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The purpose of this note is to give a commutative semigroup operation ∗φ on R2

associated with a bijection φ from R to R+, the set of all positive numbers and to
characterize a bijection φ satisfying the distribution law :

(1.3) (A ∗φ B) + C = (A+ C) ∗φ (B + C) (A,B,C ∈ R2).

Indeed, such a φ can be characterized as a bijection such that φ(x)φ(y) = φ(0)φ(x+
y) for all x, y ∈ R. In particular if φ is continuous, then φ(x) = βαx (x ∈ R) for
some positive numbers α and β.

2. main results

For each A = (a, b) ∈ R2, we put

A+ =
a+ b

2
and A− =

a− b

2
.

Then it is obvious that

A = (A+ +A−, A+ −A−)

holds.
Throughout the remainder of the note, let φ be a bijection from R to R+. For

each A,B ∈ R2, take an element C ∈ R2 such that

C+ = φ−1(φ(A+) + φ(B+)) and C− =
φ(A+)A− + φ(B+)B−

φ(A+) + φ(B+)
.

Such an element C is unique and is denoted by A ∗φ B. In this case we have the
following

Theorem 2.1. The binary operation ∗φ is a commutative semigroup operation on
R2.

Moreover we have the following interesting characterization.

Theorem 2.2. The following three conditions are equivalent:

(i) The distribution law (1.3) holds.
(ii) ((A ∗φ B) + C)− = ((A+ C) ∗φ (B + C))− holds for all A,B,C ∈ R2.
(iii) φ(x)φ(y) = φ(0)φ(x+ y) holds for all x, y ∈ R.

Remark 2.3. There are many bijections ψ from R to R+ such that ψ(x)ψ(y) =
ψ(0)ψ(x+y) for all x, y ∈ R. In fact, put Ψ(x) = logψ(x)−b for each x ∈ R, where
b = logψ(0). Then Ψ is a real-valued function onR such that Ψ(x+y) = Ψ(x)+Ψ(y)
for all x, y ∈ R. Such a function Ψ can be constructed by using Hamel bases (see
[3, Theorem 10 in 2.2]). Hence there exist infinitely many function ψ by defining

ψ(x) = ebeΨ(x) for each x ∈ R. If, in addition, a bijection ψ is continuous, then so
is Ψ. Therefore Ψ(x) = cx (x ∈ R) for some c ∈ R, and hence ψ(x) = βαx (x ∈ R)
for some α, β ∈ R+.
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3. Proofs of main results

Proof of Theorem 2.1. By definition, it is obvious that ∗φ is a commutative binary
operation on R2. Take A,B,C ∈ R2 arbitrarily. Then

((A ∗φ B) ∗φ C)+ = φ−1(φ((A ∗φ B)+) + φ(C+))

= φ−1(φ(A+) + φ(B+) + φ(C+))

holds. Therefore ((A ∗φ B) ∗φ C)+ = ((A′ ∗φ B′) ∗φ C ′)+ holds for any permutation
A′B′C ′ of {ABC}, and hence we have

((A ∗φ B) ∗φ C)+ = ((C ∗φ B) ∗φ A)+(3.1)

= (A ∗φ (C ∗φ B))+ = (A ∗φ (B ∗φ C))+.

Also we have

((A ∗φ B) ∗φ C)− =
φ((A ∗φ B)+)(A ∗φ B)− + φ(C+)C−

φ((A ∗φ B)+) + φ(C+)

=
φ(A+)A− + φ(B+)B− + φ(C+)C−

φ(A+) + φ(B+) + φ(C+)
.

Then ((A ∗φ B) ∗φ C)− = ((A′ ∗φ B′) ∗φ C ′)− holds for any permutation A′B′C ′ of
{ABC}, and hence we have

((A ∗φ B) ∗φ C)− = ((C ∗φ B) ∗φ A)−(3.2)

= (A ∗φ (C ∗φ B))− = (A ∗φ (B ∗φ C))−.

Therefore we have from (3.1) and (3.2) that ∗φ is associative. Consequently, ∗φ is
a commutative semigroup operation on R2. □

We need the following lemma to show Theorem 2.2.

Lemma 3.1. Suppose that φ(x)φ(y) = φ(0)φ(x+ y) holds for all x, y ∈ R. Then

φ−1(φ(a+ c) + φ(b+ c)) = φ−1(φ(a) + φ(b)) + c

holds for all a, b, c ∈ R.

Proof. Put λ = 1
φ(0) . Then we have from hypothesis that

(3.3) x+ y = φ−1(λφ(x)φ(y))

for all x, y ∈ R. Take a, b, c ∈ R arbitrarily. Then we have from hypothesis and
(3.3), applied to x = φ−1(φ(a) + φ(b)) and y = c that

φ−1(φ(a+ c) + φ(b+ c)) = φ−1(λφ(a)φ(c) + λφ(b)φ(c))

= φ−1(λ(φ(a) + φ(b))φ(c))

= φ−1(λφ(φ−1(φ(a) + φ(b)))φ(c))

= φ−1(φ(a) + φ(b)) + c,

which implies the desired equation. □
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Proof of Theorem 2.2. The implication (i) ⇒ (ii) follows from definition.
(ii) ⇒ (iii). Suppose that

((A ∗φ B) + C)− = ((A+ C) ∗φ (B + C))−

holds for all A,B,C ∈ R2. Take x, y ∈ R arbitrarily and put

A = (x+ 1, x− 1), B = (0, 0) and C = (y, y).

Then

(3.4) A+ = x, B+ = 0, C+ = y, A− = 1, B− = 0 and C− = 0.

By hypothesis, we have

(A ∗φ B)− + C− = ((A ∗φ B) + C)− = ((A+ C) ∗φ (B + C))−,

and hence

(3.5)
φ(A+)A− + φ(B+)B−

φ(A+) + φ(B+)
+ C−

=
φ(A+ + C+)(A− + C−) + φ(B+ + C+)(B− + C−)

φ(A+ + C+) + φ(B+ + C+)
.

Then we have from (3.4) and (3.5) that

(3.6)
φ(x)

φ(x) + φ(0)
=

φ(x+ y)

φ(x+ y) + φ(y)
.

By deforming (3.6), we obtain that φ(x)φ(y) = φ(0)φ(x+ y).
(iii) ⇒ (i). Suppose that φ(x)φ(y) = φ(0)φ(x + y) holds for all x, y ∈ R. Take

A,B,C ∈ R2 arbitrarily. Then we have

(3.7) ((A ∗φ B) + C)+ = (A ∗φ B)+ + C+ = φ−1(φ(A+) + φ(B+)) + C+

and

(3.8) ((A ∗φ B) + C)− = (A ∗φ B)− + C− =
φ(A+)A− + φ(B+)B−

φ(A+) + φ(B+)
+ C−.

Also we have from Lemma 3.1 that

((A+ C) ∗φ (B + C))+ = φ−1(φ(A+ + C+) + φ(B+ + C+))

= φ−1(φ(A+) + φ(B+)) + C+,

and hence we obtain from (3.7) that

(3.9) ((A ∗φ B) + C)+ = ((A+ C) ∗φ (B + C))+.

Put λ = 1
φ(0) . Then we have from hypothesis that

((A+ C) ∗φ (B + C))− =
φ(A+ + C+)(A− + C−) + φ(B+ + C+)(B− + C−)

φ(A+ + C+) + φ(B+ + C+)

=
λφ(A+)φ(C+)(A− + C−) + λφ(B+)φ(C+)(B− + C−)

λφ(A+)φ(C+) + λφ(B+)φ(C+)

=
φ(A+)(A− + C−) + φ(B+)(B− + C−)

φ(A+) + φ(B+)
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=
φ(A+)A− + φ(B+)B−

φ(A+) + φ(B+)
+ C−

and hence we obtain from (3.8) that

(3.10) ((A ∗φ B) + C)− = ((A+ C) ∗φ (B + C))−.

By (3.9) and (3.10), we have (A ∗φB) +C = (A+C) ∗φ (B+C). Thus we see that
the distribution law (1.3) holds. □
Remark 3.2. One of the reviewers of this paper obtained a simple proof of the
implication (iii) ⇒ (i) in Theorem 2.2 by using the transform Ψ (x) = logψ (x) −
logψ (0) introduced in Remark 2.3.
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59–64.

[2] J. Aczél, The state of the second part of Hilbert’s Fifth Problem, Bull. Amer. Math. Soc. 20
(1989), 153–163.

[3] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Math-
ematics and its Applications, 31, Cambridge University Press, Cambridge, 1989.
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