z,y) < d(z, Pyxyn) + d(Pyxn, Pyyn) + d(Pyyn, y).
From the last inequality and the nonexpansivity of P, it follows that
d(z,y) < linrr_1>ioréf (T, Yn)-
This concludes the proof. O
Remark 2.11. A complete CAT(0) space is called an Hadamard space [2, page 6].

3. EXACT AND INEXACT ORBITS

In this section we recall several results connecting convergence properties of exact
and inexact orbits of nonexpansive operators with summable errors in metric spaces.
We also focus on the particular cases of Banach spaces, the Hilbert ball and CAT(0)
spaces with the corresponding concepts of weak convergence defined in them.

Consider a metric space (E,d) and an operator T : E — FE.
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(1) Any sequence (yn)nen defined by y; := x and y, 41 := T"x = Ty, for all
n € N is called an ezact orbit of T' with initial point x € E.

(2) A sequence (zn)nen C E such that ) _yd(zny1,T2,) < 00 is said to be
an inexact orbit of T with summable errors.

For information regarding this topic, see, for example, [23] and [24], and references
therein. Boundedness properties of exact and inexact orbits of a nonexpansive
operator are related, as we see in the following result.

Proposition 3.1. Suppose (E,d) is a metric space and let T : E — E be nonex-
pansive. If all exact orbits of T with summable errors are bounded sequences, then
all inexact orbits of T with summable errors are bounded too. The converse is also
true.

Proof. Let (x,)nen be an inexact orbit of 7' with summable errors. So, by definition,
there is M > 0 such that > > d(zpi1,Tx,) < M. Take z € E and consider
the corresponding exact orbit. Denote it by (yn)nen, where y; = x. For each
n € N, we then have d(ynt1,2n+1) < 37 d(xjt1,Tx;) + d(z,21). Therefore
d(xn, yn) < M +d(z, 1) for all n € N. This shows that if (y,)nen is bounded, then
(zn)nen is also bounded, and vice versa. O

For a proof of the following result we refer the reader to [11, Theorem 4.2]. We
continue to denote by Fix (T") the set of all fixed points of an operator 7.

Theorem 3.2. Suppose (F,d) is a complete metric space. Let T : E — E be a
nonexpansive operator with Fix(T) # (. Then the following two statements are
equivalent:

(i) All exact orbits of T converge in (E,d);
(i1) All inexact orbits of T with summable errors converge in (E,d) to fized
points of T

Note that convergent exact orbits of a nonexpansive operator converge to fixed
points of this operator. For Banach spaces, a result analogous to Theorem 3.2,
involving weak convergence, also holds. For a proof see [11, Theorem 4.1] and [12,
Note added in proof]).

Theorem 3.3. Suppose E is a Banach space. Let S C E be a weakly closed subset
and consider a nonexpansive operator T : S — S (with Fix (T) # (). Then the
following two statements are equivalent:

(i) All exact orbits of T converge weakly (to fixed points of T');
(ii) All inezxact orbits of T with summable errors converge weakly (to fixed points

of T).

When we consider the Hilbert ball (B, p), a version of Theorem 3.3 holds with
respect to the weak convergence inherited from the ambient Hilbert space. We first
mention the following fact.

Remark 3.4. Let T : B — B be a p-nonexpansive operator. If an exact orbit of T’
weakly converges to a point in B, then this point is a fixed point of 7T'.
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To prove this fact, let y € B and suppose that the sequence (3;)ien = (T%Y)ien
converges weakly to y* € B. We know that T has a fixed point by [16, Corollary
25.3, page 126]. Since T is p-nonexpansive, the exact orbit (y;);en is p-bounded. So,
we know (see [16, Proposition 21.4, page 117]) that y* is the unique point satisfying

lim sup p(y;, y*) = min lim sup p(y;, y).

1—00 Yy 1—>00

Now we note that, by the p-nonexpansivity of T,

limsup p(yi, T'y*) = limsup p(T'y;—1, Ty") < minlim sup p(y;,y),

i—00 1—00 yeB o0

which proves that Ty* = y*.

Theorem 3.5. Let T : B — B be a p-nonexpansive operator. The following two
statements are equivalent:

(i) All exact orbits of T converge weakly to points in B;
(i1) All inexact orbits of T with summable errors converge weakly to fized points
of T.

Proof. 1t is clear that (ii)=-(i) because all exact orbits are inexact orbits of 7" with
summable errors.

(i)=-(ii): We follow the ideas which were used to prove [11, Theorem 4.1]. Assume
that all exact orbits of T' converge weakly to points in B. Let (zx)reny C B be an
inexact orbit of 7" with summable errors and take a sequence (r)ren of real numbers
such that }°, 7 < 0o and p(xp41,Tay) < 7y for each k € N. Fix & € N. By
induction over i, we can see that

i+k—1
(3.1) p(Tixy, 2ppq) < Z rj for each i € N.
=k

By hypothesis, we know that all exact orbits of T' converge weakly to points in B.
Hence there exists y; € B such that

(3.2) lim T'z), =y, weakly.

1—00

Let ¢ € N be fixed. By (3.1) and since T is p-nonexpansive, we obtain

o
(3.3) p(TT Ty ) < p(Thg, 2hry) < er for each 7 € N.
j=k

By Proposition 2.2, (3.2) and (3.3), we see that

oo
(3.4) p(Yk: Ygr) < Hminf p(T9 2y, Thapig) < 1j
1—>00 7k
]7

for all k,¢ € N. Since } ;y7; < oo, using (3.4), we conclude that (yy)ren is a
Cauchy sequence, so there exists y* € B such that

(3.5) lim p(yk,y") = 0.
k—o0
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So, when ¢ — oo, it follows from (3.4) that p(yk,y*) < 372, r; for each k € N.
Take ¢ € H such that |¢)| < 1. Then by the triangle inequality,
(3.6) [, y" = @)l < Y™ = yrl + [0, g — Trap)| + T 2y, — )

for all i,k € N. By inequality (2.5) and since the hyperbolic tangent function is
increasing, we have for all ¢,k € N,

(3.7) vyt —wkl < 2tanh(p(y", yk))
' and |T"zg — x| < 2tanh(p(T'zk, Tr1q))-

Combining (3.1), (3.6) and (3.7), we see that for all i,k € N,

(W y" —apsi)] < 2tanh(p(y”, yp)) + (0, g — T'a)]

o
(3.8) +2tanh [ > 7
j=k

Fix a positive number €. By (3.2), we see that for each k € N, there exists ig € N
such that for all ¢ > 4o,

(3.9) [, = Taon)] < .

In addition, since ), 7 < 00 and (3.5) holds, there exists kg € N such that for
all k > ko,

(3.10) tanh er <% and tanh(p(y*,yx)) <
j=k

™

Thus by (3.8), (3.9) and (3.10), there exist ko € N and a corresponding iy € N such
that for all ¢ > ig, the inequality |(¢,y* — xg,+4)| < € holds. Since ¢ is arbitrary,
we conclude that limg_.o, xp = y* weakly.

To conclude, we note that y* € Fix (T"). Indeed, by Remark 3.4 each y; belongs
to Fix (T). Since Fix (T") is p-closed by [16, Theorem 23.2, page 120], (3.5) implies
that y* also belongs to Fix (7). O

Theorem 3.5 can be extended to more general complete CAT(0) spaces and the
weak convergence defined in them.

Theorem 3.6. Let (X,d) be a complete CAT(0) space and consider a nonexpansive
operator T : X — X. Then the following two statements are equivalent:

(i) All exact orbits of T converge weakly;
(ii) All inexact orbits of T with summable errors converge weakly to fized points

of T.

Proof. The implication (ii)=(i) is obvious. In order to prove (i)=-(ii), suppose
that all exact orbits of T' converge weakly. Let (xg)reny be an inexact orbit of
T with summable errors. By Proposition 3.1 and since all exact orbits of T are
weakly convergent (in particular, bounded), (zj)ren is bounded. Moreover, there
is a sequence (ry)ken of real numbers such that d(Txg,xg41) < r for each k € N,
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where ), 7% < 00. Fix a positive integer k. By hypothesis, there is y;, € X such
that lim;_,.o Tz, = yi weakly; or equivalently, by Proposition 2.9,

(3.11) lim d(yg, Py, (T*xg)) =0 for all geodesics 7 through y.
1—00

For each i € N, we have d(T"xy, zp1;) < Z;il,z_l r; (compare with (3.1)). Hence,
for each fixed ¢ € N, we have d(T9z, xp1q) < Z;’;k rj. This implies that

o
(3.12) AT 2p, T'agry) < d(T2h, Thrg) < er forall i e N

j=k
because T' is nonexpansive. By Proposition 2.10 and (3.12), the following inequali-
ties hold:

oo
(3.13) A Y, Yrrq) < liminf d(TT wy, Tl gy y) < er.
i—00 rd
J_
Since } ;o < 00 and since inequality (3.13) holds for each pair of positive integers

(¢, k), it follows that (yx)ken is a Cauchy sequence. So there exists a point y, € X
such that

(3.14) lim d(yg,y«) = 0.
k—o0
To conclude, we need to prove that (xj)ren weakly converges to y.. Let . be a

geodesic segment through y.. Fix ¢,k € N. For all geodesic segments ~; through
Yk, by the triangle inequality and since P,, is nonexpansive, we have

(3.15) +d(T' g, Ty i) + d( Py, (Thti)s Py, (Thi))-
Let € > 0 be fixed. By (3.14), there exists ko € N such that for each k > ko,
(3.16) Ay, ) < 7.
By (3.11), there exists ig € N such that for each i > iy,
(3.17) Ay, Py, (T'my)) < Z.
On the other hand, by (3.12) we know that
(3.18) d(T'xy, 2p1i) < irj.
j=k

Fix z € v,. For each k € N, let v be the unique geodesic segment joining y; and z.
Since (3.14) holds, Theorem 2.7 implies that P,, converges to P, uniformly over
(zk)ken, which is a bounded subset of X. Therefore, for all k > ky,

(3.19) d(Py, (z41), Py (zh1s)) < Z for all 7 € N.

Hence by (3.15), (3.16), (3.17), (3.18) and (3.19), there exist ky € N and a corre-
sponding ig € N such that for all ¢ > i,

d(Ys, Py, (Tgy+i)) < €.
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Since € is arbitrary, this implies that limy_,o d(ys, Py, (25)) = 0 for all geodesic
segments v, through y,, that is, (xx)reny converges weakly to y. (see Proposition
2.9), as required. To conclude, note that by definition each y; is the asymptotic
center of the sequence (T%zy);cn. From the nonexpansivity of 7T, it follows that Ty,
is also the asymptotic center of this sequence, and consequently, y, = Ty, for each
k € N. Now (3.14) implies that y* € Fix (7). O

4. BANACH SPACES

In this section we use known results regarding the convergence of exact orbits of
certain operators defined on Banach spaces to prove the convergence, either strong
or weak, of some infinite products associated with these operators.

4.1. The linear case. Suppose E is a uniformly convex Banach space and {Ps, :
1 < k < m} are norm-one projections of E onto subspaces {Si : 1 <k <m}. It is
known that the strong

(4.1) lim (Ps, Ps,, ,---Ps,)"x = Pz
n—oo
exists for all z € E. In addition, if a1, as,...,a, € (0,1) are numbers such that

a1+ as + -+ a;, = 1, then the strong

m n
(4.2) lim (Z akPSk> z=Qu

k=1
also exists for all x € E. Both P and @ define norm-one projections of E onto
S1NS2N---NS,,. For proofs of (4.1) and (4.2) we refer the reader to [10, Theorem
2.1] and [26, Theorem 1.7], respectively.

When these norm-one projections are approximated by certain possibly nonlinear,

even discontinuous operators, their infinite products converge, as we state and prove
below.

Theorem 4.1. Suppose E is a uniformly convex Banach space and let {Pg, : 1<
kE < m} be norm-one projections of E onto subspaces {Sy : 1 < k < m}. Let the

given, possibly nonlinear operators Ag{) E— E, k=1,2,...,m; n € N, satisfy
for all x € E the inequalities
(4.3) 1AWz — Pg,z|| < |

for some positive numbers v, with Y, yvn < 00. Then, for each v € E, there
exists a point T =Z(x) € S1NSaN--- NSy, such that

: ) 4me1) ) .
Tim HA]. Aj AV |-z =0
j=1

Proof. Given x € E, consider the sequence (zy)nen defined as follows:
ry=x and x,41= A,(Im)A%m_l) e Agll):vn for all n € N.

Using (4.3) and the fact that each operator Pg, is linear and a norm-one projection,
we can proceed as in [22, Theorem 2.2] and prove that (x,)nen is an inexact orbit
of Pg,, ---Pg, with summable errors. Since all exact orbits of Ps,, --- Pg, converge
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to points in S; N --- NSy, (see (4.1)), it follows from Theorem 3.2 and (2.1) that
there exists a point T = Z(z) € S1 NSz N--- NSy, such that lim,,_, ||z, —Z| = 0.
This concludes the proof. O

We say that Theorem 4.1 is a “linear case” since in (4.3) we use the operators

(Agk))neN to approximate the linear norm-one projections P, .
We now provide an analog of Theorem 4.1, where the products of convex combi-
nations of these possibly nonlinear operators are considered.

Theorem 4.2. Suppose E is a uniformly convexr Banach space and let {Ps, : 1<
k < m} be norm-one projections of E onto subspaces {Sy : 1 < k < m}. Let the

given, possibly nonlinear operators A%k) E— FE, k=1,2,....m; n € N, satisfy
for all x € E the inequalities
(4.4) 1Az — Ps x| < a2

for some positive numbers v, with Y vn < 00. Then, for each v € E, there
exists a point T =T(x) € SN SaN---N Sy, such that

TS a® ) |
nh_)n;o H (Z akAj ) r—7Z|| =0,
j=1 \k=1

where ay, € (0,1) for each k=1,....m and a1 +ag + -+ + ap, = 1.

Proof. For z € E, we inductively define the sequence (z,)nen by 1 = z and
Tptl = Y pey akA;k)xn for all n € N. By the triangle inequality, (4.4) and by using
the fact that Ps, is a norm-one projection for each £ =1,...,m, we obtain

Z ar AR g
k=1

This implies that

(4.5) [n ]l = H (Z%A( )w l:[ (1475l

7j=1

<Zak 14Dz — Pzl + || Ps,al) < (14 7a) ]
k=1

for any n > 2. Since ), . < 00, we know that [], (1 + ;) < oo (see, for
example, [13, Proposition VIL.5.4]). Combining this fact with (4.5), we see that
there exists a number M > 0 such that

(4.6) |zn|| < M|jz|| for all n e N.

m
Let T = Z ayPs, . By the triangle inequality, (4.4) and (4.6), we obtain
k=1

m
|21 = Tanll <Y arll AP 20 — Ps,anll < yallnll < 3 |ll,
k=1

which proves that the sequence (xy,)nen is an inexact orbit of 7' with summable
errors. By (4.2), we know that all exact orbits of T' converge. By Theorem 3.2, this
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implies that all inexact orbits of T with summable errors converge to fixed points
of T. Thus there exists a point T € Fix (T") such that

n

m
- i (k) _
0= nll)rgo |zn — || = nh_{lgo H (g 1 agA; > r—T|.

Using (2.2), we conclude that 7 € SN ---NS,, = Fix (7). O

We see that in the proofs of both Theorem 4.1 and Theorem 4.2, neither continuity
nor linearity of the operators A%k) are needed.

We finish this subsection with a case where the uniform convexity of the Ba-
nach space E is replaced with another assumption. Suppose {Ps, : 1 < k < m}
are norm-one projections of E onto subspaces {S; : 1 < k < m}. Consider
the convex multiplicative semigroup generated by Ps,,..., Ps, and denote it by
S =S(Ps,,...,Ps,,). In other words, S is the convex hull of the semigroup consist-
ing of all products with factors from {Ps,,..., Ps, }.

If £ is a uniformly smooth complex Banach space, then for every operator T €
S(Ps,,...,Ps,, ), the strong
(4.7) lim T"x = Px

n—oo
exists for all € E and defines a norm-one projection P of E onto Fix (T') (see [4,

Main Theorem]). Hence, if there exist a sequence (z,)neny C E and a convergent
series of positive numbers ) 7, satisfying the inequalities

(4.8) [Zn41 = Tanl| <y forall n €N,
then there exists a point T € Fix (T") such that
(4.9) nlggo |zn, — || = 0.

This is true because by (4.8), we see that (z,),ecn is an inexact orbit of T with
summable errors. Since all the exact orbits of T' converge by (4.7), we conclude by
Theorem 3.2 that there is a point T € Fix (T) satisfying (4.9).

Below we consider a particular element of S(Pg,, ..., Ps,,), but the proof can be
used as a blueprint for proving analogous results for any operator in S(Pg,, ..., Ps,, ).

Theorem 4.3. Suppose E is a uniformly smooth complex Banach space and let
{Ps, : 1 <k <m} be norm-one projections of E onto subspaces {Sy, : 1 < k < m}.
Let the given, possibly nonlinear operators Aslk) EF—FE, k=1,2,....,m;n €N,
satisfy for all x € E the inequalities

(4.10) 1APz — Pg,z|| < yla|

for some positive numbers v, with Y v < 00. Then, for each v € E, there
exists a point T = T(z) € Fix (31 ayPs, ., Ps,) such that

where a, € (0,1) forallk=1,...,m—1anday +az+ -+ am-1 = 1.
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Proof. Take x € E and consider the sequence (x,)nen defined by

m—1
r1=x and Tp41 = (Z akA,(erl)A?(f)) x, forall néeN.
k=1

Using the fact that Pg, is a norm-one projection, the triangle inequality and (4.10),
we get

(4.11) 1AV z|| < |APz = Psyl| + || Ps,all < (1+7a)ll]),
which implies that
(4.12) IASHD AP 2| < (1 + 1) [AP 2]l < (1+70)°l|])-
Since aj + - - - + a,, = 1, using the triangle inequality and (4.12), we obtain
m—1
(4.13) > apAlft! < (L4 7)?l])-
k=1
Using (4.13), we arrive at the following inequality:
n—1
(4.14) el < | TTC 4902 ) Dl
j=1

When we use the triangle inequality, (4.10), (4.11) and the fact that Pg, is nonex-
pansive, we get

IA$ AL, — Py, P,

n n
< AP AL Ve, — P, A V| + | Ps, AV, — P, Ps,_yan|
(4.15) < YL+ m)l[znll +vnllzall.

Let T = Zzlz_ll apPs, ., Ps, € S(Ps,,...,Ps,, ). By the triangle inequality, (4.14)
and (4.15), we get

m—
Hxn+1 - Txn” S Z HA(k—H ) Tn — P,S'k_,.lPSkxn
— n—1
(4.16) < (1l +7m) H + )2l + v [T+ 7).
Jj=1 j=1

Note that ) v < oo implies that J], (1 + ;) < co. Using this fact along
with (4.16), we see that there exists a number M > 0 such that

[ 241 = Tn|| < 9n M|z

Thus the sequence (zp)nen satisfies (4.8) and consequently, there is a point T €
Fix (T') such that

n m—1
_ —n 1 (k+1) 4 (k) _
O—Hxn—mH—nh%n;o H(E agA; A >:1;—a: .
j=1 \k=1
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4.2. The nonlinear case. Now suppose E is a smooth and uniformly convex Ba-
nach space. If {Rp, : 1 < k < m} are sunny nonexpansive retractions of a sym-
metric, closed and convex subset C' C E onto symmetric, closed and convex subsets
{Fr, C C : 1<k <m}, then the strong

(4.17) lim (RFmRFm—l cee RFl)n:L’ = Rx
n—oo
exists for all z € C (see [10, Theorem 2.2]). Moreover, when ay,as,...,an, € (0,1)

are numbers such that a; + as + - - - + a,,, = 1, then the strong

(4.18) lim (Z akRFk> = Qx
k=1

also exists for all z € C (see [26, Theorem 2.3]). In (4.17) and (4.18), R and @ are
nonexpansive retractions of C' onto F1 N FoN--- N F,,.

Below we replace norm-one projections by nonexpansive retractions to obtain a
nonlinear analogue of Theorem 4.1.

Theorem 4.4. Suppose E is a smooth and uniformly convexr Banach space. Let
C be a symmetric, closed and convexr subset of E, and let {Rp, : 1 < k < m}
be sunny nonexpansive retractions of C' onto symmetric, closed and convex subsets

{Fy CC : 1<k<m}. Let the given, possibly nonlinear operators Aq(f) :C — C,
k=1,2,...,m; n €N, satisfy for all x € C the inequalities

(4.19) 1A — Rl < yull]

for some positive numbers v, with Y, v < 00. Then, for each x € C, there
exists a point T =T(x) € F1 N FyN---NFy, such that

: ) 4me1) ) .
Tim HA]. Aj AV |-z =0
j=1

Proof. For x € C, consider the sequence (x,)nen, Where

r1=x and Tpy = A%m)A%mfl) . Ag)xn for all n € N.
By Remark 2.1, for each K =1,...,m and x € C, we have
(4.20) IRz < |||

By the triangle inequality, (4.19) and (4.20), for all n € N and k£ = 1,...,m, we
obtain

(4.21) AR AG=D A || < (14 4,)F||2z|| for all n e N.

Since ) ;Y5 < 00, we know that [[,;c(1+7;) < oo. When combined with (4.21)
for k = m, this fact gives us a number M > 0 such that for all n > 2,

n—1
(4.22) lzall < | TTQ+2)™ | 2l < Ml|z].
j=1
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For k=1,...,m and n € N, consider the operator a%k)(a:) = A%k)x — Rp, defined
on C. By (4.19), this operator satisfies the following inequality:
(4.23) o (@) < |-
Let n € N be fixed. We consider xgllll = Ag)xn and :cgirll) = A(kH) 51421 =
a%kﬂ)(xgﬂl) + Rpkﬂmgzzl for all k =1,...,m — 1. In particular, we see that
(4.24) xg_?_)l =AM AMm=1 AW g = .
From the triangle inequality, (4.20) and (4.23), it follows that
(4.25) 12811 < (1 + )l
for each kK =1,...,m. So, for each k = 2,...,m, we obtain
) k—1
-1 j 1
(4.26)  |Rpals) — ReRe_, o Reall < Y la@ @00 ] + o @)l
j=2

( Le‘; T = Rp, Rr,, , - Rp. By the triangle inequality, (4.23), (4.24), (4.25) and
4.26), we get

1 —1
|Zni1 = Txa| < (ol @) + | Re 2D = R, R,y -+ - Ry |

< Al 7)™ (L )T e (L) + ]|
Without loss of generality, we may assume that v, < 1 for each n € N, so by the
above estimate we have
[Znt1 = Tanll < 42771 +2772 4+ 24 1 lza| < 27 n|2nll-
By (4.22), it is clear that there is a number M > 0 such that
|Znt1 — Tyl < 2™, M||z|| for all n e N.

This shows that (x,)nen is an inexact orbit of 7' with summable errors. By (4.17),
all exact orbits of T' converge; therefore by Theorem 3.2, there is a point Z € Fix (T')
such that

0= lim ||z, — 7 HAm)Am VoA e -z

By (2.3), we know that T € F} N--- N F,,. This concludes the proof. O

Note that no expression of the type ||A§Lk):n - A,(Tk)yH was involved in the proof of

Theorem 4.4. So even if an operator A%k) is discontinuous at some point of C, our

result remains true. Similarly, we can prove convergence of the products of convex
o (k)

combinations of these operators A;,”.

Theorem 4.5. Suppose E is a smooth and uniformly convexr Banach space. Let

C be a symmetric, closed and convexr subset of E, and let {Rp, : 1 < k < m}

be sunny nonexpansive retractions of C' onto symmetric, closed and convex subsets
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{Fy CC : 1 <k<m}. Let the given, possibly nonlinear operators Aq(lk) :C — C,
k=1,2,...,m; n €N, satisfy for all x € C the inequalities

(4.27) 1A e — Rp|| < yallz]

for some positive numbers v, with Y v < 00. Then, for each x € C, there
exists a point T =T(x) € Fy N FyN---N F,, such that

where a, € (0,1) for each k=1,....m and a1 +ag + -+ + ap, = 1.

Proof. Given x € C, consider the sequence (x,)nen defined by 21 = z and x4 =
(Zz;l akA,(f)) x, for all n € N. Using (4.27), it is not difficult to prove that

(n)nen is an inexact orbit of T = Y ;" | apRp, with summable errors. By (4.18),
we know that all exact orbits of T" converge. Therefore, by Theorem 3.2, there exists
a point T € Fix (T') such that

L i SR (k) _
O—nh_>ngo|]xn—x\|—nh_>1rolo H(ZakAj )x—x .

j=1 \k=1
The assertion that T € Fy N Fy N --- N Fy, follows from (2.4). O

Note that also in this case no assumption concerning the continuity of the oper-
ators Aﬁf) is needed.

4.3. Weak convergence. If we dispense with symmetry of the subsets Fi,..., Fi,
and C, at least weak convergence in (4.17) and (4.18) can be obtained. To this end,
suppose that both F and E* are uniformly convex Banach spaces. Recall that E*
is uniformly convex if and only if the norm of E is uniformly Fréchet differentiable;
see, for instance, [15, Theorem 9.9]. Let C be a closed and convex subset of E, and
let {Rp, : 1 < k < m} be sunny nonexpansive retractions of C' onto closed and
convex subsets {F, C C' : 1 <k < m}. Assume that Fy N F,N---N F,, # (. Then
the weak

(4.28) le (Rp,RF, , - Rr)"v =Rz

exists for all z € C and defines a nonexpansive retraction R of C' onto F1NFoN---N
F,,. Moreover, if a, as, ..., an, € (0,1) are numbers such that ay +as+---+a, = 1,
then the weak

(4.29) lim (Z akRFk> z=Qx
k=1

exists for each x € C' and defines a nonexpansive retraction Q of C onto F; N Fyo N
-+ N Fy,. For a proof of (4.28) and (4.29) we refer the reader to [26, Proposition
2.4] and [20, Theorem 4.8], respectively.
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Theorem 4.6. Suppose E and E* are uniformly convex Banach spaces. Let C be
a closed and convez subset of E, and let {Rp, : 1 <k < m} be sunny nonexpansive
retractions of C onto closed subsets {Fy, C C : 1 < k < m} such that FfNFyN---N

F,, # 0. Let the given, possibly nonlinear operators Aq(zk) :C—-C,k=1,2,...,m;
n € N, satisfy for all x € C the inequalities
(4.30) 1AYz — R || < 2|

for some positive numbers ~y, with ) v < 00. Then for each x € C, there is a
point T =T(x) € Fy N FyN---N Fy, such that

n
nh—>Holo H Ag.m)Ag.m_l) . -Ag.l) r=7T weakly.
j=1

Proof. Fix z€e ;NN ---NF,, = Fix (Rpm ‘Rp,). For each k =1,...,m and
n € N, define the subsets Fk =F,—2zC C := C — z. Consider also the operators
A%k) = A%k) — z and Rka = Rp,x — 2z, where w € C and z € C are such
that w =z — 2. So 0 € ﬁk = FiX(Rﬁk) for each k = 1,...,m. Since Rp, is a
nonexpansive retraction, so is R 7 In particular,

(4.31) IRz wl = |[Rpw— Ry 0] < [w| forall wecC.

It follows from (4.30), (4.31) and the triangle inequality that for each k =1,...,m
and n € N,

(4.32) 1A w — Ry w]| = APz - Real| < vllwl + 2]

for all w € C and z € C such that w =z — z. Given 2 € C , consider the sequence
(Zn)nen, where 1 = x and x,41 = A%m)AELm_l) . --A%l)xn for all n € N. We also
define a sequence (wy,)neny C C by setting

wi=w=x—2z and wyy =AMAM D AWy, for all n e N.

Note that w,, = z,, —z for all n € N. So by (4.31), (4.32) and the triangle inequality,
we see that

m—1
(4.33) JAT AG Y- A w]| < (1 y0)™ )] + izl D (L +)
i=0
Using induction over n and inequality (4.33), we get
m—1
[wn]| < H L+ 7)™ lwll +An-allzl D (1 + 1)’
Jj=1 =0
n—1 m—1
(4.34) +HZHZW I @)™y @+
= j=0+1 i=0

Since } ey < 00, we know that [[;y(1 + ;) < co. Combining these facts with
(4.34), we see that there exist numbers M, My, M3 > 0 satisfying H?;pl(l +7;)™" <
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M for alln > p+1, 7 (147,)" < My and 3171 ; < M for all n > 2, so that
||wy|| < M ||w| + M1 MyMs||z||. Hence there exists a number M > 0 such that

(4.35) llwnl < M(|lw|| +|z||) for all n € N.

Now on C, consider the operator &%k) (w) = jﬁl’“)w - Rﬁkw for k =1,...,m and
n € N. By (4.32), we see that the inequality

(4.36) &P ()l < ynllwll + vall 2l

holds. For n € N fixed, we now define wgll = Eﬁf)wn = &’g)(wn) + Ry wn
and wgfll) = AFT R = &,(Tkﬂ)( &21) + Rﬁkﬂwﬁﬁl fork=1,....m—1. In

particular, wfl +)1 Wp+1. So by the triangle inequality, (4.31) and (4.36), we get
the following inequality:

k—1
i .
(4.37) i 1| < (@ + ) llwnl| + 7 (Z(l + %)1) 1]
=0
forall k=1,...,m. Since Rﬁk is nonexpansive for each k = 2,...,m, the following

inequality holds:

S
—_

k—1 -
(438) Ry w ) — Ry o Bpwl < 3O11E w50+ 188 (wa)])
j=2
Let T = Rz RFm Ry . By the triangle inequality, (4.36), (4.37), (4.38) and

since each R 7, is nonexpansive, we have

”wnJrl vanH

~ 1 1

< (a5 (i + IRg, wliy ) — Ry Rp - Ry wyl|
m—1 ' —17-1

< Y > (4 ) lwnll + vn %ZZ (L+7)" +m | [|z].
j=0 7=1 =0

Without loss of generality, we may assume that v, < 1 for all n € N. So by the
above inequality we obtain

2 | z 1 (zm 1 z 1, 1) "

(4.39) 27 |wp | +7n m (2" +1) [
Hence by (4.35) and (4.39), there is a number M > 0 such that

IN

w41 — Twn”

IN

w1 = Twa|| < 7a[2" Mljw]| + (27 M +m2™ + m)]2]],

which proves that (wy)nen is an inexact orbit of T with summable errors. By (4.28),
we know that all exact orbits of T' converge weakly to fixed points of T So, by
Theorem 3.3 there exists a point w € Fix (T') such that lim, . w, = W weakly.
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From (2.3) it follows that w € Fin---NF,. Since (Wp)neny = (T — 2)nen, there
exists a point T € Fy N ---N F}, such that

n

: (m) 4(m—1) (1 =

nll_)HQlo H A;A; AT k=T weakly,

j=1

as asserted. O
To conclude this section, we prove that weak convergence of infinite products

of convex combinations of nonlinear operators also holds under the conditions of

Theorem 4.6.

Theorem 4.7. Suppose E and E* are uniformly convexr Banach spaces. Let C' be
a closed and convez subset of E, and let {Rp, : 1 <k < m} be sunny nonexpansive
retractions of C onto closed and convex subsets {F, C C : 1 < k < m}. Assume

that FyNEFyN---NF,, # 0. Let the given, possibly nonlinear operators A,(lk) :C — C,
k=1,2,...,m; n €N, satisfy for all x € C the inequalities

(4.40) 1A e — Rp|| < yallz]

for some positive numbers v, with Y, . vn < 00. Then for each x € C, there exists
a point T ==(x) € F1NFyN---NF, such that

1 [~ )\ .
nl;ngo H (Z akAj ) r=7T weakly,
j=1 \k=1

where ay, € (0,1) for each k=1,...,m and a; +az + -+ + ay, = 1.

Proof. Let z € F1 N Fs N ---N F,, be fixed. For each k = 1,...,m, consider the
subsets Fk = F, — 2z C C:=C— z, and the operators Rﬁk and A( ) defined as
before. By (4.40) and the triangle inequality, we get

(4.41) 1A w — Rz w]| < yallwl]] + yall=]
for all w € 5’, k=1,...,mand n € N. Take z € C and consider the sequence

(p)nen, where 21 = z and x40 = > 1o, akAglk)mn for all n € N. Define also the

sequence (Wp)peny by w1 = w =z —z and wpy1 = > 4y akg%k)wn for all n € N.
Note that w, = z, — z for all n € N. Using the triangle inequality, (4.31) and
(4.41), we obtain

(4.42) 1AV w]| < AP w = Ry w] + |Rp wll < (1+ya)|w] + a2
Since a1 + ag + - -+ + a,, = 1, by (4.42) and the triangle inequality, we get

" ap A
k=1

Hence we obtain by induction the following inequality:

<Y allAPw| < (1 +3n)l|w] + a2

(4.43) [wn| < H + lel+Z%H | H (1 475) + m-allzll;

=1 Jj=i+1
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where n > 2. Since ) ;.7 < oo, we know that [[;cy(1 + ;) < oo. Combining
these facts with (4.43), we can find a number M > 0 such that

(4.44) lwn|| < M(||w|| + ||z]]) for all n € N.

Now consider the operator T = alRﬁl + agRﬁ2 + -+ anR; . By the triangle
inequality, (4.41) and (4.44), we get, for all n € N,

w1 = Twnl| < ya(Mllwl + (M + 1)]|2])),

which proves that (wp)nen is an inexact orbit of T with summable errors. By
Theorem (4.29), we know that the exact orbits of T converge weakly, so Theorem 3.3
implies that there exists @ € Fix (T') such that lim,_.c w, =W weakly. From (2.3)
we see that w € Flﬁ ﬂF Thus there exists a point T = w+2z € Fi1NFyN---NF,

such that
(k)
nh_r}r;o | | <E akA >x—:v weakly,

k=1
as asserted. O

It is important to note that continuity, either strong or weak, of the operators
A%k) is not relevant to the results in this subsection.

5. THE HILBERT BALL

Let {Pk, : 1 <i < m} be the nearest point projections of B onto p-closed and
p-convex subsets {K; CB : 1 <i<m}. f K1NKyN---NK,, # 0, then the weak
(5.1) lim (Pg,, Pk,, , - Pk,)"r = Px

n—oo
exists for all x € B and defines a p-nonexpansive retraction P of B onto K1 N Ko N
-+ N Ky, ([27, Main Theorem]). When m = 2, the sequence

1 1 "
. (G
neN

also converges weakly for each x € B to a point in K; N Ks ( [5, Corollary 9.6]).

Now we present similar results to those obtained in the previous section for the
infinite products of operators, where the setting is the Hilbert ball B instead of a
Banach space.

Theorem 5.1. Let {Pg, : 1 < i < m} be the nearest point projections of B onto
p-closed and p-convex subsets {K; CB : 1 <i<m} with K1NKyN---N K, #0.
Let the given operators A%’) B—-B,t=1,2,...,m; n €N, satisfy for allz € B
the inequalities

for some positive numbers v, with ), ¥ < 00. Then for each x € B, there exists
apoint T =T(x) € K1NKyN---N Ky, such that

T A g L
nlglolo H Aj Aj - ~Aj =17 weakly.
j=1
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Proof. Fix z € K1 N Ky N --- N Kp,. For each i = 1,...,m, consider the subsets
K; := M_,(K;), and define the operators Pz w = M_,(Pk,z) and Agf)w
M_Z(A,(f):c), where w,z € B are such that w = M_.(z). Note that P is the

nearest point projection of B onto K; for each ¢ = 1,...,m. Moreover, since M _,
is an automorphism and Pk, is p-nonexpansive, so is PfQ foralli=1,...,m. Since

z€ K1NKyN---NK,y, it is clear that 0 = M_,(z) € I?i, so Pz 0 = 0 for each
i =1,...,m. Therefore the inequality
(5.4) p(0, Pg w) = p(Pg 0, Pp w) < p(0,w)

holds, because Py is p-nonexpansive. Using (5.3), we see that

(5.5) p(ADw, P w) < ynp(—2,w) < 4np(0,w) + 70p(0, —2)

for all points w,x € B such that w = M_,(x), n € Nand i = 1,...,m. Now take
x € B and let (x,)nen be the sequence defined by x1 = x and x, 1 = Aﬁ{”) e Aﬁ})xn
for each n € N. We also consider the sequence (wp)nen defined by w; = w =

M_,(z) and wy41 = g%m) e Z%”wn for each n € N. It is not difficult to see that
wyp, = M_,(x,) for all n € N. For each n € N and i = 1,...,m, using the triangle
inequality, (5.4) and (5.5), we get

p(0, ADw) < p(0, Pz w) + p(Pgw, ADw) < (1+3,)p(0,w) + 1p(0, —2).

Hence, for each ¢ = 2,...,m, it follows that
i—1

(5.6)  p(0, AP+ ADw) < (1+79)"p(0,w) +7n > _(1+7m)Fp(0,—2).
k=0

From (5.6), we deduce that

n—1 m—1
p(0,w,,) ZW [T @)™ > A +7)'p(0,—2)

/=1 j=f+1 =0
m—1 ' n—1
(5.7) o1 Y (L4 m-1)'p(0,—2) + [T (1 + 7)™ p(0, w).
i=0 j=1

Note that [];cn(1 4+ 7j) < oo because - y7v; < oo. Combining these facts with
(5.7), we get a number M > 0 such that

(5.8) p(0,wn) < MIp(0,w) + p(0, —2)].

Using induction over i = 2,. .., m, the triangle inequality, (5.5) and the p-nonexpansivity
of P , we obtain

p(Prm AU o Ay, Py Py -+ Py wy)
< [0, A e A ) 5 0, A - AP

(5.9) - p(0, ADwn) + p(0,wn) | + (i = 1)7up(0, —2).
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Now consider the operator T = P- P <o P

. 7L By the triangle inequality,
(5.5), (5.6) and (5.9), we have

p(Wnt1, ,fwn)

< p(Angm)Avq(lm—l) L. Avq(ll)wn’ P[?mAngm_l) L Avq(ll)wn)
+p(PI?mAV£Lm71) e g%l)wnj Pf(mpl?m71 N Pglwn)
m—1 m—1
< M Z(l + Yn) ' p(0, wy) + Yum Z (1 4 9n) p(0, —2) + mAnp(0, —2).
=0 i=0

Without loss of generality, we may assume that -, S 1 for each n € N. Hence

P(wn+1afwn) < M Z 2" P 0 wn + Ynm Z 2Z _Z + m’an(O )

(5.10) < n[ p(0,wy,) +m(2™ + 1) (0, —2)].
By (5.8) and (5.10), we see that there exists a number M > 0 such that
plutms1, Tun) < 227 M (p(0, w) + (1 + m(2™ + 1))p(0 — 2))].

This proves that the sequence (wp)nen is an inexact orbit of T with summable
errors. By (5.1), we know that all the exact orbits of T converge Weakly to fixed
points of T. Hence by Theorem 3.5, there exists a point w € K1 N K2 NN K
such that lim,, . w, = w weakly. The fact that w belongs to K 1N KQ N---N I?m
follows from (2.8). Since M, is weakly continuous and (wp,)peny = (M_z(a:n))neN,
there exists a point 7 € K1 N Ky N ---N Ky, such that £ = M, (w) and

n—1
T = lim x, = lim H Agm)Agmfl) x -A§1) x  weakly.
This concludes the proof. O

(4)

It is important to observe that continuity of the operators A’ is irrelevant to the
above proof. So Theorem 5.1 holds even for discontinuous operators. The infinite

i)

products of p-convex combinations of the operators AT(I also converge weakly. To
prove our next weak convergence theorem, we use (5.2) and Theorem 3.5.

Theorem 5.2. Let Pk, , Pk, be the nearest point projections of B onto p-closed and
p-convex subsets Kl,Kg C B, respectively. Assume that K1 N Ko # 0 and let the

given operators AS) B =B, i=1,2; n €N, satisfy for all x € B, the inequalities
(5.11) p(ASLi)'/L" Pr,x) < vnp(0,2)

for some positive numbers v, with ), Y < 00. Then for each x € B, there exists
a point T =T(x) € K1 N Ky such that

| 1
lim H §A§»1) o §A§2) =7 weakly.

j=1
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Now we use Kopeckd—Reich definition of the p-convex combination of more than
two operators to extend Theorem 5.2. To this end, we first recall [28] that a set-
valued operator ' C B x B with domain Dom (7") and range Ran (T') is said to be
coaccretive if

p(x1,x2) < p((1+ )21 ©1y1, (14 7)29 © TY2)

for all y1 € Txy, y2 € Txy and r > 0. In addition, if Ran ((1 + )] ©rT) = B for
all » > 0, T' is said to be m-coaccretive. In particular, all p-nonexpansive operators
are m-coaccretive (see [18]). If a set-valued operator T is coaccretive, then for each
r > 0, the resolvent of T is the nonexpansive operator J, : Ran ((1 4+ r)z ©rT) —
Dom (T') defined by J,((1 + r)z & ry) = z, where x € Dom (T') and y € Tx. We
denote the fixed point set of T' by Fix (T), that is, Fix (T') :={x € B : (x,2) € T}.
Note that Fix (T') = Fix (J,) for each r > 0.

Consider the m-coaccretive operators 11, . . ., T,,, for which the intersection Fix (77)N
-+ NFix(T,,) # 0. For each ¢ = 1,...,m, suppose that 7, > 0 and let J,., be
the corresponding resolvent of T;. If aj,...,a, € (0,1) are numbers such that
a1+ as + -+ am, = 1, then for each x € B, the weak limit

(5.12) Um C(Jpy, Iryyevydpy,i01,02,. .. am)" ¢ = Pz
n—oo

exists and defines a p-nonexpansive retraction P of B onto Fix (71) N---NFix (T,)
(see [18, Theorem 3.8]).

Unlike Theorem 5.2, our next result is true for more general operators than
nearest point projections. This generalization takes place in the framework of m-
coaccretive operators.

Theorem 5.3. Let T,...,T,, be m-coaccretive operators. For each i = 1,...,m,
suppose that r; > 0 and J,, is the corresponding resolvent of T;. Assume that
Fix (Th) N ---NFix(T,,) # 0. Let the given operators Agf) B—DB,i=1,...,m;
n € N, satisfy for all z € B, the inequalities

(5.13) p(ADz. J, ) < 4,p(0, )

for some positive numbers v, with Y, . Yn < 00. Then for each x € B, there exists
a point T =7(z) € Fix (T1) N --- N Fix (T},) such that

n—00 J

lim HC(Ag.l),...,A(.m);al,...,am) x=1T weakly,
j=1

where ai,...,am € (0,1) are real numbers such that a; + az + -+ + apy = 1.

Proof. Fix z € Fix (T1)N- - -NFix (T,,). Foreach i = 1,...,m, consider the operators
Tiw := M_,(Tix), Jy,w := M_,(J,,z) and Agf)w = M_Z(A,(f)ac); where z,w € B

are such that w = M_,(z). Note that Fix (T}) = M_,(Fix (T})). Since each JIr;
is p-nonexpansive, so is jn By definition, we know that z = J,.,((1 + r;)z © r;y)
for y € Tjz, and since z € T;z, it is clear that z = J,,((1 + r3)z © r;2) = Jp,z for
each i = 1,...,m. Recall that 0 = M_,(z). Consequently, J,.0 = M_,(J,,z) =
M_,(z) =0. So, since jn is p-nonexpansive, we obtain

(5.14) p(0, Jr,w) = p(Jp, 0, Jr;w) < p(0,w).
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Take x € B and consider the sequence (zy),cn defined by z; = x and x4 =
C(A%l), . ,A%m);al,...,am)xn for each n € N. We also consider the sequence
(wp )nen defined by w; = w = M_,(x) and w41 = C’(ﬁg), . 7g7(1m); A1y .oy Q) Wh
for each n € N. Using (2.6), we see that w,, = M_(z,) for each n € N. By (5.13)
and the triangle inequality, we obtain

(5.15) p(ADw, T w) < 4np(0, w) + Ynp(0, —2).
It follows from the triangle inequality, (5.14) and (5.15) that
(5.16) p(0, ADw) < (1 + ) p(0,w) + Ynp(0, —2).

In the rest of the proof we are going to use two claims. Both of them can be proved
by induction over k, using (2.7) and (5.16).
Claim 1: For each k = 2,...,m, the following inequality holds:

(5.17) p(0,C(AD AR B Bow <Zﬁjp014]) ),
7j=1

where (1,..., Bk € (0,1) are such that 81 + B2+ -+ + B = 1.
By (5.14), (5.17) and since a; + - - - + a,, = 1, the following inequality holds:

p(07 C(A/'Ezlh ctt 2{7({”)7 ag, ... ,am)U)) S (1 + 771>p(07 ’U)) + 7’np(07 _Z)'
Consequently, for each n > 2, we obtain the following inequality:

n—1 n—1 n—1

p(0,wn) < JLA+)p0,w)+ {v [JTA+7) +2 [+
j=1 j=2 j=3
n—1
(5.18) +otmes [ O+ + w2+ Y1) + 1| p(0,—2).
j=n—2

Since ;) < 00, we know that [[;cy(1 + ;) < oo. Hence there exist numbers

My, Ms > 0 such that H (1 +7;) < M foralln >p+1 and ZJ 1Y < My for
all n > 2. Combining these inequalities with (5.18), we find a number M > 0 such
that

(5.19) p(0, 1) < M[p(0,w) + p(0, —2)].
Claim 2: For each k= 2,...,m, we have
p(C("Z(l) Ai(k) /817 ey Bk)wna C(j;‘p ey j;‘ka 517 o 7/Bk)wn)
k
(5.20) Z Dawg, Iy, wn),

where 61,52,...,Bk € (0,1) are such that 81 + B2 + -+ + B = 1.
Set T := C(Jyryy Jrys -y dp,; 01,02, ..., 4n). By using inequalities (5.15), (5.19),
(5.20) and the fact that a; + --- 4+ a,,, = 1, we see that

pwns1, Twy) < 1M (p(0,w) + p(0, =2)) + p(0, —2)],
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which proves that the sequence (wy)nen is an inexact orbit of T with summable
errors. By (5.12), we know that all exact orbits of T converge weakly to fixed
points of T. Therefore by Theorem 3.5, there exists a point w € Fix (f) such that
limy, 00 Wy, = W weakly. In addition, by (2.10) we see that w € Fix (Ty) N Fix (T%) N
.- N Fix (T}n). Since (wn)pen = (M_(2n))nen and M, is weakly continuous, we
conclude that there is a point T = M, (w) € Fix(T}) N --- N Fix (T};,) such that

I:T}Ln;oxn:T}LH;O HC(AED,...,A§m);a1,...,am) x  weakly.
j=1

g

Note that continuity of the operators A%k) is not required in the proofs of all

the results in this section. Thus both Theorem 5.2 and Theorem 5.3 hold even for
discontinuous operators A,(f).

6. CAT(0) SPACES

In this section we consider CAT(0) spaces and establish a result similar to those
obtained in Sections 4 and 5. Suppose X is a complete CAT(0) space. Let Pp,
and Pp, be the nearest point projections of X onto convex and closed subsets
B1, Bo C X, respectively. If By N By # (), then for each z € X,

(6.1) (Pp,Pp,)"r =T weakly,

lim
n—oo
where T € By N Bsy. If, in addition, By and By are boundedly regular, this con-
vergence is in the metric sense. For a proof of these facts we refer the reader
to [3, Theorem 4.1].

Remark 6.1. Recall that two subsets A, B C X such that AN B # () are called
boundedly regular if for any bounded set S C X and any ¢ > 0, there exists § > 0
such that if € S and max{d(z, A),d(x, B)} < ¢, then d(z, AN B) < e.

Extending the results we have already obtained for Banach spaces and the Hilbert
ball, we now study the convergence of infinite products of approximations to these
nearest point projections.

A metric space (X, d) is called metrically homogeneous if for any x,y € X, there
exists an isometry M of X onto X such that M(z) = y. The Hilbert ball is an
example of a metrically homogeneous metric space with the Mobius transformations
playing the role of M.

Lemma 6.2. Suppose (X,d) is a metrically homogeneous CAT(0) space. If M is
an isometry of X onto X, then M has the following properties:
(i) M is continuous;
(ii) PpyyyM = MPy for all geodesic segments v C X;
(iii) M is weakly continuous.

Proof. Point (i) is obvious and point (ii) is not difficult to prove. To prove (iii),
consider a sequence (u,)npen C X, which converges weakly to u € X. Let o be a
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geodesic segment through M(u). Since M is an isometry, there is a geodesic seg-
ment v through u such that o = M(). So by (ii), we obtain d(M(u), P, M(u,)) =
d(u, Pyuy); but lim,_,o d(u, Pyu,) = 0 by Proposition 2.9. Thus it is clear that

(6.2) li_>m d(M(u), P,M(uy)) = 0.
From Proposition 2.9 we see that M(u) is the weak limit of (M (uy,))nen, because

(6.2) holds for any geodesic segment o through M(u). This shows that M is indeed
weakly continuous, as asserted. O

Theorem 6.3. Suppose (X,d) is a complete and metrically homogeneous CAT(0)
space. Let Pp, and Pp, be the nearest point projections of X onto convex and closed
subsets By, Bo C X, respectively. Assume that B1 N\ By # 0. Let the given operators

Aﬁf) X = X,i=1,2;,n €N, and the point x« € X satisfy for all x € X the
inequalities

(6.3) d(AD g, Pp,x) < ypd(zs, ),

where 7y, are certain positive numbers with ) v < 00. Then, for each x € X,
there exists a point T = T(z) € By N By such that

n
: (2) 4(1) =
nh_)rlgo HAj Aj =7 weakly.
j=1

If, in addition, B1 and Bs are boundedly regular, the convergence is in the metric
sense.

Proof. Fix z € B1NBsy. Since X is metrically homogeneous, there exists an isometry
M : X — X such that M(z) = x,. Consider the subsets By := M(Bj) and
By = M(Bz), and define the operators Pz w := M(Pp,x) and Ay = M(A,(f)x),

where z,w € X are such that w = M(z), i = 1,2. Note that z, = M(z) € B;
because z € B;. '

For all z,w € X such that w = M(z), it follows from the definition that Ay =
M(Ag)a:) = M(Aff)/\/l_l(w)) for ¢ = 1, 2; therefore
(6.4) AP ALy = M(AD AWV ).
Since Pp; is nonexpansive, so is Pz . Moreover, P is the nearest point projection
of X onto EZ It is clear that Pz 2. = z, because x, € EZ and Py is the nearest
point projection of X onto EZ Hence
(6.5) d(@«, Py w) = d(Pg @y, Pg w) < d(zs,w) for all w e X.
In addition, by (6.3) and the triangle inequality we obtain
(6.6) d(ADy, Pg w) < ynd(2s, 2) + ynd(s, w)
for w € X. Given z € X, consider the sequence (z,)nen defined by 1 = = and

Tpal = A£L2)A$Ll)a:n for all n € N. Define inductively the sequence (wy,)nen by

wp =w=M(z) and wp41 = ng)ﬁ?(})wn for all n € N.
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From (6.4) it is clear that w, = M(z,) for all n € N. Using the triangle inequality,
(6.5) and (6.6), we see that

(6.7) d(22, ADw) < (14 7)d (24, w) + Ynd(Ts, 2).
Consequently, we get
(6.8) d(7s, fﬁ?)gg})w) <1+ ’yn)2d(x*, w) + Yu[l + (1 + yn)]d(2y, 2).

Using induction over n > 2 and (6.8), we see that

n—1

d(me,wn) < [ +7)%d(@e,w) + d(ze, 2) 11+ (1 + 1))
=1

.

n—2 n—1
(6.9) +d(we,2) Y [+ (L+0)] [T 0 +7)%
(=1 j={+1

By hypothesis, we know that };.yv; < oo, hence ngN + ;) < oo. Thus
there exist numbers My, Ms, M3 > 0 such that H (1+’yj) < M for alln > p+1;
1+ (1+7;) < M for each j € N and Z _1 V; g Ms for all n > 2. These facts,
along with (6.9), imply that there exists a number M > 0 such that
(6.10) d(xs, wy) < Md(zs, w) + d(xy, 2)].

Let T = Py, Pg . By the triangle inequality, the nonexpansivity of P , (6.6), (6.7)
and (6.10), we obtain

< d(AD AV w,, Py ADw,) + d(Pg AN wy, Py P w,)
< (T + (T +n))d(s, wn) + (1 + ) d(2, 2)]
(6.11) < AR[MEM(d(zy, w) + d(z4, 2)) + M*d(z4, 2)],
where M* > 0 is a number such that 1+ (1 4 ~,) < M* for all n € N.
Inequality (6.11) shows that the sequence (wy)nen is an inexact orbit of T with
summable errors. Note that by (2.21), we have B; N By = Fix (Pg,Pp,)- According

o (6.1), all exact orbits of T converge weakly to fixed points of PEQ P§1' Hence by

d(wp41, fwn)

Theorem 3.6, there exists a point w € El N EQ such that

n—1
(6.12) w= lim w, = lim Hggz)gy) w  weakly.

n—o0 n—oo

Consequently, since M is weakly continuous (see Lemma 6.2) and w, = M/(x,),
there exists a point Z = M~ (w) € By N By such that

n—1
(6.13) T = 11%m Ty = hm HA;Q)AE-D x  weakly.
j=1

If By and B3 are boundedly regular, then all exact orbits of T are convergent in the
metric sense. So we can use Theorem 3.2, which gives us the existence of a point
w € By N By such that (6.12) is true in the metric sense. Since M is continuous



INFINITE PRODUCTS OF DISCONTINUOUS OPERATORS 199

(by Lemma 6.2), there exists Z = M~ (w) € By N By such that (6.13) holds in the
metric sense. 0

Since continuity of the operators Ag ) is not used in its proof, Theorem 6.3 remains
true even when these approximations are discontinuous.
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