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the Hilbert ball B and on CAT(0) spaces. To this purpose, we use norm-one projec-
tions, retractions and nearest point projections instead of orthogonal projections.
These operators are then approximated by other, possibly nonlinear and even dis-
continuous operators.

In Section 2 we present some known definitions and results regarding Banach
spaces and geodesic metric spaces, with more details in the case of the Hilbert ball
and CAT(0) spaces. In Section 3 we deal with concepts such as exact and inexact
orbits with summable errors of a nonexpansive operator and the relations among
various convergence results. We devote Section 4 to Banach spaces, where we deal
with the linear case, the nonlinear case and with weak convergence. In Section 5, we
deal with the problem in which we are interested in the Hilbert ball setting. Finally,
we consider CAT(0) spaces and prove convergence theorems in this framework in
Section 6.

2. Preliminaries

In this section we collect several relevant definitions and results. We begin with
Banach spaces, continue with geodesic metric spaces and then we study in more
depth the particular cases of the Hilbert ball and more generally, CAT(0) spaces.
Throughout the paper we let N stand for the set {1, 2, 3, . . .} of natural numbers.
We denote by Fix(T ) the set of all fixed points of an operator T .

2.1. Banach spaces. For basic information about Banach spaces we refer the
reader to [6], [15] and [16]. Let E be a Banach space and S ⊂ E a nonempty
subset. Denote by I : E → E the identity operator. We say that an operator
R : E → S is a retraction if the restriction R|S = I. If, in addition, a retraction
P : E → S is linear, then we call it a projection.

When E is uniformly convex and {PSk
: 1 ≤ k ≤ m} are norm-one projections

of E onto its subspaces {Sk : 1 ≤ k ≤ m}, it is known ( [10, Lemma 2.1]) that

(2.1) Fix (PSmPSm−1 · · ·PS1) =
m∩
k=1

Fix (PSk
) =

m∩
k=1

Sk.

In addition, for numbers a1, . . . , am ∈ (0, 1) such that a1 + a2 + · · · + am = 1, it
follows from [26, Lemma 1.4] that

(2.2) Fix

(
m∑
k=1

akPSk

)
=

m∩
k=1

Fix (PSk
) =

m∩
k=1

Sk.

Let both C ⊂ E and F ⊂ C be closed and convex subsets. Recall that a
retraction R : C → F is called sunny [25] if R ((1− t)Rx+ tx) = Rx for all t ≥ 0
and x, (1− t)Rx+ tx ∈ C.

If E is smooth and uniformly convex, and the subsets C and F are symmetric,
that is, C = −C and F = −F , and if F is a sunny nonexpansive retract of C, then
the sunny nonexpansive retraction R : C → F is odd. This fact follows from the
uniqueness of the sunny nonexpansive retraction from C onto F (see [9, Theorem
1]).
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Remark 2.1. Although a sunny nonexpansive retraction R : C → F is neither
linear nor bounded in general, when C and F are symmetric we do have ∥Rx∥ ≤ ∥x∥
for all x ∈ C.

If E is uniformly convex and {RFk
: 1 ≤ k ≤ m} are sunny nonexpansive

retractions of a closed and convex subset C ⊂ E onto closed and convex subsets
{Fk ⊂ C : 1 ≤ k ≤ m}, then by [10, Lemma 2.1],

(2.3) Fix (RFmRFm−1 · · ·RF1) =

m∩
k=1

Fix (RFk
) =

m∩
k=1

Fk.

In addition, for numbers a1, . . . , am ∈ (0, 1) such that a1 + a2 + · · · + am = 1, it
follows from [26, Lemma 1.4] that

(2.4) Fix

(
m∑
k=1

akRFk

)
=

m∩
k=1

Fix (RFk
) =

m∩
k=1

Fk.

2.2. Geodesic metric spaces. Consider a metric space (X, d). A geodesic path
joining x ∈ X to y ∈ X is a function γ : [0, ℓ] ⊂ R → X such that γ(0) = x,
γ(ℓ) = y and d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, ℓ]. The set γ([0, ℓ]) is
called a geodesic segment with endpoints x and y. We denote by [x, y] the geodesic
segment γ([0, d(x, y)]). A subset C ⊂ X is convex if [x, y] ⊂ C for all x, y ∈ C. The
space (X, d) is called a (uniquely) geodesic metric space if every two points in X
are joined by a (unique) geodesic.

For any two points x, y ∈ X, the geodesic segment [x, y] is convex. A point
z ∈ [x, y] is denoted by z := (1− t)x⊕ ty, where d(x, z) = td(x, y), and we say that
z is a convex combination of x and y.

Given a geodesic metric space (X, d), we denote by ∆(x, y, z) ⊂ X the geodesic
triangle with vertices x, y, z ∈ X and geodesic segments (edges) [x, y], [y, z] and
[z, x]. Let ∆(x, y, z) ⊂ M2

0 (where M2
0 is the Euclidean plane) be a comparison

triangle for ∆(x, y, z) with vertices x, y, z ∈ M2
0 . A point p ∈ [x, y] is called a

comparison point in ∆(x, y, z) for p ∈ [x, y] if d(x, p) = |x−p|. Comparison triangles
exist and are unique up to isometries (see [8, Chapter I]).

Hilbert and CAT(0) spaces are but two examples of (uniquely) geodesic metric
spaces. For more information on this topic, we refer the reader to [2], [8] and [16].

2.3. The Hilbert ball. Given a complex Hilbert space (H, ⟨·, ·⟩) with induced
norm | · |, consider the open unit ball B := {x ∈ H : |x| < 1}. The function

ρ : B× B → R defined by ρ(x, y) := argtanh (1− σ(x, y))1/2, where

σ(x, y) :=
(1− |x|2)(1− |y|2)

|1− ⟨x, y⟩|2
= argtanh |M−x(y)|,

defines a metric on B. The complete metric space (B, ρ) is called the Hilbert ball. The
operator Mu : B → B denotes the Möbius transformation at u ∈ B (see [16, Section
14, page 97]). It is a weakly continuous automorphism of B (see [16, Theorem 14.1,
page 98, and Lemma 21.3, page 115]). Hence Mu is invertible, M−u ◦Mu = I and
M−u(u) = 0 for all u ∈ B.



172 S. REICH AND Z. SALINAS

The metric ρ is topologically equivalent to the norm metric. This is true because
for all x, y ∈ B, the following inequalities hold:

(2.5) argtanh

(
|x− y|

2

)
≤ ρ(x, y) ≤ argtanh

(
|x− y|

dist(x, ∂B)

)
,

where dist(x, ∂B) := inf{|x− y| : y ∈ ∂B} (see [16, Theorems 10.3 and 10.4, pages
89–90]). Another property of the metric ρ is stated below.

Proposition 2.2. Suppose that (xn)n∈N, (yn)n∈N ⊂ B converge weakly to x, y ∈ B,
respectively. Then

ρ(x, y) ≤ lim inf
n→∞

ρ(xn, yn).

For a proof of this theorem we refer the reader to [19, Theorem 3.2].
In particular, (B, ρ) is a (uniquely) geodesic metric space (see [16, pages 68–70

and 102–103]). So a subset C ⊂ B is ρ-convex if the geodesic segment [x, y] ⊂ C
for all x, y ∈ C . For any x, y ∈ B and any t ∈ [0, 1], there exists a unique
element z ∈ B (see [16, Section 2.17, page 103]) such that ρ(x, z) = tρ(x, y) and
ρ(y, z) = (1− t)ρ(x, y). We denote this point z by (1− t)x⊕ ty and say that z is a
ρ-convex combination of x and y. Note that this definition is compatible with the
definition of convex combinations in general geodesic metric spaces. Given a ∈ B,
we have, for all x, y ∈ B,

(2.6) Ma

(
1

2
x⊕ 1

2
y

)
=

1

2
Ma(x)⊕

1

2
Ma(y).

Given two operators T1, T2 : B → B, we define their ρ-convex combination (1 −
t)T1 ⊕ tT2 by ((1− t)T1 ⊕ tT2)x := (1− t)T1x⊕ tT2x for all x ∈ B and t ∈ [0, 1]. We
denote this operator by C(T1, T2; (1− t), t).

For any x, y, a, b ∈ B and t ∈ [0, 1], the following inequality holds (see [16, Lemma
17.1, page 104]):

(2.7) ρ((1− t)a⊕ tx, (1− t)b⊕ ty) ≤ (1− t)ρ(a, b) + tρ(x, y).

Given a ρ-closed and ρ-convex subset D ⊂ B, we define the nearest point projection
PD : B → D by assigning z to x, where z ∈ D is the unique point in D satisfying
ρ(x, z) = infy∈D ρ(x, y) (see [16, Theorem 19.1, page 108]). The operator PD is
ρ-nonexpansive ( [16, Theorem 19.2, page 110]), that is,

ρ(PDx, PDy) ≤ ρ(x, y) for all x, y ∈ B.

If {PKi : 1 ≤ i ≤ m} are the nearest point projections of B onto ρ-closed and
ρ-convex subsets {Ki : 1 ≤ i ≤ m} with nonempty intersection, then

(2.8) Fix (PKmPKm−1 · · ·PK1) =

m∩
i=1

Ki.

Moreover, when m = 2, we have

(2.9) Fix (tPK1 ⊕ (1− t)PK2) = K1 ∩K2

for any t ∈ (0, 1). For a proof of (2.8) and (2.9) we refer the reader to [27, Lemma
3] and [5, Theorem 9.5], respectively.
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In [18], E. Kopecká and S. Reich inductively defined the ρ-convex combination of
more than two operators in the Hilbert ball, as presented below. Consider operators
T1, . . . , Tm : B → B and numbers a1, . . . , am ∈ (0, 1) such that

∑m
i=1 ai = 1. The

ρ-convex combination of T1, . . . , Tm is defined inductively by

C(T1, T2, . . . , Tm; a1, a2, . . . , am) := C(U, Tm; 1− am, am)

where U = C(T1, T2, . . . , Tm−1; c1, c2, . . . , cm−1) and ci = ai/(1− am) for 1 ≤ i ≤
m− 1. When Fix (T1) ∩ · · · ∩ Fix (Tm) ̸= ∅, it turns out that

(2.10) Fix (C(T1, . . . , Tm; a1, . . . , am)) =
m∩
i=1

Fix (Ti).

For a proof of this equality we refer the reader to [18, Lemma 3.5]

2.4. CAT(0) spaces. Consider a geodesic metric space (X, d). A triangle ∆(x, y, z)
is said to satisfy the CAT(0)-inequality if for all p, q ∈ ∆(x, y, z) and their compari-
son points p, q ∈ ∆(x, y, z), the inequality d(p, q) ≤ |p− q| holds. A geodesic metric
space (X, d) is said to be CAT(0) if all its geodesic triangles satisfy the CAT(0)-
inequality.

It is known that any two points in a CAT(0) space (X, d) are joined by a unique
geodesic segment (see [8, Proposition II.1.4]). In addition, for any w, x, y, z ∈ X
and any t ∈ [0, 1], the following inequality holds ( [8, Proposition II.2.2]):

(2.11) d((1− t)w ⊕ tx, (1− t)y ⊕ tz) ≤ (1− t)d(w, y) + td(x, z).

Consider points x, y, z ∈ X and their comparison points x, y, z ∈ M2
0 . We denote

by ∠(x, y, z) the Alexandrov angle between the geodesic segments [x, y] and [y, z]
(see [8, Section I.1]). We write ∠(x, y, z) to denote the comparison angle of ∠(x, y, z)
between the sides [x, y] and [y, z] in M2

0 .

Remark 2.3. (X, d) is a CAT(0) space if and only if the Alexandrov angle between
the sides of any geodesic triangle in X, with distinct vertices, is no greater than
the angle between the corresponding sides of its comparison triangle in M2

0 . For a
proof of this fact we refer the reader to [8, Proposition II.1.7].

When (X, d) is a complete CAT(0) space, for each closed and convex subset
C ⊂ X and each x ∈ X, there exists a unique point PCx ∈ C such that d(x, PCx) =
d(x,C) = infy∈C d(x, y). The operator PC is called the nearest point projection of
X onto C. This operator is nonexpansive. In addition, given x /∈ C and y ∈ C
such that y ̸= PC(x), we have ∠(x, PCx, y) ≥ π/2. For a proof of the existence
and properties of nearest point projections in complete CAT(0) spaces we refer the
reader to [8, Proposition II.2.4].

Remark 2.4. Since ∠(x, PCx, y) ≥ π/2, we also have ∠(x, PCx, y) ≥ π/2 (see Re-
mark 2.3).

Next, we delve into the study of some properties of nearest point projections in
complete CAT(0) spaces.

Lemma 2.5. Suppose (X, d) is a complete CAT(0) space and let C ⊂ X be a
closed and convex subset. If d(q, PC(x)) ≥ δ > 0 for some x ∈ X and q ∈ C, then

d(x, q) ≥
√
ℓ2 + δ2, where ℓ := d(x, PCx).
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Proof. Take x ∈ X and q ∈ C for which there exists δ > 0 such that d(q, PC(x)) ≥ δ.
According to Remark 2.4, we have ∠(x, PCx, q) ≥ π/2. Hence, using the cosine law
and the inequality d(q, PC(x)) ≥ δ, we get d2(q, x) ≥ ℓ2 + d2(q, PCx) ≥ ℓ2 + δ2.

Therefore d(q, x) ≥
√
ℓ2 + δ2. □

Corollary 2.6. For each L > 0 and each ε > 0, there exists η > 0 such that for
all complete CAT(0) spaces (X, d), for all closed and convex subsets C of X, for all
x ∈ X satisfying the inequality d(x,C) ≤ L and for all q ∈ C, we have

|d(x, PCx)− d(x, q)| < η ⇒ d(q, PCx) < ε.

Proof. Suppose that there are L > 0 and ε > 0 for which no such η > 0 exists.
Then, for each n ∈ N, there exist a complete CAT(0) space (Xn, dn), a closed and
convex subset Cn ⊂ Xn, xn ∈ Xn, and qn ∈ Cn such that

(2.12) lim
n→∞

|dn(xn, PCnxn)− dn(xn, qn)| = 0,

where dn(qn, PCnxn) ≥ ε > 0 and dn(xn, Cn) ≤ L for all n ∈ N. Hence by Lemma
2.5 we obtain

(2.13) d2n(xn, qn)− d2n(xn, PCnxn) ≥ ε2 for all n ∈ N.
Note that dn(xn, PCnxn) = dn(xn, Cn) ≤ dn(xn, qn) for all n ∈ N, since PCn is
the nearest point projection of Xn onto Cn and qn ∈ Cn. Hence dn(xn, qn) −
dn(xn, PCnxn) ≥ 0 for all n ∈ N. Since dn(xn, Cn) ≤ L for all n ∈ N and (2.12)
holds, we see that the sequence (dn(xn, qn))n∈N is bounded too. Combining this
fact with (2.12), we obtain

lim
n→∞

[d2n(xn, qn)− d2n(xn, PCnxn)] = 0,

but this contradicts (2.13). □
Theorem 2.7. Suppose (X, d) is a complete CAT(0) space and consider a sequence
(yk)k∈N ⊂ X and a point y∗ ∈ X such that limk→∞ d(yk, y∗) = 0. For a fixed z ∈ X,
consider the geodesic segments [z, y∗] and [z, yk], k ∈ N. If Pk and P∗ are the nearest
point projections of X onto [z, yk] and [z, y∗], respectively, then for each x ∈ X,

lim
k→∞

d(Pkx, P∗x) = 0.

Moreover, the sequence (Pk)k∈N converges to P∗ uniformly on bounded subsets of
X.

Proof. Take x ∈ X. Since Pkx ∈ [z, yk], there exists tk ∈ [0, 1] such that Pkx =
(1 − tk)z ⊕ tkyk for each k ∈ N. Moreover, since (tk)k∈N is a bounded sequence,
there exists t∗ ∈ [0, 1] such that limk→∞ tk = t∗, up to a subsequence. Now it is not
difficult to see that

lim
k→∞

Pkx = lim
k→∞

(1− tk)z ⊕ tkyk = (1− t∗)z ⊕ t∗y∗ = P∗x.

So far we have proved pointwise convergence. To prove uniform convergence on
bounded subsets, we argue as follows. Consider the triangle ∆(z, yk, y∗). For each
k ∈ N, denote by Qkx the nearest point projection of P∗x onto [z, yk]. So by (2.11),
for all k ∈ N we have

(2.14) d(Qkx, P∗x) ≤ d((1− t∗)z ⊕ t∗yk, (1− t∗)z ⊕ t∗y∗) ≤ d(yk, y∗).
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Given ε > 0 and L > 0, let η = η(ε, L) be determined by Corollary 2.6. Since
limk→∞ d(yk, y∗) = 0, there exists k0 ∈ N such that for all k ≥ k0,

(2.15) d(yk, y∗) <
ζ

2
,

where ζ = min{2ϵ, η}. Let ℓk := d(x, [z, yk]) and ℓ∗ := d(x, [z, y∗]). Since Qkx ∈
[z, yk], using the triangle inequality, (2.14) and (2.15), we see that for all k ≥ k0,
d(x,Qkx) ≤ d(x, P∗x) + d(P∗x,Qkx) < ℓ∗ + ζ/2. Hence

(2.16) 0 ≤ d(x,Qkx)− ℓk < ℓ∗ − ℓk +
ζ

2
for all k ≥ k0.

Note that ℓ∗ = d(x, (1 − t∗)z ⊕ t∗y∗) and ℓk = d(x, (1 − tk)z ⊕ tkyk) for some
t∗, tk ∈ [0, 1], k ∈ N. By the triangle inequality, (2.11) and (2.15), we obtain, for all
k ≥ k0,

(2.17) ℓk ≤ d(x, (1− t∗)z ⊕ t∗yk) ≤ ℓ∗ + d(y∗, yk) < ℓ∗ +
ζ

2

because Pkx = (1 − tk)z ⊕ tkyk is the nearest point projection of X onto [z, yk].
Similarly, from the triangle inequality, (2.11) and (2.15) we also get, for all k ≥ k0,

(2.18) ℓ∗ ≤ d(x, (1− tk)z ⊕ tky∗) ≤ ℓk + d(y∗, yk) < ℓk +
ζ

2
.

Combining (2.17) and (2.18), we see that for all k ≥ k0, |ℓ∗ − ℓk| < ζ/2. So
limk→∞ ℓk = ℓ∗, uniformly on X. Combining this fact with (2.16), we get for all
k ≥ k0,

(2.19) |d(x,Qkx)− d(x, Pkx)| = d(x,Qkx)− ℓk < ℓ∗ − ℓk +
ζ

2
< ζ ≤ η.

According to Corollary 2.6, where the convex subsets under consideration are the
geodesic segments [z, yk], it follows from (2.19) that

(2.20) d(Qkx, Pkx) < ϵ for all k ≥ k0,

uniformly on bounded subsets of X. So by the triangle inequality, (2.14), (2.15)
and (2.20), it is not difficult to see that for all k ≥ k0,

d(Pkx, P∗x) ≤ d(Pkx,Qkx) + d(Qkx, P∗x) < 2ε

uniformly on bounded subsets of X. Since ε is arbitrary, the last inequality shows
that Pk indeed converges to P∗, uniformly on bounded subsets of X, as asserted. □
Remark 2.8. Lemma 2.5, Corollary 2.6 and Theorem 2.7 are all due to M. R.
Bridson [7].

If (X, d) is a CAT(0) space, an operator T : X → X is said to be firmly non-
expansive if d(Tx, Ty) ≤ d((1 − t)x ⊕ tTx, (1 − t)y ⊕ tTy) for all x, y ∈ X and
t ∈ [0, 1]. For example, the nearest point projection operator is firmly nonexpan-
sive (see [1, Proposition 3.1]). It is clear that every firmly nonexpansive operator
is nonexpansive. If Fix (T ) ̸= ∅ and T is nonexpansive, we say that T is strongly
nonexpansive if for any d-bounded sequence (xn)n∈N ⊂ X and any z ∈ Fix (T )
such that limn→∞[d(xn, z)− d(Txn, z)] = 0, it follows that limn→∞ d(xn, Txn) = 0.
These definitions extend those introduced in the Hilbert ball setting (see [27]).
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It is not difficult to see that in a CAT(0) space X, every firmly nonexpansive
operator with fixed points is also strongly nonexpansive. To show this, we can pro-
ceed as in [27, Lemma 1]. Moreover, if {Ti : 1 ≤ i ≤ m} are strongly nonexpansive
operators and Fix (T1) ∩ · · · ∩ Fix (Tm) ̸= ∅, then

(2.21) Fix (TmTm−1 · · ·T1) =
m∩
i=1

Fix (Ti).

To prove this fact, we may proceed as in [27, Lemmata 3 and 4].
To finish this subsection, we recall the concept of weak convergence for CAT(0)

spaces, which was introduced by J. Jost (see [3] and references therein). Consider a
complete CAT(0) space X. A point x∗ ∈ X is the asymptotic center of a bounded
sequence (xn)n∈N in X if

lim sup
n→∞

d(xn, x
∗) = inf

x∈X
lim sup
n→∞

d(xn, x).

For a complete CAT(0) space X, a sequence (xn)n∈N ⊂ X is said to converge weakly
to a point x ∈ X if x is the asymptotic center of each subsequence of (xn)n∈N. In
Hilbert spaces, this definition of weak convergence coincides with the classical weak
convergence in those spaces.

Proposition 2.9. Suppose X is a CAT(0) space and let (xn)n∈N ⊂ X be a
bounded sequence. Then (xn)n∈N weakly converges to x ∈ X if and only if
limn→∞ d(x, Pγ(xn)) = 0 for any geodesic segment γ through x, that is, for any
geodesic segment γ such that x ∈ γ.

For a proof of this result we refer the reader to [14, Proposition 5.2].

Proposition 2.10. Suppose (X, d) is a complete CAT(0) space. Let (xn)n∈N and
(yn)n∈N be bounded sequences of X converging weakly to x and y, respectively. Then
d(x, y) ≤ lim infn→∞ d(xn, yn).

Proof. We know that limn→∞ d(x, Pγxxn) = limn→∞ d(y, Pγyyn) = 0 for all geodesic
segments γx through x and all geodesic segments γy through y (see Proposition 2.9).
Since there exists a (unique) geodesic segment γ joining x and y, using the triangle
inequality, we obtain

d(x, y) ≤ d(x, Pγxn) + d(Pγxn, Pγyn) + d(Pγyn, y).

From the last inequality and the nonexpansivity of Pγ it follows that

d(x, y) ≤ lim inf
n→∞

d(xn, yn).

This concludes the proof. □
Remark 2.11. A complete CAT(0) space is called an Hadamard space [2, page 6].

3. Exact and inexact orbits

In this section we recall several results connecting convergence properties of exact
and inexact orbits of nonexpansive operators with summable errors in metric spaces.
We also focus on the particular cases of Banach spaces, the Hilbert ball and CAT(0)
spaces with the corresponding concepts of weak convergence defined in them.

Consider a metric space (E, d) and an operator T : E → E.



INFINITE PRODUCTS OF DISCONTINUOUS OPERATORS 177

(1) Any sequence (yn)n∈N defined by y1 := x and yn+1 := Tnx = Tyn for all
n ∈ N is called an exact orbit of T with initial point x ∈ E.

(2) A sequence (xn)n∈N ⊂ E such that
∑

n∈N d(xn+1, Txn) < ∞ is said to be
an inexact orbit of T with summable errors.

For information regarding this topic, see, for example, [23] and [24], and references
therein. Boundedness properties of exact and inexact orbits of a nonexpansive
operator are related, as we see in the following result.

Proposition 3.1. Suppose (E, d) is a metric space and let T : E → E be nonex-
pansive. If all exact orbits of T with summable errors are bounded sequences, then
all inexact orbits of T with summable errors are bounded too. The converse is also
true.

Proof. Let (xn)n∈N be an inexact orbit of T with summable errors. So, by definition,
there is M > 0 such that

∑∞
n=1 d(xn+1, Txn) ≤ M . Take x ∈ E and consider

the corresponding exact orbit. Denote it by (yn)n∈N, where y1 = x. For each
n ∈ N, we then have d(yn+1, xn+1) ≤

∑n
j=1 d(xj+1, Txj) + d(x, x1). Therefore

d(xn, yn) ≤M + d(x, x1) for all n ∈ N. This shows that if (yn)n∈N is bounded, then
(xn)n∈N is also bounded, and vice versa. □

For a proof of the following result we refer the reader to [11, Theorem 4.2]. We
continue to denote by Fix (T ) the set of all fixed points of an operator T .

Theorem 3.2. Suppose (E, d) is a complete metric space. Let T : E → E be a
nonexpansive operator with Fix (T ) ̸= ∅. Then the following two statements are
equivalent:

(i) All exact orbits of T converge in (E, d);
(ii) All inexact orbits of T with summable errors converge in (E, d) to fixed

points of T .

Note that convergent exact orbits of a nonexpansive operator converge to fixed
points of this operator. For Banach spaces, a result analogous to Theorem 3.2,
involving weak convergence, also holds. For a proof see [11, Theorem 4.1] and [12,
Note added in proof]).

Theorem 3.3. Suppose E is a Banach space. Let S ⊂ E be a weakly closed subset
and consider a nonexpansive operator T : S → S (with Fix (T ) ̸= ∅). Then the
following two statements are equivalent:

(i) All exact orbits of T converge weakly (to fixed points of T );
(ii) All inexact orbits of T with summable errors converge weakly (to fixed points

of T ).

When we consider the Hilbert ball (B, ρ), a version of Theorem 3.3 holds with
respect to the weak convergence inherited from the ambient Hilbert space. We first
mention the following fact.

Remark 3.4. Let T : B → B be a ρ-nonexpansive operator. If an exact orbit of T
weakly converges to a point in B, then this point is a fixed point of T .
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To prove this fact, let y ∈ B and suppose that the sequence (yi)i∈N = (T iy)i∈N
converges weakly to y∗ ∈ B. We know that T has a fixed point by [16, Corollary
25.3, page 126]. Since T is ρ-nonexpansive, the exact orbit (yi)i∈N is ρ-bounded. So,
we know (see [16, Proposition 21.4, page 117]) that y∗ is the unique point satisfying

lim sup
i→∞

ρ(yi, y
∗) = min

y∈B
lim sup
i→∞

ρ(yi, y).

Now we note that, by the ρ-nonexpansivity of T ,

lim sup
i→∞

ρ(yi, T y
∗) = lim sup

i→∞
ρ(Tyi−1, T y

∗) ≤ min
y∈B

lim sup
i→∞

ρ(yi, y),

which proves that Ty∗ = y∗.

Theorem 3.5. Let T : B → B be a ρ-nonexpansive operator. The following two
statements are equivalent:

(i) All exact orbits of T converge weakly to points in B;
(ii) All inexact orbits of T with summable errors converge weakly to fixed points

of T .

Proof. It is clear that (ii)⇒(i) because all exact orbits are inexact orbits of T with
summable errors.

(i)⇒(ii): We follow the ideas which were used to prove [11, Theorem 4.1]. Assume
that all exact orbits of T converge weakly to points in B. Let (xk)k∈N ⊂ B be an
inexact orbit of T with summable errors and take a sequence (rk)k∈N of real numbers
such that

∑
k∈N rk < ∞ and ρ(xk+1, Txk) ≤ rk for each k ∈ N. Fix k ∈ N. By

induction over i, we can see that

(3.1) ρ(T ixk, xk+i) ≤
i+k−1∑
j=k

rj for each i ∈ N.

By hypothesis, we know that all exact orbits of T converge weakly to points in B.
Hence there exists yk ∈ B such that

(3.2) lim
i→∞

T ixk = yk weakly.

Let q ∈ N be fixed. By (3.1) and since T is ρ-nonexpansive, we obtain

(3.3) ρ(T q+ixk, T
ixk+q) ≤ ρ(T qxk, xk+q) ≤

∞∑
j=k

rj for each i ∈ N.

By Proposition 2.2, (3.2) and (3.3), we see that

(3.4) ρ(yk, yq+k) ≤ lim inf
i→∞

ρ(T q+ixk, T
ixk+q) ≤

∞∑
j=k

rj

for all k, q ∈ N. Since
∑

j∈N rj < ∞, using (3.4), we conclude that (yk)k∈N is a
Cauchy sequence, so there exists y∗ ∈ B such that

(3.5) lim
k→∞

ρ(yk, y
∗) = 0.
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So, when q → ∞, it follows from (3.4) that ρ(yk, y
∗) ≤

∑∞
j=k rj for each k ∈ N.

Take ψ ∈ H such that |ψ| ≤ 1. Then by the triangle inequality,

(3.6) |⟨ψ, y∗ − xk+i⟩| ≤ |y∗ − yk|+ |⟨ψ, yk − T ixk⟩|+ |T ixk − xk+i|

for all i, k ∈ N. By inequality (2.5) and since the hyperbolic tangent function is
increasing, we have for all i, k ∈ N,

(3.7)

{
|y∗ − yk| ≤ 2 tanh(ρ(y∗, yk))

and |T ixk − xk+i| ≤ 2 tanh(ρ(T ixk, xk+i)).

Combining (3.1), (3.6) and (3.7), we see that for all i, k ∈ N,

|⟨ψ, y∗ − xk+i⟩| ≤ 2 tanh(ρ(y∗, yk)) + |⟨ψ, yk − T ixk⟩|

+2 tanh

 ∞∑
j=k

rj

 .(3.8)

Fix a positive number ε. By (3.2), we see that for each k ∈ N, there exists i0 ∈ N
such that for all i ≥ i0,

(3.9) |⟨ψ, yk − T ixk⟩| <
ε

3
.

In addition, since
∑

k∈N rk < ∞ and (3.5) holds, there exists k0 ∈ N such that for
all k ≥ k0,

(3.10) tanh

 ∞∑
j=k

rj

 <
ε

6
and tanh(ρ(y∗, yk)) <

ε

6
.

Thus by (3.8), (3.9) and (3.10), there exist k0 ∈ N and a corresponding i0 ∈ N such
that for all i ≥ i0, the inequality |⟨ψ, y∗ − xk0+i⟩| < ε holds. Since ψ is arbitrary,
we conclude that limk→∞ xk = y∗ weakly.

To conclude, we note that y∗ ∈ Fix (T ). Indeed, by Remark 3.4 each yk belongs
to Fix (T ). Since Fix (T ) is ρ-closed by [16, Theorem 23.2, page 120], (3.5) implies
that y∗ also belongs to Fix (T ). □

Theorem 3.5 can be extended to more general complete CAT(0) spaces and the
weak convergence defined in them.

Theorem 3.6. Let (X, d) be a complete CAT(0) space and consider a nonexpansive
operator T : X → X. Then the following two statements are equivalent:

(i) All exact orbits of T converge weakly;
(ii) All inexact orbits of T with summable errors converge weakly to fixed points

of T .

Proof. The implication (ii)⇒(i) is obvious. In order to prove (i)⇒(ii), suppose
that all exact orbits of T converge weakly. Let (xk)k∈N be an inexact orbit of
T with summable errors. By Proposition 3.1 and since all exact orbits of T are
weakly convergent (in particular, bounded), (xk)k∈N is bounded. Moreover, there
is a sequence (rk)k∈N of real numbers such that d(Txk, xk+1) ≤ rk for each k ∈ N,
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where
∑

k∈N rk <∞. Fix a positive integer k. By hypothesis, there is yk ∈ X such

that limi→∞ T ixk = yk weakly; or equivalently, by Proposition 2.9,

(3.11) lim
i→∞

d(yk, Pγk(T
ixk)) = 0 for all geodesics γk through yk.

For each i ∈ N, we have d(T ixk, xk+i) ≤
∑i+k−1

j=k rj (compare with (3.1)). Hence,

for each fixed q ∈ N, we have d(T qxk, xk+q) ≤
∑∞

j=k rj . This implies that

(3.12) d(T q+ixk, T
ixk+q) ≤ d(T qxk, xk+q) ≤

∞∑
j=k

rj for all i ∈ N

because T is nonexpansive. By Proposition 2.10 and (3.12), the following inequali-
ties hold:

(3.13) d(yk, yk+q) ≤ lim inf
i→∞

d(T q+ixk, T
ixk+q) ≤

∞∑
j=k

rj .

Since
∑

j∈N rj <∞ and since inequality (3.13) holds for each pair of positive integers

(q, k), it follows that (yk)k∈N is a Cauchy sequence. So there exists a point y∗ ∈ X
such that

(3.14) lim
k→∞

d(yk, y∗) = 0.

To conclude, we need to prove that (xk)k∈N weakly converges to y∗. Let γ∗ be a
geodesic segment through y∗. Fix i, k ∈ N. For all geodesic segments γk through
yk, by the triangle inequality and since Pγk is nonexpansive, we have

d(y∗, Pγ∗(xk+i)) ≤ d(y∗, yk) + d(yk, Pγk(T
ixk))

+d(T ixk, xk+i) + d(Pγk(xk+i), Pγ∗(xk+i)).(3.15)

Let ε > 0 be fixed. By (3.14), there exists k0 ∈ N such that for each k ≥ k0,

(3.16) d(y∗, yk) <
ε

4
.

By (3.11), there exists i0 ∈ N such that for each i ≥ i0,

(3.17) d(yk, Pγk(T
ixk)) <

ε

4
.

On the other hand, by (3.12) we know that

(3.18) d(T ixk, xk+i) ≤
∞∑
j=k

rj .

Fix z ∈ γ∗. For each k ∈ N, let γk be the unique geodesic segment joining yk and z.
Since (3.14) holds, Theorem 2.7 implies that Pγk converges to Pγ∗ , uniformly over
(xk)k∈N, which is a bounded subset of X. Therefore, for all k ≥ k0,

(3.19) d(Pγk(xk+i), Pγ∗(xk+i)) <
ε

4
for all i ∈ N.

Hence by (3.15), (3.16), (3.17), (3.18) and (3.19), there exist k0 ∈ N and a corre-
sponding i0 ∈ N such that for all i ≥ i0,

d(y∗, Pγ∗(xk0+i)) < ε.
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Since ϵ is arbitrary, this implies that limk→∞ d(y∗, Pγ∗(xk)) = 0 for all geodesic
segments γ∗ through y∗, that is, (xk)k∈N converges weakly to y∗ (see Proposition
2.9), as required. To conclude, note that by definition each yk is the asymptotic
center of the sequence (T ixk)i∈N. From the nonexpansivity of T , it follows that Tyk
is also the asymptotic center of this sequence, and consequently, yk = Tyk for each
k ∈ N. Now (3.14) implies that y∗ ∈ Fix (T ). □

4. Banach spaces

In this section we use known results regarding the convergence of exact orbits of
certain operators defined on Banach spaces to prove the convergence, either strong
or weak, of some infinite products associated with these operators.

4.1. The linear case. Suppose E is a uniformly convex Banach space and {PSk
:

1 ≤ k ≤ m} are norm-one projections of E onto subspaces {Sk : 1 ≤ k ≤ m}. It is
known that the strong

(4.1) lim
n→∞

(PSmPSm−1 · · ·PS1)
nx = Px

exists for all x ∈ E. In addition, if a1, a2, . . . , am ∈ (0, 1) are numbers such that
a1 + a2 + · · ·+ am = 1, then the strong

(4.2) lim
n→∞

(
m∑
k=1

akPSk

)n

x = Qx

also exists for all x ∈ E. Both P and Q define norm-one projections of E onto
S1 ∩S2 ∩ · · · ∩Sm. For proofs of (4.1) and (4.2) we refer the reader to [10, Theorem
2.1] and [26, Theorem 1.7], respectively.

When these norm-one projections are approximated by certain possibly nonlinear,
even discontinuous operators, their infinite products converge, as we state and prove
below.

Theorem 4.1. Suppose E is a uniformly convex Banach space and let {PSk
: 1 ≤

k ≤ m} be norm-one projections of E onto subspaces {Sk : 1 ≤ k ≤ m}. Let the

given, possibly nonlinear operators A
(k)
n : E → E, k = 1, 2, . . . ,m; n ∈ N, satisfy

for all x ∈ E the inequalities

(4.3) ∥A(k)
n x− PSk

x∥ ≤ γn∥x∥
for some positive numbers γn with

∑
n∈N γn < ∞. Then, for each x ∈ E, there

exists a point x = x(x) ∈ S1 ∩ S2 ∩ · · · ∩ Sm such that

lim
n→∞

∥∥∥∥∥∥
 n∏

j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x− x

∥∥∥∥∥∥ = 0.

Proof. Given x ∈ E, consider the sequence (xn)n∈N defined as follows:

x1 = x and xn+1 = A(m)
n A(m−1)

n · · ·A(1)
n xn for all n ∈ N.

Using (4.3) and the fact that each operator PSk
is linear and a norm-one projection,

we can proceed as in [22, Theorem 2.2] and prove that (xn)n∈N is an inexact orbit
of PSm · · ·PS1 with summable errors. Since all exact orbits of PSm · · ·PS1 converge
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to points in S1 ∩ · · · ∩ Sm (see (4.1)), it follows from Theorem 3.2 and (2.1) that
there exists a point x = x(x) ∈ S1 ∩ S2 ∩ · · · ∩ Sm such that limn→∞ ∥xn − x∥ = 0.
This concludes the proof. □

We say that Theorem 4.1 is a “linear case” since in (4.3) we use the operators

(A
(k)
n )n∈N to approximate the linear norm-one projections PSk

.
We now provide an analog of Theorem 4.1, where the products of convex combi-

nations of these possibly nonlinear operators are considered.

Theorem 4.2. Suppose E is a uniformly convex Banach space and let {PSk
: 1 ≤

k ≤ m} be norm-one projections of E onto subspaces {Sk : 1 ≤ k ≤ m}. Let the

given, possibly nonlinear operators A
(k)
n : E → E, k = 1, 2, . . . ,m; n ∈ N, satisfy

for all x ∈ E the inequalities

(4.4) ∥A(k)
n x− PSk

x∥ ≤ γn∥x∥

for some positive numbers γn with
∑

n∈N γn < ∞. Then, for each x ∈ E, there
exists a point x = x(x) ∈ S1 ∩ S2 ∩ · · · ∩ Sm such that

lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m∑
k=1

akA
(k)
j

)
x− x

∥∥∥∥∥∥ = 0,

where ak ∈ (0, 1) for each k = 1, . . . ,m and a1 + a2 + · · ·+ am = 1.

Proof. For x ∈ E, we inductively define the sequence (xn)n∈N by x1 = x and

xn+1 =
∑m

k=1 akA
(k)
n xn for all n ∈ N. By the triangle inequality, (4.4) and by using

the fact that PSk
is a norm-one projection for each k = 1, . . . ,m, we obtain∥∥∥∥∥

m∑
k=1

akA
(k)
n x

∥∥∥∥∥ ≤
m∑
k=1

ak(∥A(k)
n x− PSk

x∥+ ∥PSk
x∥) ≤ (1 + γn)∥x∥.

This implies that

(4.5) ∥xn∥ =

∥∥∥∥∥∥
n−1∏
j=1

(
m∑
k=1

akA
(k)
j

)
x

∥∥∥∥∥∥ ≤
n−1∏
j=1

(1 + γj)∥x∥

for any n ≥ 2. Since
∑

n∈N γn < ∞, we know that
∏

n∈N(1 + γj) < ∞ (see, for
example, [13, Proposition VII.5.4]). Combining this fact with (4.5), we see that
there exists a number M > 0 such that

(4.6) ∥xn∥ ≤M∥x∥ for all n ∈ N.

Let T =

m∑
k=1

akPSk
. By the triangle inequality, (4.4) and (4.6), we obtain

∥xn+1 − Txn∥ ≤
m∑
k=1

ak∥A(k)
n xn − PSk

xn∥ ≤ γn∥xn∥ ≤ γnM∥x∥,

which proves that the sequence (xn)n∈N is an inexact orbit of T with summable
errors. By (4.2), we know that all exact orbits of T converge. By Theorem 3.2, this
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implies that all inexact orbits of T with summable errors converge to fixed points
of T . Thus there exists a point x ∈ Fix (T ) such that

0 = lim
n→∞

∥xn − x∥ = lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m∑
k=1

akA
(k)
j

)
x− x

∥∥∥∥∥∥ .
Using (2.2), we conclude that x ∈ S1 ∩ · · · ∩ Sm = Fix (T ). □

We see that in the proofs of both Theorem 4.1 and Theorem 4.2, neither continuity

nor linearity of the operators A
(k)
n are needed.

We finish this subsection with a case where the uniform convexity of the Ba-
nach space E is replaced with another assumption. Suppose {PSk

: 1 ≤ k ≤ m}
are norm-one projections of E onto subspaces {Sk : 1 ≤ k ≤ m}. Consider
the convex multiplicative semigroup generated by PS1 , . . . , PSm and denote it by
S = S(PS1 , . . . , PSm). In other words, S is the convex hull of the semigroup consist-
ing of all products with factors from {PS1 , . . . , PSm}.

If E is a uniformly smooth complex Banach space, then for every operator T ∈
S(PS1 , . . . , PSm), the strong

(4.7) lim
n→∞

Tnx = Px

exists for all x ∈ E and defines a norm-one projection P of E onto Fix (T ) (see [4,
Main Theorem]). Hence, if there exist a sequence (xn)n∈N ⊂ E and a convergent
series of positive numbers

∑
n∈N γn satisfying the inequalities

(4.8) ∥xn+1 − Txn∥ ≤ γn for all n ∈ N,
then there exists a point x ∈ Fix (T ) such that

(4.9) lim
n→∞

∥xn − x∥ = 0.

This is true because by (4.8), we see that (xn)n∈N is an inexact orbit of T with
summable errors. Since all the exact orbits of T converge by (4.7), we conclude by
Theorem 3.2 that there is a point x ∈ Fix (T ) satisfying (4.9).

Below we consider a particular element of S(PS1 , . . . , PSm), but the proof can be
used as a blueprint for proving analogous results for any operator in S(PS1 , . . . , PSm).

Theorem 4.3. Suppose E is a uniformly smooth complex Banach space and let
{PSk

: 1 ≤ k ≤ m} be norm-one projections of E onto subspaces {Sk : 1 ≤ k ≤ m}.
Let the given, possibly nonlinear operators A

(k)
n : E → E, k = 1, 2, . . . ,m; n ∈ N,

satisfy for all x ∈ E the inequalities

(4.10) ∥A(k)
n x− PSk

x∥ ≤ γn∥x∥
for some positive numbers γn with

∑
n∈N γn < ∞. Then, for each x ∈ E, there

exists a point x = x(x) ∈ Fix (
∑m−1

k=1 akPSk+1
PSk

) such that

lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m−1∑
k=1

akA
(k+1)
j A

(k)
j

)
x− x

∥∥∥∥∥∥ = 0,

where ak ∈ (0, 1) for all k = 1, . . . ,m− 1 and a1 + a2 + · · ·+ am−1 = 1.
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Proof. Take x ∈ E and consider the sequence (xn)n∈N defined by

x1 = x and xn+1 =

(
m−1∑
k=1

akA
(k+1)
n A(k)

n

)
xn for all n ∈ N.

Using the fact that PSk
is a norm-one projection, the triangle inequality and (4.10),

we get

(4.11) ∥A(k)
n x∥ ≤ ∥A(k)

n x− PSk
x∥+ ∥PSk

x∥ ≤ (1 + γn)∥x∥,
which implies that

(4.12) ∥A(k+1)
n A(k)

n x∥ ≤ (1 + γn)∥A(k)
n x∥ ≤ (1 + γn)

2∥x∥.
Since a1 + · · ·+ am = 1, using the triangle inequality and (4.12), we obtain

(4.13)

∥∥∥∥∥
m−1∑
k=1

akA
(k+1)
n A(k)

n x

∥∥∥∥∥ ≤ (1 + γn)
2∥x∥.

Using (4.13), we arrive at the following inequality:

(4.14) ∥xn∥ ≤

n−1∏
j=1

(1 + γj)
2

 ∥x∥.

When we use the triangle inequality, (4.10), (4.11) and the fact that PSk
is nonex-

pansive, we get

∥A(k)
n A(k−1)

n xn − PSk
PSk−1

xn∥

≤ ∥A(k)
n A(k−1)

n xn − PSk
A(k−1)

n xn∥+ ∥PSk
A(k−1)

n xn − PSk
PSk−1

xn∥
≤ γn(1 + γn)∥xn∥+ γn∥xn∥.(4.15)

Let T =
∑m−1

k=1 akPSk+1
PSk

∈ S(PS1 , . . . , PSm). By the triangle inequality, (4.14)
and (4.15), we get

∥xn+1 − Txn∥ ≤
m−1∑
k=1

ak

∥∥∥A(k+1)
n A(k)

n xn − PSk+1
PSk

xn

∥∥∥
≤ γn(1 + γn)

n−1∏
j=1

(1 + γj)
2∥x∥+ γn

n−1∏
j=1

(1 + γj)
2∥x∥.(4.16)

Note that
∑

n∈N γn < ∞ implies that
∏

n∈N(1 + γj) < ∞. Using this fact along
with (4.16), we see that there exists a number M > 0 such that

∥xn+1 − Txn∥ ≤ γnM∥x∥.
Thus the sequence (xn)n∈N satisfies (4.8) and consequently, there is a point x ∈
Fix (T ) such that

0 = ∥xn − x∥ = lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m−1∑
k=1

akA
(k+1)
j A

(k)
j

)
x− x

∥∥∥∥∥∥ .
□



INFINITE PRODUCTS OF DISCONTINUOUS OPERATORS 185

4.2. The nonlinear case. Now suppose E is a smooth and uniformly convex Ba-
nach space. If {RFk

: 1 ≤ k ≤ m} are sunny nonexpansive retractions of a sym-
metric, closed and convex subset C ⊂ E onto symmetric, closed and convex subsets
{Fk ⊂ C : 1 ≤ k ≤ m}, then the strong

(4.17) lim
n→∞

(RFmRFm−1 · · ·RF1)
nx = Rx

exists for all x ∈ C (see [10, Theorem 2.2]). Moreover, when a1, a2, . . . , am ∈ (0, 1)
are numbers such that a1 + a2 + · · ·+ am = 1, then the strong

(4.18) lim
n→∞

(
m∑
k=1

akRFk

)n

x = Qx

also exists for all x ∈ C (see [26, Theorem 2.3]). In (4.17) and (4.18), R and Q are
nonexpansive retractions of C onto F1 ∩ F2 ∩ · · · ∩ Fm.

Below we replace norm-one projections by nonexpansive retractions to obtain a
nonlinear analogue of Theorem 4.1.

Theorem 4.4. Suppose E is a smooth and uniformly convex Banach space. Let
C be a symmetric, closed and convex subset of E, and let {RFk

: 1 ≤ k ≤ m}
be sunny nonexpansive retractions of C onto symmetric, closed and convex subsets

{Fk ⊂ C : 1 ≤ k ≤ m}. Let the given, possibly nonlinear operators A
(k)
n : C → C,

k = 1, 2, . . . ,m; n ∈ N, satisfy for all x ∈ C the inequalities

(4.19) ∥A(k)
n x−RFk

x∥ ≤ γn∥x∥

for some positive numbers γn with
∑

n∈N γn < ∞. Then, for each x ∈ C, there
exists a point x = x(x) ∈ F1 ∩ F2 ∩ · · · ∩ Fm such that

lim
n→∞

∥∥∥∥∥∥
 n∏

j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x− x

∥∥∥∥∥∥ = 0.

Proof. For x ∈ C, consider the sequence (xn)n∈N, where

x1 = x and xn+1 = A(m)
n A(m−1)

n · · ·A(1)
n xn for all n ∈ N.

By Remark 2.1, for each k = 1, . . . ,m and x ∈ C, we have

(4.20) ∥RFk
x∥ ≤ ∥x∥.

By the triangle inequality, (4.19) and (4.20), for all n ∈ N and k = 1, . . . ,m, we
obtain

(4.21) ∥A(k)
n A(k−1)

n · · ·A(1)
n x∥ ≤ (1 + γn)

k∥x∥ for all n ∈ N.

Since
∑

j∈N γj <∞, we know that
∏

j∈N(1+ γj) <∞. When combined with (4.21)
for k = m, this fact gives us a number M > 0 such that for all n ≥ 2,

(4.22) ∥xn∥ ≤

n−1∏
j=1

(1 + γj)
m

 ∥x∥ ≤M∥x∥.
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For k = 1, . . . ,m and n ∈ N, consider the operator α
(k)
n (x) := A

(k)
n x−RFk

x defined
on C. By (4.19), this operator satisfies the following inequality:

(4.23) ∥α(k)
n (x)∥ ≤ γn∥x∥.

Let n ∈ N be fixed. We consider x
(1)
n+1 := A

(1)
n xn and x

(k+1)
n+1 := A

(k+1)
n x

(k)
n+1 =

α
(k+1)
n (x

(k)
n+1) +RFk+1

x
(k)
n+1 for all k = 1, . . . ,m− 1. In particular, we see that

(4.24) x
(m)
n+1 = A(m)

n A(m−1)
n · · ·A(1)

n xn = xn+1.

From the triangle inequality, (4.20) and (4.23), it follows that

(4.25) ∥x(k)n+1∥ ≤ (1 + γn)
k∥xn∥

for each k = 1, . . . ,m. So, for each k = 2, . . . ,m, we obtain

(4.26) ∥RFk
x
(k−1)
n+1 −RFk

RFk−1
· · ·RF1xn∥ ≤

k−1∑
j=2

∥α(j)
n (x

(j−1)
n+1 )∥+ ∥α(1)

n (xn)∥.

Let T = RFmRFm−1 · · ·RF1 . By the triangle inequality, (4.23), (4.24), (4.25) and
(4.26), we get

∥xn+1 − Txn∥ ≤ ∥α(m)
n (x

(m−1)
n+1 )∥+ ∥RFmx

(m−1)
n+1 −RFmRFm−1 · · ·RF1xn∥

≤ γn[(1 + γn)
m−1 + (1 + γn)

m−2 + · · ·+ (1 + γn) + 1]∥xn∥.

Without loss of generality, we may assume that γn ≤ 1 for each n ∈ N, so by the
above estimate we have

∥xn+1 − Txn∥ ≤ γn[2
m−1 + 2m−2 + · · ·+ 2 + 1]∥xn∥ ≤ 2mγn∥xn∥.

By (4.22), it is clear that there is a number M > 0 such that

∥xn+1 − Txn∥ ≤ 2mγnM∥x∥ for all n ∈ N.

This shows that (xn)n∈N is an inexact orbit of T with summable errors. By (4.17),
all exact orbits of T converge; therefore by Theorem 3.2, there is a point x ∈ Fix (T )
such that

0 = lim
n→∞

∥xn − x∥ =

∥∥∥∥∥∥
 n∏

j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x− x

∥∥∥∥∥∥ .
By (2.3), we know that x ∈ F1 ∩ · · · ∩ Fm. This concludes the proof. □

Note that no expression of the type ∥A(k)
n x−A

(k)
n y∥ was involved in the proof of

Theorem 4.4. So even if an operator A
(k)
n is discontinuous at some point of C, our

result remains true. Similarly, we can prove convergence of the products of convex

combinations of these operators A
(k)
n .

Theorem 4.5. Suppose E is a smooth and uniformly convex Banach space. Let
C be a symmetric, closed and convex subset of E, and let {RFk

: 1 ≤ k ≤ m}
be sunny nonexpansive retractions of C onto symmetric, closed and convex subsets
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{Fk ⊂ C : 1 ≤ k ≤ m}. Let the given, possibly nonlinear operators A
(k)
n : C → C,

k = 1, 2, . . . ,m; n ∈ N, satisfy for all x ∈ C the inequalities

(4.27) ∥A(k)
n x−RFk

x∥ ≤ γn∥x∥

for some positive numbers γn with
∑

n∈N γn < ∞. Then, for each x ∈ C, there
exists a point x = x(x) ∈ F1 ∩ F2 ∩ · · · ∩ Fm such that

lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m∑
k=1

akA
(k)
j

)
x− x

∥∥∥∥∥∥ = 0,

where ak ∈ (0, 1) for each k = 1, . . . ,m and a1 + a2 + · · ·+ am = 1.

Proof. Given x ∈ C, consider the sequence (xn)n∈N defined by x1 = x and xn+1 =(∑m
k=1 akA

(k)
n

)
xn for all n ∈ N. Using (4.27), it is not difficult to prove that

(xn)n∈N is an inexact orbit of T =
∑m

k=1 akRFk
with summable errors. By (4.18),

we know that all exact orbits of T converge. Therefore, by Theorem 3.2, there exists
a point x ∈ Fix (T ) such that

0 = lim
n→∞

∥xn − x∥ = lim
n→∞

∥∥∥∥∥∥
n∏

j=1

(
m∑
k=1

akA
(k)
j

)
x− x

∥∥∥∥∥∥ .
The assertion that x ∈ F1 ∩ F2 ∩ · · · ∩ Fm follows from (2.4). □

Note that also in this case no assumption concerning the continuity of the oper-

ators A
(k)
n is needed.

4.3. Weak convergence. If we dispense with symmetry of the subsets F1, . . . , Fm

and C, at least weak convergence in (4.17) and (4.18) can be obtained. To this end,
suppose that both E and E∗ are uniformly convex Banach spaces. Recall that E∗

is uniformly convex if and only if the norm of E is uniformly Fréchet differentiable;
see, for instance, [15, Theorem 9.9]. Let C be a closed and convex subset of E, and
let {RFk

: 1 ≤ k ≤ m} be sunny nonexpansive retractions of C onto closed and
convex subsets {Fk ⊂ C : 1 ≤ k ≤ m}. Assume that F1 ∩ F2 ∩ · · · ∩ Fm ̸= ∅. Then
the weak

(4.28) lim
n→∞

(RFmRFm−1 · · ·RF1)
nx = Rx

exists for all x ∈ C and defines a nonexpansive retraction R of C onto F1∩F2∩· · ·∩
Fm. Moreover, if a1, a2, . . . , am ∈ (0, 1) are numbers such that a1+a2+· · ·+am = 1,
then the weak

(4.29) lim
n→∞

(
m∑
k=1

akRFk

)n

x = Qx

exists for each x ∈ C and defines a nonexpansive retraction Q of C onto F1 ∩ F2 ∩
· · · ∩ Fm. For a proof of (4.28) and (4.29) we refer the reader to [26, Proposition
2.4] and [20, Theorem 4.8], respectively.
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Theorem 4.6. Suppose E and E∗ are uniformly convex Banach spaces. Let C be
a closed and convex subset of E, and let {RFk

: 1 ≤ k ≤ m} be sunny nonexpansive
retractions of C onto closed subsets {Fk ⊂ C : 1 ≤ k ≤ m} such that F1∩F2∩· · ·∩
Fm ̸= ∅. Let the given, possibly nonlinear operators A

(k)
n : C → C, k = 1, 2, . . . ,m;

n ∈ N, satisfy for all x ∈ C the inequalities

(4.30) ∥A(k)
n x−RFk

x∥ ≤ γn∥x∥

for some positive numbers γn with
∑

n∈N γn < ∞. Then for each x ∈ C, there is a
point x = x(x) ∈ F1 ∩ F2 ∩ · · · ∩ Fm such that

lim
n→∞

 n∏
j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x = x weakly.

Proof. Fix z ∈ F1 ∩ F2 ∩ · · · ∩ Fm = Fix (RFm · · ·RF1). For each k = 1, . . . ,m and

n ∈ N, define the subsets F̃k := Fk − z ⊂ C̃ := C − z. Consider also the operators

Ã
(k)
n w := A

(k)
n x − z and R

F̃k
w := RFk

x − z, where w ∈ C̃ and x ∈ C are such

that w = x − z. So 0 ∈ F̃k = Fix (R
F̃k
) for each k = 1, . . . ,m. Since RFk

is a

nonexpansive retraction, so is R
F̃k
. In particular,

(4.31) ∥R
F̃k
w∥ = ∥R

F̃k
w −R

F̃k
0∥ ≤ ∥w∥ for all w ∈ C̃.

It follows from (4.30), (4.31) and the triangle inequality that for each k = 1, . . . ,m
and n ∈ N,

(4.32) ∥Ã(k)
n w −R

F̃k
w∥ = ∥A(k)

n x−RFk
x∥ ≤ γn∥w∥+ γn∥z∥

for all w ∈ C̃ and x ∈ C such that w = x− z. Given x ∈ C, consider the sequence

(xn)n∈N, where x1 = x and xn+1 = A
(m)
n A

(m−1)
n · · ·A(1)

n xn for all n ∈ N. We also

define a sequence (wn)n∈N ⊂ C̃ by setting

w1 = w = x− z and wn+1 = Ã(m)
n Ã(m−1)

n · · · Ã(1)
n wn for all n ∈ N.

Note that wn = xn−z for all n ∈ N. So by (4.31), (4.32) and the triangle inequality,
we see that

(4.33) ∥Ã(m)
n Ã(m−1)

n · · · Ã(1)
n w∥ ≤ (1 + γn)

m∥w∥+ γn∥z∥
m−1∑
i=0

(1 + γn)
i.

Using induction over n and inequality (4.33), we get

∥wn∥ ≤
n−1∏
j=1

(1 + γj)
m∥w∥+ γn−1∥z∥

m−1∑
i=0

(1 + γn−1)
i

+∥z∥
n−2∑
ℓ=1

γℓ

n−1∏
j=ℓ+1

(1 + γj)
m

m−1∑
i=0

(1 + γℓ)
i.(4.34)

Since
∑

j∈N γj <∞, we know that
∏

j∈N(1 + γj) <∞. Combining these facts with

(4.34), we see that there exist numbersM1,M2,M3 > 0 satisfying
∏n−1

j=p (1+γj)
m ≤
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M1 for all n ≥ p+1,
∑m−1

i=0 (1+ γn)
i ≤M2 and

∑n−1
i=1 γi ≤M3 for all n ≥ 2, so that

∥wn∥ ≤M1∥w∥+M1M2M3∥z∥. Hence there exists a number M > 0 such that

(4.35) ∥wn∥ ≤M(∥w∥+ ∥z∥) for all n ∈ N.

Now on C̃, consider the operator α̃
(k)
n (w) := Ã

(k)
n w − R

F̃k
w for k = 1, . . . ,m and

n ∈ N. By (4.32), we see that the inequality

(4.36) ∥α̃(k)
n (w)∥ ≤ γn∥w∥+ γn∥z∥

holds. For n ∈ N fixed, we now define w
(1)
n+1 := Ã

(1)
n wn = α̃

(1)
n (wn) + R

F̃1
wn

and w
(k+1)
n+1 := Ã

(k+1)
n w

(k)
n = α̃

(k+1)
n (w

(k)
n+1) + R

F̃k+1
w

(k)
n+1 for k = 1, . . . ,m − 1. In

particular, w
(m)
n+1 = wn+1. So by the triangle inequality, (4.31) and (4.36), we get

the following inequality:

(4.37) ∥w(k)
n+1∥ ≤ (1 + γn)

k∥wn∥+ γn

(
k−1∑
i=0

(1 + γn)
i

)
∥z∥

for all k = 1, . . . ,m. Since R
F̃k

is nonexpansive for each k = 2, . . . ,m, the following

inequality holds:

(4.38) ∥R
F̃k
w

(k−1)
n+1 −R

F̃k
· · ·R

F̃1
wn∥ ≤

k−1∑
j=2

∥α̃(j)
n (w

(j−1)
n+1 )∥+ ∥α̃(1)

n (wn)∥.

Let T̃ = R
F̃m
R

F̃m−1
· · ·R

F̃1
. By the triangle inequality, (4.36), (4.37), (4.38) and

since each R
F̃k

is nonexpansive, we have

∥wn+1 − T̃wn∥

≤ ∥α̃(m)
n (w

(m−1)
n+1 )∥+ ∥R

F̃m
w

(m−1)
n+1 −R

F̃m
R

F̃m−1
· · ·R

F̃1
wn∥

≤ γn

m−1∑
j=0

(1 + γn)
j∥wn∥+ γn

γn m−1∑
j=1

j−1∑
i=0

(1 + γn)
i +m

 ∥z∥.

Without loss of generality, we may assume that γn ≤ 1 for all n ∈ N. So by the
above inequality we obtain

∥wn+1 − T̃wn∥ ≤ γn2
m−1∥wn∥

m−1∑
j=0

1

2j
+ γnm

(
2m−1

m−1∑
i=0

1

2i
+ 1

)
∥z∥

≤ γn2
m∥wn∥+ γnm (2m + 1) ∥z∥.(4.39)

Hence by (4.35) and (4.39), there is a number M > 0 such that

∥wn+1 − T̃wn∥ ≤ γn[2
mM∥w∥+ (2mM +m2m +m)∥z∥],

which proves that (wn)n∈N is an inexact orbit of T̃ with summable errors. By (4.28),

we know that all exact orbits of T̃ converge weakly to fixed points of T̃ . So, by

Theorem 3.3 there exists a point w ∈ Fix (T̃ ) such that limn→∞wn = w weakly.
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From (2.3) it follows that w ∈ F̃1 ∩ · · · ∩ F̃m. Since (wn)n∈N = (xn − z)n∈N, there
exists a point x ∈ F1 ∩ · · · ∩ Fm such that

lim
n→∞

 n∏
j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x = x weakly,

as asserted. □
To conclude this section, we prove that weak convergence of infinite products

of convex combinations of nonlinear operators also holds under the conditions of
Theorem 4.6.

Theorem 4.7. Suppose E and E∗ are uniformly convex Banach spaces. Let C be
a closed and convex subset of E, and let {RFk

: 1 ≤ k ≤ m} be sunny nonexpansive
retractions of C onto closed and convex subsets {Fk ⊂ C : 1 ≤ k ≤ m}. Assume

that F1∩F2∩· · ·∩Fm ̸= ∅. Let the given, possibly nonlinear operators A
(k)
n : C → C,

k = 1, 2, . . . ,m; n ∈ N, satisfy for all x ∈ C the inequalities

(4.40) ∥A(k)
n x−RFk

x∥ ≤ γn∥x∥
for some positive numbers γn with

∑
n∈N γn <∞. Then for each x ∈ C, there exists

a point x = x(x) ∈ F1 ∩ F2 ∩ · · · ∩ Fm such that

lim
n→∞

n∏
j=1

(
m∑
k=1

akA
(k)
j

)
x = x weakly,

where ak ∈ (0, 1) for each k = 1, . . . ,m and a1 + a2 + · · ·+ am = 1.

Proof. Let z ∈ F1 ∩ F2 ∩ · · · ∩ Fm be fixed. For each k = 1, . . . ,m, consider the

subsets F̃k := Fk − z ⊂ C̃ := C − z, and the operators R
F̃k

and Ã
(k)
n defined as

before. By (4.40) and the triangle inequality, we get

(4.41) ∥Ã(k)
n w −R

F̃k
w∥ ≤ γn∥w∥+ γn∥z∥

for all w ∈ C̃, k = 1, . . . ,m and n ∈ N. Take x ∈ C and consider the sequence

(xn)n∈N, where x1 = x and xn+1 =
∑m

k=1 akA
(k)
n xn for all n ∈ N. Define also the

sequence (wn)n∈N by w1 = w = x − z and wn+1 =
∑m

k=1 akÃ
(k)
n wn for all n ∈ N.

Note that wn = xn − z for all n ∈ N. Using the triangle inequality, (4.31) and
(4.41), we obtain

(4.42) ∥Ã(k)
n w∥ ≤ ∥Ã(k)

n w −R
F̃k
w∥+ ∥R

F̃k
w∥ ≤ (1 + γn)∥w∥+ γn∥z∥.

Since a1 + a2 + · · ·+ am = 1, by (4.42) and the triangle inequality, we get∥∥∥∥∥
m∑
k=1

akÃ
(k)
n w

∥∥∥∥∥ ≤
m∑
k=1

ak∥Ã(k)
n w∥ ≤ (1 + γn)∥w∥+ γn∥z∥.

Hence we obtain by induction the following inequality:

(4.43) ∥wn∥ ≤
n−1∏
j=1

(1 + γj)∥w∥+
n−2∑
i=1

γi∥z∥
n−1∏

j=i+1

(1 + γj) + γn−1∥z∥,
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where n ≥ 2. Since
∑

j∈N γj < ∞, we know that
∏

j∈N(1 + γj) < ∞. Combining

these facts with (4.43), we can find a number M > 0 such that

(4.44) ∥wn∥ ≤M(∥w∥+ ∥z∥) for all n ∈ N.

Now consider the operator T̃ = a1RF̃1
+ a2RF̃2

+ · · · + amRF̃m
. By the triangle

inequality, (4.41) and (4.44), we get, for all n ∈ N,

∥wn+1 − T̃wn∥ ≤ γn(M∥w∥+ (M + 1)∥z∥),

which proves that (wn)n∈N is an inexact orbit of T̃ with summable errors. By

Theorem (4.29), we know that the exact orbits of T̃ converge weakly, so Theorem 3.3

implies that there exists w̃ ∈ Fix (T̃ ) such that limn→∞wn = w weakly. From (2.3)

we see that w̃ ∈ F̃1∩· · ·∩F̃m. Thus there exists a point x = w+z ∈ F1∩F2∩· · ·∩Fm

such that

lim
n→∞

n∏
j=1

(
m∑
k=1

akA
(k)
j

)
x = x weakly,

as asserted. □
It is important to note that continuity, either strong or weak, of the operators

A
(k)
n is not relevant to the results in this subsection.

5. The Hilbert ball

Let {PKi : 1 ≤ i ≤ m} be the nearest point projections of B onto ρ-closed and
ρ-convex subsets {Ki ⊂ B : 1 ≤ i ≤ m}. If K1 ∩K2 ∩ · · · ∩Km ̸= ∅, then the weak

(5.1) lim
n→∞

(PKmPKm−1 · · ·PK1)
nx = Px

exists for all x ∈ B and defines a ρ-nonexpansive retraction P of B onto K1 ∩K2 ∩
· · · ∩Km ( [27, Main Theorem]). When m = 2, the sequence

(5.2)

((
1

2
PK1 ⊕

1

2
PK2

)n

x

)
n∈N

also converges weakly for each x ∈ B to a point in K1 ∩K2 ( [5, Corollary 9.6]).
Now we present similar results to those obtained in the previous section for the

infinite products of operators, where the setting is the Hilbert ball B instead of a
Banach space.

Theorem 5.1. Let {PKi : 1 ≤ i ≤ m} be the nearest point projections of B onto
ρ-closed and ρ-convex subsets {Ki ⊂ B : 1 ≤ i ≤ m} with K1 ∩K2 ∩ · · · ∩Km ̸= ∅.
Let the given operators A

(i)
n : B → B, i = 1, 2, . . . ,m; n ∈ N, satisfy for all x ∈ B

the inequalities

(5.3) ρ(A(i)
n x, PKix) ≤ γnρ(0, x)

for some positive numbers γn with
∑

n∈N γn <∞. Then for each x ∈ B, there exists
a point x = x(x) ∈ K1 ∩K2 ∩ · · · ∩Km such that

lim
n→∞

 n∏
j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x = x weakly.
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Proof. Fix z ∈ K1 ∩ K2 ∩ · · · ∩ Km. For each i = 1, . . . ,m, consider the subsets

K̃i := M−z(Ki), and define the operators P
K̃i
w := M−z(PKix) and Ã

(i)
n w :=

M−z(A
(i)
n x), where w, x ∈ B are such that w = M−z(x). Note that P

K̃i
is the

nearest point projection of B onto K̃i for each i = 1, . . . ,m. Moreover, since M−z

is an automorphism and PKi is ρ-nonexpansive, so is P
K̃i

for all i = 1, . . . ,m. Since

z ∈ K1 ∩K2 ∩ · · · ∩Km, it is clear that 0 = M−z(z) ∈ K̃i, so PK̃i
0 = 0 for each

i = 1, . . . ,m. Therefore the inequality

(5.4) ρ(0, P
K̃i
w) = ρ(P

K̃i
0, P

K̃i
w) ≤ ρ(0, w)

holds, because P
K̃i

is ρ-nonexpansive. Using (5.3), we see that

(5.5) ρ(Ã(i)
n w,P

K̃i
w) ≤ γnρ(−z, w) ≤ γnρ(0, w) + γnρ(0,−z)

for all points w, x ∈ B such that w = M−z(x), n ∈ N and i = 1, . . . ,m. Now take

x ∈ B and let (xn)n∈N be the sequence defined by x1 = x and xn+1 = A
(m)
n · · ·A(1)

n xn
for each n ∈ N. We also consider the sequence (wn)n∈N defined by w1 = w =

M−z(x) and wn+1 = Ã
(m)
n · · · Ã(1)

n wn for each n ∈ N. It is not difficult to see that
wn = M−z(xn) for all n ∈ N. For each n ∈ N and i = 1, . . . ,m, using the triangle
inequality, (5.4) and (5.5), we get

ρ(0, Ã(i)
n w) ≤ ρ(0, P

K̃i
w) + ρ(P

K̃i
w, Ã(i)

n w) ≤ (1 + γn)ρ(0, w) + γnρ(0,−z).

Hence, for each i = 2, . . . ,m, it follows that

(5.6) ρ(0, Ã(i)
n · · · Ã(1)

n w) ≤ (1 + γn)
iρ(0, w) + γn

i−1∑
k=0

(1 + γn)
kρ(0,−z).

From (5.6), we deduce that

ρ(0, wn) ≤
n−2∑
ℓ=1

γℓ

n−1∏
j=ℓ+1

(1 + γj)
m

m−1∑
i=0

(1 + γℓ)
iρ(0,−z)

+γn−1

m−1∑
i=0

(1 + γn−1)
iρ(0,−z) +

n−1∏
j=1

(1 + γj)
mρ(0, w).(5.7)

Note that
∏

j∈N(1 + γj) < ∞ because
∑

j∈N γj < ∞. Combining these facts with

(5.7), we get a number M > 0 such that

(5.8) ρ(0, wn) ≤M [ρ(0, w) + ρ(0,−z)].

Using induction over i = 2, . . . ,m, the triangle inequality, (5.5) and the ρ-nonexpansivity
of P

K̃i
, we obtain

ρ(P
K̃i
Ã(i−1)

n · · · Ã(1)
n wn, PK̃i

P
K̃i−1

· · ·P
K̃1
wn)

≤ γn

[
ρ(0, Ã(i−2)

n · · · Ã(1)
n wn) + ρ(0, Ã(i−3)

n · · · Ã(1)
n wn)

+ · · ·+ ρ(0, Ã(1)
n wn) + ρ(0, wn)

]
+ (i− 1)γnρ(0,−z).(5.9)
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Now consider the operator T̃ = P
K̃m

P
K̃m−1

· · ·P
K̃1

. By the triangle inequality,

(5.5), (5.6) and (5.9), we have

ρ(wn+1, T̃wn)

≤ ρ(Ã(m)
n Ã(m−1)

n · · · Ã(1)
n wn, PK̃m

Ã(m−1)
n · · · Ã(1)

n wn)

+ρ(P
K̃m

Ã(m−1)
n · · · Ã(1)

n wn, PK̃m
P
K̃m−1

· · ·P
K̃1
wn)

≤ γn

m−1∑
i=0

(1 + γn)
iρ(0, wn) + γnm

m−1∑
i=0

(1 + γn)
iρ(0,−z) +mγnρ(0,−z).

Without loss of generality, we may assume that γn ≤ 1 for each n ∈ N. Hence

ρ(wn+1, T̃wn) ≤ γn

m−1∑
i=0

2iρ(0, wn) + γnm
m−1∑
i=0

2iρ(0,−z) +mγnρ(0,−z)

≤ γn[2
mρ(0, wn) +m(2m + 1)ρ(0,−z)].(5.10)

By (5.8) and (5.10), we see that there exists a number M > 0 such that

ρ(wn+1, T̃wn) ≤ γn[2
mM(ρ(0, w) + (1 +m(2m + 1))ρ(0− z))].

This proves that the sequence (wn)n∈N is an inexact orbit of T̃ with summable

errors. By (5.1), we know that all the exact orbits of T̃ converge weakly to fixed

points of T̃ . Hence by Theorem 3.5, there exists a point w ∈ K̃1 ∩ K̃2 ∩ · · · ∩ K̃m

such that limn→∞wn = w weakly. The fact that w belongs to K̃1 ∩ K̃2 ∩ · · · ∩ K̃m

follows from (2.8). Since Mz is weakly continuous and (wn)n∈N = (M−z(xn))n∈N,
there exists a point x ∈ K1 ∩K2 ∩ · · · ∩Km such that x̄ = Mz(w) and

x = lim
n→∞

xn = lim
n→∞

n−1∏
j=1

A
(m)
j A

(m−1)
j · · ·A(1)

j

x weakly.

This concludes the proof. □

It is important to observe that continuity of the operators A
(i)
n is irrelevant to the

above proof. So Theorem 5.1 holds even for discontinuous operators. The infinite

products of ρ-convex combinations of the operators A
(i)
n also converge weakly. To

prove our next weak convergence theorem, we use (5.2) and Theorem 3.5.

Theorem 5.2. Let PK1 , PK2 be the nearest point projections of B onto ρ-closed and
ρ-convex subsets K1,K2 ⊂ B, respectively. Assume that K1 ∩ K2 ̸= ∅ and let the

given operators A
(i)
n : B → B, i = 1, 2; n ∈ N, satisfy for all x ∈ B, the inequalities

(5.11) ρ(A(i)
n x, PKix) ≤ γnρ(0, x)

for some positive numbers γn with
∑

n∈N γn <∞. Then for each x ∈ B, there exists
a point x = x(x) ∈ K1 ∩K2 such that

lim
n→∞

 n∏
j=1

1

2
A

(1)
j ⊕ 1

2
A

(2)
j

x = x weakly.
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Now we use Kopecká–Reich definition of the ρ-convex combination of more than
two operators to extend Theorem 5.2. To this end, we first recall [28] that a set-
valued operator T ⊂ B × B with domain Dom (T ) and range Ran (T ) is said to be
coaccretive if

ρ(x1, x2) ≤ ρ((1 + r)x1 ⊖ ry1, (1 + r)x2 ⊖ ry2)

for all y1 ∈ Tx1, y2 ∈ Tx2 and r > 0. In addition, if Ran ((1 + r)I ⊖ rT ) = B for
all r > 0, T is said to be m-coaccretive. In particular, all ρ-nonexpansive operators
are m-coaccretive (see [18]). If a set-valued operator T is coaccretive, then for each
r > 0, the resolvent of T is the nonexpansive operator Jr : Ran ((1 + r)x ⊖ rT ) →
Dom(T ) defined by Jr((1 + r)x ⊖ ry) = x, where x ∈ Dom(T ) and y ∈ Tx. We
denote the fixed point set of T by Fix (T ), that is, Fix (T ) := {x ∈ B : (x, x) ∈ T}.
Note that Fix (T ) = Fix (Jr) for each r > 0.

Consider them-coaccretive operators T1, . . . , Tm for which the intersection Fix (T1)∩
· · · ∩ Fix (Tm) ̸= ∅. For each i = 1, . . . ,m, suppose that ri > 0 and let Jri be
the corresponding resolvent of Ti. If a1, . . . , am ∈ (0, 1) are numbers such that
a1 + a2 + · · ·+ am = 1, then for each x ∈ B, the weak limit

(5.12) lim
n→∞

C(Jr1 , Jr2 , . . . , Jrm ; a1, a2, . . . , am)nx = Px

exists and defines a ρ-nonexpansive retraction P of B onto Fix (T1)∩ · · · ∩Fix (Tm)
(see [18, Theorem 3.8]).

Unlike Theorem 5.2, our next result is true for more general operators than
nearest point projections. This generalization takes place in the framework of m-
coaccretive operators.

Theorem 5.3. Let T1, . . . , Tm be m-coaccretive operators. For each i = 1, . . . ,m,
suppose that ri > 0 and Jri is the corresponding resolvent of Ti. Assume that

Fix (T1) ∩ · · · ∩ Fix (Tm) ̸= ∅. Let the given operators A
(i)
n : B → B, i = 1, . . . ,m;

n ∈ N, satisfy for all x ∈ B, the inequalities

(5.13) ρ(A(i)
n x, Jrix) ≤ γnρ(0, x)

for some positive numbers γn with
∑

n∈N γn <∞. Then for each x ∈ B, there exists
a point x = x(x) ∈ Fix (T1) ∩ · · · ∩ Fix (Tm) such that

lim
n→∞

 n∏
j=1

C(A
(1)
j , . . . , A

(m)
j ; a1, . . . , am)

x = x weakly,

where a1, . . . , am ∈ (0, 1) are real numbers such that a1 + a2 + · · ·+ am = 1.

Proof. Fix z ∈ Fix (T1)∩· · ·∩Fix (Tm). For each i = 1, . . . ,m, consider the operators

T̃iw := M−z(Tix), J̃riw := M−z(Jrix) and Ã
(i)
n w := M−z(A

(i)
n x); where x,w ∈ B

are such that w = M−z(x). Note that Fix (T̃i) = M−z(Fix (Ti)). Since each Jri
is ρ-nonexpansive, so is J̃ri . By definition, we know that z = Jri((1 + ri)z ⊖ riy)
for y ∈ Tiz, and since z ∈ Tiz, it is clear that z = Jri((1 + ri)z ⊖ riz) = Jriz for

each i = 1, . . . ,m. Recall that 0 = M−z(z). Consequently, J̃ri0 = M−z(Jriz) =

M−z(z) = 0. So, since J̃ri is ρ-nonexpansive, we obtain

(5.14) ρ(0, J̃riw) = ρ(J̃ri0, J̃riw) ≤ ρ(0, w).
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Take x ∈ B and consider the sequence (xn)n∈N defined by x1 = x and xn+1 =

C(A
(1)
n , . . . , A

(m)
n ; a1, . . . , am)xn for each n ∈ N. We also consider the sequence

(wn)n∈N defined by w1 = w = M−z(x) and wn+1 = C(Ã
(1)
n , . . . , Ã

(m)
n ; a1, . . . , am)wn

for each n ∈ N. Using (2.6), we see that wn = M−z(xn) for each n ∈ N. By (5.13)
and the triangle inequality, we obtain

(5.15) ρ(Ã(i)
n w, J̃riw) ≤ γnρ(0, w) + γnρ(0,−z).

It follows from the triangle inequality, (5.14) and (5.15) that

(5.16) ρ(0, Ã(i)
n w) ≤ (1 + γn)ρ(0, w) + γnρ(0,−z).

In the rest of the proof we are going to use two claims. Both of them can be proved
by induction over k, using (2.7) and (5.16).
Claim 1: For each k = 2, . . . ,m, the following inequality holds:

(5.17) ρ(0, C(Ã(1)
n , . . . , Ã(k)

n ;β1, . . . , βk)w) ≤
k∑

j=1

βj ρ(0, Ã
(j)
n w),

where β1, . . . , βk ∈ (0, 1) are such that β1 + β2 + · · ·+ βk = 1.
By (5.14), (5.17) and since a1 + · · ·+ am = 1, the following inequality holds:

ρ(0, C(Ã(1)
n , . . . , Ã(m)

n ; a1, . . . , am)w) ≤ (1 + γn)ρ(0, w) + γnρ(0,−z).

Consequently, for each n ≥ 2, we obtain the following inequality:

ρ(0, wn) ≤
n−1∏
j=1

(1 + γj)ρ(0, w) +

γ1 n−1∏
j=2

(1 + γj) + γ2

n−1∏
j=3

(1 + γj)

+ . . .+ γn−3

n−1∏
j=n−2

(1 + γj) + γn−2(1 + γn−1) + γn−1

 ρ(0,−z).(5.18)

Since
∑

j∈N γj < ∞, we know that
∏

j∈N(1 + γj) < ∞. Hence there exist numbers

M1,M2 > 0 such that
∏n−1

j=p (1 + γj) ≤M1 for all n ≥ p+ 1 and
∑n−1

j=1 γj ≤M2 for

all n ≥ 2. Combining these inequalities with (5.18), we find a number M > 0 such
that

(5.19) ρ(0, wn) ≤M [ρ(0, w) + ρ(0,−z)].

Claim 2: For each k = 2, . . . ,m, we have

ρ(C(Ã(1)
n , . . . , Ã(k)

n ;β1, . . . , βk)wn, C(J̃r1 , . . . , J̃rk ;β1, . . . , βk)wn)

≤
k∑

j=1

βjρ(Ã
(j)
n wn, J̃rjwn),(5.20)

where β1, β2, . . . , βk ∈ (0, 1) are such that β1 + β2 + · · ·+ βk = 1.

Set T̃ := C(J̃r1 , J̃r2 , . . . , J̃rm ; a1, a2, . . . , am). By using inequalities (5.15), (5.19),
(5.20) and the fact that a1 + · · ·+ am = 1, we see that

ρ(wn+1, T̃wn) ≤ γn[M(ρ(0, w) + ρ(0,−z)) + ρ(0,−z)],
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which proves that the sequence (wn)n∈N is an inexact orbit of T̃ with summable

errors. By (5.12), we know that all exact orbits of T̃ converge weakly to fixed

points of T̃ . Therefore by Theorem 3.5, there exists a point w ∈ Fix (T̃ ) such that

limn→∞wn = w weakly. In addition, by (2.10) we see that w ∈ Fix (T̃1)∩Fix (T̃2)∩
· · · ∩ Fix (T̃m). Since (wn)n∈N = (M−z(xn))n∈N and Mz is weakly continuous, we
conclude that there is a point x = Mz(w) ∈ Fix (T1) ∩ · · · ∩ Fix (Tm) such that

x = lim
n→∞

xn = lim
n→∞

 n∏
j=1

C(A
(1)
j , . . . , A

(m)
j ; a1, . . . , am)

x weakly.

□

Note that continuity of the operators A
(k)
n is not required in the proofs of all

the results in this section. Thus both Theorem 5.2 and Theorem 5.3 hold even for
discontinuous operators A

(k)
n .

6. CAT(0) spaces

In this section we consider CAT(0) spaces and establish a result similar to those
obtained in Sections 4 and 5. Suppose X is a complete CAT(0) space. Let PB1

and PB2 be the nearest point projections of X onto convex and closed subsets
B1, B2 ⊂ X, respectively. If B1 ∩B2 ̸= ∅, then for each x ∈ X,

(6.1) lim
n→∞

(PB2PB1)
nx = x weakly,

where x ∈ B1 ∩ B2. If, in addition, B1 and B2 are boundedly regular, this con-
vergence is in the metric sense. For a proof of these facts we refer the reader
to [3, Theorem 4.1].

Remark 6.1. Recall that two subsets A,B ⊂ X such that A ∩ B ̸= ∅ are called
boundedly regular if for any bounded set S ⊂ X and any ε > 0, there exists δ > 0
such that if x ∈ S and max{d(x,A), d(x,B)} < δ, then d(x,A ∩B) < ε.

Extending the results we have already obtained for Banach spaces and the Hilbert
ball, we now study the convergence of infinite products of approximations to these
nearest point projections.

A metric space (X, d) is called metrically homogeneous if for any x, y ∈ X, there
exists an isometry M of X onto X such that M(x) = y. The Hilbert ball is an
example of a metrically homogeneous metric space with the Möbius transformations
playing the role of M.

Lemma 6.2. Suppose (X, d) is a metrically homogeneous CAT(0) space. If M is
an isometry of X onto X, then M has the following properties:

(i) M is continuous;
(ii) PM(γ)M = MPγ for all geodesic segments γ ⊂ X;
(iii) M is weakly continuous.

Proof. Point (i) is obvious and point (ii) is not difficult to prove. To prove (iii),
consider a sequence (un)n∈N ⊂ X, which converges weakly to u ∈ X. Let σ be a
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geodesic segment through M(u). Since M is an isometry, there is a geodesic seg-
ment γ through u such that σ = M(γ). So by (ii), we obtain d(M(u), PσM(un)) =
d(u, Pγun); but limn→∞ d(u, Pγun) = 0 by Proposition 2.9. Thus it is clear that

(6.2) lim
n→∞

d(M(u), PσM(un)) = 0.

From Proposition 2.9 we see that M(u) is the weak limit of (M(un))n∈N, because
(6.2) holds for any geodesic segment σ through M(u). This shows that M is indeed
weakly continuous, as asserted. □

Theorem 6.3. Suppose (X, d) is a complete and metrically homogeneous CAT(0)
space. Let PB1 and PB2 be the nearest point projections of X onto convex and closed
subsets B1, B2 ⊂ X, respectively. Assume that B1∩B2 ̸= ∅. Let the given operators

A
(i)
n : X → X, i = 1, 2; n ∈ N, and the point x∗ ∈ X satisfy for all x ∈ X the

inequalities

(6.3) d(A(i)
n x, PBix) ≤ γnd(x∗, x),

where γn are certain positive numbers with
∑

n∈N γn < ∞. Then, for each x ∈ X,
there exists a point x = x(x) ∈ B1 ∩B2 such that

lim
n→∞

 n∏
j=1

A
(2)
j A

(1)
j

x = x weakly.

If, in addition, B1 and B2 are boundedly regular, the convergence is in the metric
sense.

Proof. Fix z ∈ B1∩B2. Since X is metrically homogeneous, there exists an isometry

M : X → X such that M(z) = x∗. Consider the subsets B̃1 := M(B1) and

B̃2 = M(B2), and define the operators P
B̃i
w := M(PBix) and Ã

(i)
n w := M(A

(i)
n x),

where x,w ∈ X are such that w = M(x), i = 1, 2. Note that x∗ = M(z) ∈ B̃i

because z ∈ Bi.

For all x,w ∈ X such that w = M(x), it follows from the definition that Ã
(i)
n w =

M(A
(i)
n x) = M(A

(i)
n M−1(w)) for i = 1, 2; therefore

(6.4) Ã(2)
n Ã(1)

n w = M(A(2)
n A(1)

n x).

Since PBi is nonexpansive, so is P
B̃i
. Moreover, P

B̃i
is the nearest point projection

of X onto B̃i. It is clear that P
B̃i
x∗ = x∗ because x∗ ∈ B̃i and PB̃i

is the nearest

point projection of X onto B̃i. Hence

(6.5) d(x∗, PB̃i
w) = d(P

B̃i
x∗, PB̃i

w) ≤ d(x∗, w) for all w ∈ X.

In addition, by (6.3) and the triangle inequality we obtain

(6.6) d(Ã(i)
n w,P

B̃i
w) ≤ γnd(x∗, z) + γnd(x∗, w)

for w ∈ X. Given x ∈ X, consider the sequence (xn)n∈N defined by x1 = x and

xn+1 = A
(2)
n A

(1)
n xn for all n ∈ N. Define inductively the sequence (wn)n∈N by

w1 = w = M(x) and wn+1 = Ã(2)
n Ã(1)

n wn for all n ∈ N.
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From (6.4) it is clear that wn = M(xn) for all n ∈ N. Using the triangle inequality,
(6.5) and (6.6), we see that

(6.7) d(x∗, Ã
(i)
n w) ≤ (1 + γn)d(x∗, w) + γnd(x∗, z).

Consequently, we get

(6.8) d(x∗, Ã
(2)
n Ã(1)

n w) ≤ (1 + γn)
2d(x∗, w) + γn[1 + (1 + γn)]d(x∗, z).

Using induction over n ≥ 2 and (6.8), we see that

d(x∗, wn) ≤
n−1∏
j=1

(1 + γj)
2d(x∗, w) + d(x∗, z)γn−1[1 + (1 + γn−1)]

+d(x∗, z)

n−2∑
ℓ=1

[1 + (1 + γℓ)]

n−1∏
j=ℓ+1

(1 + γj)
2.(6.9)

By hypothesis, we know that
∑

j∈N γj < ∞ , hence
∏

j∈N(1 + γj) < ∞. Thus

there exist numbersM1,M2,M3 > 0 such that
∏n−1

j=p (1+γj)
2 ≤M1 for all n ≥ p+1;

1 + (1 + γj) ≤ M2 for each j ∈ N and
∑n−1

j=1 γj ≤ M3 for all n ≥ 2. These facts,

along with (6.9), imply that there exists a number M > 0 such that

(6.10) d(x∗, wn) ≤M [d(x∗, w) + d(x∗, z)].

Let T̃ = P
B̃2
P
B̃1

. By the triangle inequality, the nonexpansivity of P
B̃2

, (6.6), (6.7)

and (6.10), we obtain

d(wn+1, T̃wn) ≤ d(Ã(2)
n Ã(1)

n wn, PB̃2
Ã(1)

n wn) + d(P
B̃2
Ã(1)

n wn, PB̃2
P
B̃1
wn)

≤ γn[(1 + (1 + γn))d(x∗, wn) + (1 + γn)d(x∗, z)]

≤ γn[M
∗M(d(x∗, w) + d(x∗, z)) +M∗d(x∗, z)],(6.11)

where M∗ > 0 is a number such that 1 + (1 + γn) ≤M∗ for all n ∈ N.
Inequality (6.11) shows that the sequence (wn)n∈N is an inexact orbit of T̃ with

summable errors. Note that by (2.21), we have B̃1∩ B̃2 = Fix (P
B̃2
P
B̃1

). According

to (6.1), all exact orbits of T̃ converge weakly to fixed points of P
B̃2
P
B̃1

. Hence by

Theorem 3.6, there exists a point w ∈ B̃1 ∩ B̃2 such that

(6.12) w = lim
n→∞

wn = lim
n→∞

n−1∏
j=1

Ã
(2)
j Ã

(1)
j

w weakly.

Consequently, since M is weakly continuous (see Lemma 6.2) and wn = M(xn),
there exists a point x = M−1(w) ∈ B1 ∩B2 such that

(6.13) x = lim
n→∞

xn = lim
n→∞

n−1∏
j=1

A
(2)
j A

(1)
j

x weakly.

If B1 and B2 are boundedly regular, then all exact orbits of T̃ are convergent in the
metric sense. So we can use Theorem 3.2, which gives us the existence of a point

w ∈ B̃1 ∩ B̃2 such that (6.12) is true in the metric sense. Since M is continuous
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(by Lemma 6.2), there exists x = M−1(w) ∈ B1 ∩B2 such that (6.13) holds in the
metric sense. □

Since continuity of the operators A
(i)
n is not used in its proof, Theorem 6.3 remains

true even when these approximations are discontinuous.
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