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We adopt standard notation used in these books. Given a subset C of X, intC is
the interior of C, C is the norm closure of C, and convC is the convex hull of C.
The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.

If C,D ⊆ X, we set C−D := {x−y | x ∈ C, y ∈ D}. For every x ∈ X, the normal
cone operator of C at x is defined by NC(x) :=

{
x∗ ∈ X∗ | supc∈C⟨c− x, x∗⟩ ≤ 0

}
,

if x ∈ C; and NC(x) := ∅, if x /∈ C. For x, y ∈ X, we set [x, y] := {tx + (1 − t)y |
0 ≤ t ≤ 1}.

Given f : X → ]−∞,+∞], we set dom f := f−1(R). We say f is
proper if dom f ̸= ∅. Let f be proper. Then ∂f : X ⇒ X∗ : x 7→

{
x∗ ∈ X∗ |

(∀y ∈ X) ⟨y − x, x∗⟩+ f(x) ≤ f(y)
}
is the subdifferential operator of f . Thus NC =

∂ιC . We also set PX : X × X∗ → X : (x, x∗) 7→ x. The open unit ball in X is
denoted by UX :=

{
x ∈ X | ∥x∥ < 1

}
, the closed unit ball in X is denoted by

BX :=
{
x ∈ X | ∥x∥ ≤ 1

}
, and N := {1, 2, 3, . . .}. We denote by −→ and ⇁w* the

norm convergence and weak∗ convergence of nets, respectively.
Let A and B be maximally monotone operators from X to X∗. Clearly, the sum

operator A + B : X ⇒ X∗ : x 7→ Ax + Bx :=
{
a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx

}
is

monotone. Rockafellar established the following significant result in 1970.

Theorem 1.1 (Rockafellar’s sum theorem (See [26, Theorem 1] or [11])). Suppose
that X is reflexive. Let A,B : X ⇒ X∗ be maximally monotone. Assume that A
and B satisfy the classical constraint qualification:

domA ∩ int dom B ̸= ∅.

Then A+B is maximally monotone.

The generalization of Rockafellar’s sum theorem in the setting of a reflexive space
can be found in [1, 3, 11,30,31].

The most famous open problem in Monotone Operator Theory concerns the max-
imal monotonicity of the sum of two maximally monotone operators satisfying Rock-
afellar’s constraint qualification in general Banach spaces; this is called the “sum
problem”. Some recent developments on the sum problem can be found in Simons’
monograph [30] and [5–9,11,13–15,20,34–39], and also see [2] for the subdifferential
operators.

In this paper, we focus on the case when A,B are maximally monotone with
domA ∩ int domB ̸= ∅, and A+NdomB is of type (FPV) (see Theorem 3.2).

Corollary 3.4 provides an affirmative answer to the following problem posed by
Borwein and Yao in [14, Open problem 4.5].

Let f : X → ]−∞,+∞] be a proper lower semicontinuous con-
vex function, and let B : X ⇒ X∗ be maximally monotone with
dom ∂f ∩ int domB ̸= ∅. Is ∂f + B necessarily maximally mono-
tone?

The remainder of this paper is organized as follows. In Section 2, we collect
auxiliary results for future reference and for the reader’s convenience. In Section 3,
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our main result (Theorem 3.2) is presented. We also show that Problem 3.8 is
equivalent to the sum problem.

2. Auxiliary Results

We first introduce the well known Banach-Alaoglu Theorem and the two of Rock-
afellar’s results.

Fact 2.1 (The Banach-Alaoglu Theorem). (See [28, Theorem 3.15] or [21, Theo-
rem 2.6.18].) The closed unit ball in X∗, BX∗ , is weakly∗ compact.

Fact 2.2 (Rockafellar). (See [23, Theorem 3], [30, Theorem 18.1], or [40, Theo-
rem 2.8.7(iii)].) Let f, g : X → ]−∞,+∞] be proper convex functions. Assume
that there exists a point x0 ∈ dom f ∩ dom g such that g is continuous at x0. Then
∂(f + g) = ∂f + ∂g.

Fact 2.3 (Rockafellar). (See [25, Theorem 1] or [30, Theorem 27.1 and Theo-
rem 27.3].) Let A : X ⇒ X∗ be maximally monotone with int domA ̸= ∅. Then
int domA = int domA and int domA and domA are both convex.

The Fitzpatrick function defined below is an important tool in Monotone Oper-
ator Theory.

Fact 2.4 (Fitzpatrick). (See [18, Corollary 3.9].) Let A : X ⇒ X∗ be monotone,
and set

FA : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈graA

(
⟨x, a∗⟩+ ⟨a, x∗⟩ − ⟨a, a∗⟩

)
,

the Fitzpatrick function associated with A. Suppose also A is maximally monotone.
Then for every (x, x∗) ∈ X ×X∗, the inequality ⟨x, x∗⟩ ≤ FA(x, x

∗) is true, and the
equality holds if and only if (x, x∗) ∈ graA.

The next result is the key to our arguments.

Fact 2.5. (See [35, Theorem 3.4 and Corollary 5.6], or [30, Theorem 24.1(b)].) Let
A,B : X ⇒ X∗ be maximally monotone operators. Assume

∪
λ>0 λ[PX(domFA)−

PX(domFB)] is a closed subspace. If

FA+B ≥ ⟨·, ·⟩ on X ×X∗,

then A+B is maximally monotone.

Applying Fact 2.6, we can avoid computing the domain of the Fitzpatrick func-
tions in Fact 2.5 (see Corollary 2.8 below).

Fact 2.6. (See [13, Theorem 3.6] or [14].) Let A : X ⇒ X∗ be a maximally
monotone operator. Then

conv [domA] = PX [domFA].

Lemma 2.7. Let A,B : X ⇒ X∗ be maximally monotone, and suppose that∪
λ>0 λ [domA− domB] is a closed convex subset of X. Then∪

λ>0

λ [domA− domB] =
∪
λ>0

λ [PX domFA − PX domFB] .
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Proof. By Fact 2.4 and Fact 2.6, we have∪
λ>0

λ [domA− domB] ⊆
∪
λ>0

λ [PX domFA − PX domFB]

⊆
∪
λ>0

λ
[
conv domA− conv domB

]
⊆

∪
λ>0

λ
[
conv domA− conv domB

]
=

∪
λ>0

λ
[
conv [domA− domB]

]
⊆

∪
λ>0

λ conv [domA− domB]

=
∪
λ>0

λ [domA− domB] (by the assumption).

Hence
∪

λ>0 λ [domA− domB] =
∪

λ>0 λ [PX domFA − PX domFB]. □
Corollary 2.8. Let A,B : X ⇒ X∗ be maximally monotone operators. Assume
that

∪
λ>0 λ [domA− domB] is a closed subspace. If

FA+B ≥ ⟨·, ·⟩ on X ×X∗,

then A+B is maximally monotone.

Proof. Apply Fact 2.5 and Lemma 2.7 directly. □
Now we cite some results on operators of type (FPV).

Fact 2.9 (Fitzpatrick-Phelps and Verona-Verona). (See [19, Corollary 3.4], [33,
Theorem 3] or [30, Theorem 48.4(d)].) Let f : X → ]−∞,+∞] be proper, lower
semicontinuous and convex. Then ∂f is of type (FPV).

Fact 2.10 (Simons). (See [30, Theorem 44.2].) Let A : X ⇒ X∗ be of type (FPV).
Then

domA = conv
(
domA

)
= PX

(
domFA

)
.

The following result presents a sufficient condition for a maximally monotone
operator to be of type (FPV).

Fact 2.11 (Simons and Verona-Verona). (See [30, Theorem 44.1], [33] or [8].) Let
A : X ⇒ X∗ be maximally monotone. Suppose that for every closed convex subset
C of X with domA∩ intC ̸= ∅, the operator A+NC is maximally monotone. Then
A is of type (FPV).

Fact 2.12 (Boundedness below). (See [12, Fact 4.1].) Let A : X ⇒ X∗ be
monotone and x ∈ int domA. Then there exist δ > 0 and M > 0 such that
x + δBX ⊆ domA and supa∈x+δBX

∥Aa∥ ≤ M . Assume that (z, z∗) is monotoni-
cally related to graA. Then

⟨z − x, z∗⟩ ≥ δ∥z∗∥ − (∥z − x∥+ δ)M.

We need the following bunch of useful tools from [15].
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Fact 2.13. (See [15, Proposition 3.1].) Let A : X ⇒ X∗ be of type (FPV), and let
B : X ⇒ X∗ be maximally monotone. Suppose that domA ∩ int domB ̸= ∅. Let
(z, z∗) ∈ X ×X∗ with z ∈ domB. Then

FA+B(z, z
∗) ≥ ⟨z, z∗⟩.

Fact 2.14. (See [15, Lemma 2.10].) Let A : X ⇒ X∗ be monotone, and let
B : X ⇒ X∗ be maximally monotone. Let (z, z∗) ∈ X×X∗. Suppose x0 ∈ domA∩
int domB and that there exists a sequence (an, a

∗
n)n∈N in graA ∩

(
domB × X∗

)
such that (an)n∈N converges to a point in [x0, z[, and

⟨z − an, a
∗
n⟩ −→ +∞.

Then FA+B(z, z
∗) = +∞.

Fact 2.15. (See [15, Lemma 2.12].) Let A : X ⇒ X∗ be of type (FPV). Suppose
x0 ∈ domA but that z /∈ domA. Then there exists a sequence (an, a

∗
n)n∈N in graA

such that (an)n∈N converges to a point in [x0, z[ and

⟨z − an, a
∗
n⟩ −→ +∞.

The proof of Fact 2.16 and Fact 2.17 is mainly extracted from the part of the
proof of [15, Proposition 3.2].

Fact 2.16. Let A : X ⇒ X∗ be maximally monotone and z ∈ domA\domA. Then
for every sequence (zn)n∈N in domA such that zn −→ z, we have limn→∞ inf ∥A(zn)∥
= +∞.

Proof. Suppose to the contrary that there exists a sequence z∗nk
∈ A(znk

) and L > 0
such that supk∈N ∥z∗nk

∥ ≤ L. By Fact 2.1, there exists a weak* convergent subnet,
(z∗β)β∈J of (z∗nk

)k∈N such that z∗β ⇁w* z
∗
∞ ∈ X∗. [12, Fact 3.5] or [10, Section 2,

page 539] shows that (z, z∗∞) ∈ graA, which contradicts our assumption that z /∈
domA. Hence we have our result holds. □
Fact 2.17. Let A,B : X ⇒ X∗ be monotone. Let (z, z∗) ∈ X × X∗. Suppose
that x0 ∈ domA∩ int domB and that there exist a sequence (an, a

∗
n)n∈N in graA∩(

domB×X∗) and a sequence (Kn)n∈N in R such that (an)n∈N converges to a point
in [x0, z[, and that

⟨z − an, a
∗
n⟩ ≥ Kn.(2.1)

Assume that there exists a sequence b∗n ∈ Ban such that Kn
∥b∗n∥

−→ 0 and ∥b∗n∥ −→
+∞. Then FA+B(z, z

∗) = +∞.

Proof. By the assumption, there exists 0 ≤ δ < 1 such that

an −→ x0 + δ(z − x0).(2.2)

Suppose to the contrary that

FA+B(z, z
∗) < +∞.(2.3)

By Fact 2.1, there exists a weak* convergent subnet, (
b∗i

∥b∗i ∥
)i∈I of b∗n

∥b∗n∥
such that

b∗i
∥b∗i ∥

⇁w* b
∗
∞ ∈ X∗.(2.4)
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By (2.1), we have

Kn +
⟨
z − an, b

∗
n

⟩
+
⟨
z∗, an

⟩
≤

⟨
z − an, a

∗
n

⟩
+

⟨
z − an, b

∗
n

⟩
+

⟨
z∗, an

⟩
≤ FA+B(z, z

∗)

Thus

Kn

∥b∗n∥
+

⟨
z − an,

b∗n
∥b∗n∥

⟩
+

1

∥b∗n∥

⟨
z∗, an

⟩
≤ FA+B(z, z

∗)

∥b∗n∥
.(2.5)

By the assumption that Kn
∥b∗n∥

−→ 0 and ∥b∗n∥ −→ +∞, (2.2), (2.3) and (2.4), we

take the limit along the subnet in (2.5) to obtain⟨
z − x0 − δ(z − x0), b

∗
∞

⟩
≤ 0.

Since δ < 1, ⟨
z − x0, b

∗
∞

⟩
≤ 0.(2.6)

On the other hand, since x0 ∈ int domB and (an, b
∗
n) ∈ graB, Fact 2.12 implies

that there exist η > 0 and M > 0 such that

⟨an − x0, b
∗
n⟩ ≥ η∥b∗n∥ − (∥an − x0∥+ η)M.

Thus

⟨an − x0,
b∗n
∥b∗n∥

⟩ ≥ η − (∥an − x0∥+ η)M

∥b∗n∥
.

Since ∥b∗n∥ −→ +∞, by (2.2) and (2.4), we take the limit along the subnet in the
above inequality to obtain⟨

x0 + δ(z − x0)− x0, b
∗
∞

⟩
≥ η.

Hence ⟨
z − x0, b

∗
∞

⟩
≥ η

δ
> 0,

which contradicts (2.6). Hence FA+B(z, z
∗) = +∞. □

3. Our main result

The following result is the key technical tool for our main result (: Theorem 3.2).
The proof of Proposition 3.1 follows in part that of [15, Proposition 3.2].

Proposition 3.1. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be
maximally monotone. Suppose x0 ∈ domA ∩ int domB and (z, z∗) ∈ X × X∗.
Assume that there exist a sequence (an)n∈N in domA ∩

[
domB\domB

]
and δ ∈

[0, 1] such that an −→ δz + (1− δ)x0. Then FA+B(z, z
∗) ≥ ⟨z, z∗⟩.

Proof. Suppose to the contrary that

FA+B(z, z
∗) < ⟨z, z∗⟩.(3.1)

By the assumption, we have δz + (1 − δ)x0 ∈ domB. Since an /∈ domB and
x0 ∈ int domB, Fact 2.13 and (3.1) imply that

0 < δ < 1 and δz + (1− δ)x0 ̸= x0.(3.2)
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We set

y0 := δz + (1− δ)x0.(3.3)

Since an ∈ domA, we let

(an, a
∗
n) ∈ graA, ∀n ∈ N.(3.4)

Since x0 ∈ domA ∩ int domB, there exist x∗0, y
∗
0 ∈ X∗ such that (x0, x

∗
0) ∈ graA

and (x0, y
∗
0) ∈ graB. By x0 ∈ int domB, there exists 0 < ρ0 ≤ ∥y0 − x0∥ by (3.2)

such that

x0 + ρ0UX ⊆ domB.(3.5)

Now we show that there exists δ ≤ tn ∈
[
1− 1

n , 1
[
such that that

Hn ⊆ domB and inf
∥∥B(

Hn

)∥∥ ≥ 4K2
0 (∥a∗n∥+ 1)n,(3.6)

where

Hn : = tnan + (1− tn)x0 + (1− tn)ρ0UX

K0 : = max
{
3∥z∥+ 2 + 3|x0∥,

1

δ

(2∥y0 − x0∥
ρ0

+ 1
)(
∥x∗0∥+ 1

)}
.(3.7)

For every s ∈ ]0, 1[, since an ∈ domB, (3.5) and Fact 2.3 imply that

san + (1− s)x0 + (1− s)ρ0UX = san + (1− s) [x0 + ρ0UX ] ⊆ domB.

By Fact 2.3 again, san + (1− s)x0 + (1− s)ρ0UX ⊆ int domB = int domB.
It directly follows from Fact 2.16 and an ∈ domB\ domB that the second part

of (3.6) holds.
Set

rn :=
1
2(1− tn)ρ0

tn∥y0 − an∥+ (1− tn)∥y0 − x0∥
.(3.8)

Since ρ0 ≤ ∥y0 − x0∥, we have rn ≤ 1
2 . Now we show that

vn : = rny0 + (1− rn) [tnan + (1− tn)x0]

= rnδz + (1− rn)tnan + snx0 ∈ Hn,(3.9)

where sn := [1− tn + rn(tn − δ)].
Indeed, we have∥∥∥vn − tnan − (1− tn)x0

∥∥∥ =
∥∥∥rny0 + (1− rn) [tnan + (1− tn)x0]− tnan − (1− tn)x0

∥∥∥
=

∥∥∥rny0 − rn [tnan + (1− tn)x0]
∥∥∥

= rn

∥∥∥tny0 + (1− tn)y0 − [tnan + (1− tn)x0]
∥∥∥

= rn

∥∥∥tn(y0 − an) + (1− tn)(y0 − x0)
∥∥∥

≤ rn

(
tn∥y0 − an∥+ (1− tn)∥y0 − x0∥

)
=

1

2
(1− tn)ρ0 (by (3.8)).
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Hence vn ∈ Hn and thus (3.9) holds by (3.3).
Since an −→ y0 and vn ∈ Hn by (3.9), vn −→ y0. Then we can and do suppose

that

∥vn∥ ≤ ∥y0∥+ 1 ≤ ∥z∥+ ∥x0∥+ 1, ∀n ∈ N (by (3.3)).(3.10)

Since an −→ y0 and ∥y0 − x0∥ > 0 by (3.2), we can suppose that

∥y0 − an∥ ≤ ∥y0 − x0∥, ∀n ∈ N.

Then by (3.8),

1− tn
rn

≤ 2∥y0 − x0∥
ρ0

, ∀n ∈ N.(3.11)

Since sn = [1− tn + rn(tn − δ)], by (3.11) and δ ≤ tn < 1, we have

sn
rn

=
1− tn
rn

+ tn − δ ≤ 2∥y0 − x0∥
ρ0

+ 1, ∀n ∈ N.(3.12)

Now we show there exists (ãn, ãn
∗)n∈N in graA ∩ (Hn ×X∗) such that⟨

z − ãn, ãn
∗⟩ ≥ −4K2

0 (∥a∗n∥+ 1).(3.13)

We consider two cases.
Case 1 : (vn, (2− tn)a

∗
n) ∈ graA.

Set (ãn, ãn
∗) := (vn, (2− tn)a

∗
n). Then we have

⟨z − ãn, ãn
∗⟩ = ⟨z − vn, (2− tn)an

∗⟩
≥ −2∥z − vn∥ · ∥a∗n∥
≥ −2

(
2∥z∥+ ∥x0∥+ 1

)
· ∥a∗n∥

≥ −4K2
0 (∥a∗n∥+ 1) (by (3.10) and (3.7)).(3.14)

Hence (3.13) holds since vn ∈ Hn by (3.9).
Case 2 : (vn, (2− tn)a

∗
n) /∈ graA.

By Fact 2.10 and the assumption that {an, y0, x0} ⊆ domA, (3.9) shows that

vn ∈ domA. Thus Hn ∩ domA ̸= ∅ by (3.9) again. Since
(
vn, (2− tn)a

∗
n

)
/∈ graA,

vn ∈ Hn by (3.9), and A is of type (FPV), there exists (ãn, ãn
∗) ∈ graA∩(Hn×X∗)

such that ⟨
vn − ãn, ãn

∗ − (2− tn)a
∗
n

⟩
> 0.

Thus by (3.9), we have⟨
vn − ãn, ãn

∗ − (2− tn)a
∗
n

⟩
> 0

=⇒
⟨
rnδz + (1− rn)tnan + snx0 − ãn, ãn

∗ − a∗n − (1− tn)a
∗
n

⟩
> 0

=⇒
⟨
rnδz + (1− rn)tnan + snx0 − ãn, ãn

∗ − a∗n

⟩
>

⟨
rnδz + (1− rn)tnan + snx0 − ãn, (1− tn)a

∗
n

⟩
≥ −(1− tn)

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥(3.15)
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Note that ãn = rnδãn + (1− rn)tnãn + snãn. Thus (3.15) implies that⟨
rnδ(z − ãn) + (1− rn)tn(an − ãn) + sn(x0 − ãn), ãn

∗ − a∗n

⟩
> −(1− tn)

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

=⇒
⟨
rnδ(z − ãn) + sn(x0 − ãn), ãn

∗ − a∗n

⟩
≥ (1− rn)tn

⟨
an − ãn, a

∗
n − ãn

∗
⟩

− (1− tn)
(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

≥ −(1− tn)
(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥ (by the monotonicity of A)

=⇒
⟨
rnδ(z − ãn) + sn(x0 − ãn), ãn

∗
⟩

>
⟨
rnδ(z − ãn) + sn(x0 − ãn), a

∗
n

⟩
− (1− tn)

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

=⇒ rnδ
⟨
z − ãn, ãn

∗
⟩
> sn

⟨
ãn − x0, ãn

∗
⟩

+
⟨
rnδ(z − ãn) + sn(x0 − ãn), a

∗
n

⟩
− (1− tn)

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥(3.16)

Since {(x0, x∗0), (ãn, ãn
∗)} ⊆ graA, we have ⟨ãn − x0, ãn

∗⟩ ≥ ⟨ãn − x0, x
∗
0⟩ by the

monotonicity of A. Thus, by (3.16),

rnδ
⟨
z − ãn, ãn

∗
⟩
> sn

⟨
ãn − x0, x

∗
0

⟩
+

⟨
rnδ(z − ãn) + sn(x0 − ãn), a

∗
n

⟩
− (1− tn)

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

≥ −sn∥ãn − x0∥ · ∥x∗0∥ − rn∥z − ãn∥ · ∥a∗n∥ − sn∥x0 − ãn∥ · ∥a∗n∥

− (1− tn)
(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

Hence⟨
z − ãn, ãn

∗
⟩
> − sn

rnδ
∥ãn − x0∥ · ∥x∗0∥ −

1

δ
∥z − ãn∥ · ∥a∗n∥ −

sn
rnδ

∥x0 − ãn∥ · ∥a∗n∥

− 1− tn
rnδ

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

Then combining (3.11) and (3.12), we have⟨
z − ãn, ãn

∗
⟩
> −

(2∥y0 − x0∥
ρ0

+ 1
)1
δ
∥ãn − x0∥ · ∥x∗0∥ −

1

δ
∥z − ãn∥ · ∥a∗n∥

−
(2∥y0 − x0∥

ρ0
+ 1

)1
δ
∥x0 − ãn∥ · ∥a∗n∥
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− 2∥y0 − x0∥
ρ0δ

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥

≥ −K0∥ãn − x0∥ −K0∥z − ãn∥ · ∥a∗n∥ −K0∥x0 − ãn∥ · ∥a∗n∥

−K0

(
∥z∥+ ∥an∥+ ∥x0∥+ ∥ãn∥

)
∥a∗n∥ (by (3.7))(3.17)

Since ãn ∈ Hn, tn −→ 1− and an −→ y0,

(3.18) ãn −→ y0.

Then we can and do suppose that

max
{
∥an∥, ∥ãn∥

}
≤ ∥y0∥+ 1 ≤ ∥x0∥+ ∥z∥+ 1, ∀n ∈ N. (by (3.3))(3.19)

Then by (3.19), (3.17) and (3.7), we have⟨
z − ãn, ãn

∗
⟩
> −K2

0 −K2
0∥a∗n∥ −K2

0∥a∗n∥ −K2
0∥a∗n∥ ≥ −4K2

0 (∥a∗n∥+ 1).(3.20)

Hence (3.13) holds.
Combining the above two cases, we have (3.13) holds.
Since ãn ∈ Hn, (3.6) implies that ãn ∈ domB. Then combining (3.18), (3.2),

(3.6) and (3.13), Fact 2.17 implies that FA+B(z, z
∗) = +∞, which contradicts (3.1).

Hence FA+B(z, z
∗) ≥ ⟨z, z∗⟩. □

Now we come to our main result.

Theorem 3.2 (Main result). Let A,B : X ⇒ X∗ be maximally monotone with
domA∩ int domB ̸= ∅. Assume that A+NdomB is of type (FPV). Then A+B is
maximally monotone.

Proof. After translating the graphs if necessary, we can and do assume that 0 ∈
domA ∩ int domB and that (0, 0) ∈ graA ∩ graB. By Corollary 2.8, it suffices to
show that

(3.21) FA+B(z, z
∗) ≥ ⟨z, z∗⟩, ∀(z, z∗) ∈ X ×X∗.

Take (z, z∗) ∈ X ×X∗. Suppose to the contrary that

FA+B(z, z
∗) < ⟨z, z∗⟩.(3.22)

Since B is maximally monotone, B = B +NdomB. Thus

A+B = A+B +NdomB = (A+NdomB) +B.(3.23)

Since A+NdomB is of type (FPV) and 0 ∈ dom
[
A+NdomB

]
∩ int domB, Fact 2.13

and (3.22) imply that

z /∈ domB and then z /∈ dom
[
A+NdomB

]
(3.24)

Then by Fact 2.15, there exist a sequence (an, a
∗
n)n∈N in gra(A +NdomB) and δ ∈

[0, 1[ such that

an −→ δz and ⟨z − an, a
∗
n⟩ −→ +∞.(3.25)

Thus an ∈ dom
[
A+NdomB

]
∩ domB, ∀n ∈ N.

Now we consider two cases.
Case 1 : There exists a subsequence of (an)n∈N in domB.
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We can and do suppose that an ∈ domB for every n ∈ N. Thus (an)n∈N is in
dom

[
A+NdomB

]
∩ domB.

Combining Fact 2.14 and (3.25),

FA+B(z, z
∗) = FA+NdomB+B(z, z

∗) = +∞,

which contradicts (3.22).
Case 2 : There exists N1 ∈ N such that an /∈ domB, ∀n ≥ N1.
Then we can and do suppose that an /∈ domB for every n ∈ N. Thus, an ∈

dom
[
A+NdomB

]
∩
[
domB\domB

]
. By Proposition 3.1 and (3.25),

FA+B(z, z
∗) = FA+NdomB+B(z, z

∗) ≥ ⟨z, z∗⟩,

which contradicts (3.22).
Combing all the above cases, we have FA+B(z, z

∗) ≥ ⟨z, z∗⟩ for all (z, z∗) ∈
X ×X∗. Hence A+B is maximally monotone. □

Remark 3.3. Theorem 3.2 generalizes the main result in [37] (see [37, Theo-
rem 3.4]).

Corollary 3.4. Let f : X → ]−∞,+∞] be a proper lower semicontinuous convex
function, and let B : X ⇒ X∗ be maximally monotone with dom ∂f∩int domB ̸= ∅.
Then ∂f +B is maximally monotone.

Proof. By Fact 2.3 and Fact 2.2 (or [2, Theorem 1.1]), ∂f +NdomB = ∂(f + ιdomB).
Then Fact 2.9 shows that ∂f +NdomB is of type (FPV). Applying Theorem 3.2, we
have ∂f +B is maximally monotone. □

Remark 3.5. Corollary 3.4 provides an affirmative answer to a problem posed by
Borwein and Yao in [14, Open problem 4.5].

Given a set-valued operator A : X ⇒ X∗, we say A is a linear relation if graA is
a linear subspace.

Corollary 3.6 (Linear relation (See [14, Theorem 3.1] or [15, Corollary 4.5]). Let
A : X ⇒ X∗ be a maximally monotone linear relation, and let B : X ⇒ X∗

be maximally monotone. Suppose that domA ∩ int domB ̸= ∅. Then A + B is
maximally monotone.

Proof. Apply Fact 2.3, [38, Corollary 3.3] and Theorem 3.2 directly. □

Corollary 3.7 (Convex domain (See [15, Corollary 4.3]). Let A : X ⇒ X∗ be of
type (FPV) with convex domain, and let B : X ⇒ X∗ be maximally monotone.
Suppose that domA ∩ int domB ̸= ∅. Then A+B is maximally monotone.

Proof. Apply Fact 2.3, [37, Corollary 2.10] and Theorem 3.2 directly. □

Applying Fact 2.11 and Theorem 3.2, we can obtain that the sum problem is
equivalent to the following problem:

Open Problem 3.8. Let A : X ⇒ X∗ be maximally monotone, and C be a
nonempty closed and convex subset of X. Assume that domA ∩ intC ̸= ∅. Is
A+NC necessarily maximally monotone?
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Clearly, Problem 3.8 is a special case of the sum problem. However, if we would
have an affirmative answer to Problem 3.8 for every maximally monotone operator
A and every nonempty closed and convex set C satisfying Rockafellar’s constraint
qualification: domA ∩ intC ̸= ∅, then Fact 2.11 implies that every maximally
monotone operator is of type (FPV), and thus A + NC is of type (FPV) (since
A +NC is maximally monotone by the assumption). Thus applying Theorem 3.2,
we have an affirmative answer to the sum problem.
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