COMMUTATIVE SEMIGROUP OPERATIONS ON R ${ }^{2}$ COMPATIBLE WITH THE ORDINARY ADDITIVE OPERATION

SEIJI ANBE, SIN-EI TAKAHASI, MAKOTO TSUKADA, AND TAKESHI MIURA

Abstract

We give a commutative semigroup operation $*_{\varphi}$ on the 2 dimensional Euclid space \mathbf{R}^{2} associated with a bijection φ from \mathbf{R} to \mathbf{R}_{+}, the set of all positive numbers. We show that $\left(A *_{\varphi} B\right)+C=(A+C) *_{\varphi}(B+C)$ holds for all $A, B, C \in \mathbf{R}^{2}$ if and only if $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+y)$ holds for all $x, y \in \mathbf{R}$.

1. Introduction

Semigroup operations on the real numbers \mathbf{R} have a long history (cf. [1, 2, 3]). However, the history of semigroup operations on the 2 dimensional Euclid space \mathbf{R}^{2} is not the case. In this note, we reveal a certain commutative semigroup operation on \mathbf{R}^{2} from the standpoint of distribution law.

Denote by + the ordinary additive operation on \mathbf{R}^{2} defined by

$$
(a, b)+(c, d)=(a+c, b+d)
$$

for each $a, b, c, d \in \mathbf{R}$. Then there are several commutative semigroup operations \times on \mathbf{R}^{2} satisfying the following distribution law :

$$
\begin{equation*}
(A+B) \times C=A \times C+B \times C \quad\left(A, B, C \in \mathbf{R}^{2}\right) \tag{1.1}
\end{equation*}
$$

Of course we can consider its converse distribution law :

$$
\begin{equation*}
(A \times B)+C=(A+C) \times(B+C) \quad\left(A, B, C \in \mathbf{R}^{2}\right) \tag{1.2}
\end{equation*}
$$

The distribution law (1.1) is incompatible with (1.2). Actually, assume that both (1.1) and (1.2) hold. Taking $A=B=C=0$ in (1.1), we have $0 \times 0=0$. Then, taking $A=B=0$ in (1.2), we have $C=C \times C$. Therefore, taking $A=B=C$ in (1.2), we have $2 C=(2 C) \times(2 C)=4 C$. So we obtain that $C=0$ for all $C \in \mathbf{R}^{2}$, a contradiction.

Therefore it is raised a natural question whether there exists a commutative semigroup operation on \mathbf{R}^{2} which is compatible with the ordinary additive operation + on \mathbf{R}^{2}.

[^0]The purpose of this note is to give a commutative semigroup operation $*_{\varphi}$ on \mathbf{R}^{2} associated with a bijection φ from \mathbf{R} to \mathbf{R}_{+}, the set of all positive numbers and to characterize a bijection φ satisfying the distribution law :

$$
\begin{equation*}
\left(A *_{\varphi} B\right)+C=(A+C) *_{\varphi}(B+C) \quad\left(A, B, C \in \mathbf{R}^{2}\right) \tag{1.3}
\end{equation*}
$$

Indeed, such a φ can be characterized as a bijection such that $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+$ y) for all $x, y \in \mathbf{R}$. In particular if φ is continuous, then $\varphi(x)=\beta \alpha^{x}(x \in \mathbf{R})$ for some positive numbers α and β.

2. MAIN RESULTS

For each $A=(a, b) \in \mathbf{R}^{2}$, we put

$$
A^{+}=\frac{a+b}{2} \quad \text { and } \quad A^{-}=\frac{a-b}{2}
$$

Then it is obvious that

$$
A=\left(A^{+}+A^{-}, A^{+}-A^{-}\right)
$$

holds.
Throughout the remainder of the note, let φ be a bijection from \mathbf{R} to \mathbf{R}_{+}. For each $A, B \in \mathbf{R}^{2}$, take an element $C \in \mathbf{R}^{2}$ such that

$$
C^{+}=\varphi^{-1}\left(\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)\right) \quad \text { and } \quad C^{-}=\frac{\varphi\left(A^{+}\right) A^{-}+\varphi\left(B^{+}\right) B^{-}}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)}
$$

Such an element C is unique and is denoted by $A *_{\varphi} B$. In this case we have the following

Theorem 2.1. The binary operation $*_{\varphi}$ is a commutative semigroup operation on \mathbf{R}^{2}.

Moreover we have the following interesting characterization.
Theorem 2.2. The following three conditions are equivalent:
(i) The distribution law (1.3) holds.
(ii) $\left(\left(A *_{\varphi} B\right)+C\right)^{-}=\left((A+C) *_{\varphi}(B+C)\right)^{-}$holds for all $A, B, C \in \mathbf{R}^{2}$.
(iii) $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+y)$ holds for all $x, y \in \mathbf{R}$.

Remark 2.3. There are many bijections ψ from \mathbf{R} to \mathbf{R}_{+}such that $\psi(x) \psi(y)=$ $\psi(0) \psi(x+y)$ for all $x, y \in \mathbf{R}$. In fact, put $\Psi(x)=\log \psi(x)-b$ for each $x \in \mathbf{R}$, where $b=\log \psi(0)$. Then Ψ is a real-valued function on \mathbf{R} such that $\Psi(x+y)=\Psi(x)+\Psi(y)$ for all $x, y \in \mathbf{R}$. Such a function Ψ can be constructed by using Hamel bases (see [3, Theorem 10 in 2.2]). Hence there exist infinitely many function ψ by defining $\psi(x)=e^{b} e^{\Psi(x)}$ for each $x \in \mathbf{R}$. If, in addition, a bijection ψ is continuous, then so is Ψ. Therefore $\Psi(x)=c x(x \in \mathbf{R})$ for some $c \in \mathbf{R}$, and hence $\psi(x)=\beta \alpha^{x}(x \in \mathbf{R})$ for some $\alpha, \beta \in \mathbf{R}_{+}$.

3. Proofs of main results

Proof of Theorem 2.1. By definition, it is obvious that $*_{\varphi}$ is a commutative binary operation on \mathbf{R}^{2}. Take $A, B, C \in \mathbf{R}^{2}$ arbitrarily. Then

$$
\begin{aligned}
\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{+} & =\varphi^{-1}\left(\varphi\left(\left(A *_{\varphi} B\right)^{+}\right)+\varphi\left(C^{+}\right)\right) \\
& =\varphi^{-1}\left(\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)+\varphi\left(C^{+}\right)\right)
\end{aligned}
$$

holds. Therefore $\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{+}=\left(\left(A^{\prime} *_{\varphi} B^{\prime}\right) *_{\varphi} C^{\prime}\right)^{+}$holds for any permutation $A^{\prime} B^{\prime} C^{\prime}$ of $\{A B C\}$, and hence we have

$$
\begin{align*}
\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{+} & =\left(\left(C *_{\varphi} B\right) *_{\varphi} A\right)^{+} \tag{3.1}\\
& =\left(A *_{\varphi}\left(C *_{\varphi} B\right)\right)^{+}=\left(A *_{\varphi}\left(B *_{\varphi} C\right)\right)^{+}
\end{align*}
$$

Also we have

$$
\begin{aligned}
\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{-} & =\frac{\varphi\left(\left(A *_{\varphi} B\right)^{+}\right)\left(A *_{\varphi} B\right)^{-}+\varphi\left(C^{+}\right) C^{-}}{\varphi\left(\left(A *_{\varphi} B\right)^{+}\right)+\varphi\left(C^{+}\right)} \\
& =\frac{\varphi\left(A^{+}\right) A^{-}+\varphi\left(B^{+}\right) B^{-}+\varphi\left(C^{+}\right) C^{-}}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)+\varphi\left(C^{+}\right)}
\end{aligned}
$$

Then $\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{-}=\left(\left(A^{\prime} *_{\varphi} B^{\prime}\right) *_{\varphi} C^{\prime}\right)^{-}$holds for any permutation $A^{\prime} B^{\prime} C^{\prime}$ of $\{A B C\}$, and hence we have

$$
\begin{align*}
\left(\left(A *_{\varphi} B\right) *_{\varphi} C\right)^{-} & =\left(\left(C *_{\varphi} B\right) *_{\varphi} A\right)^{-} \tag{3.2}\\
& =\left(A *_{\varphi}\left(C *_{\varphi} B\right)\right)^{-}=\left(A *_{\varphi}\left(B *_{\varphi} C\right)\right)^{-}
\end{align*}
$$

Therefore we have from (3.1) and (3.2) that $*_{\varphi}$ is associative. Consequently, $*_{\varphi}$ is a commutative semigroup operation on \mathbf{R}^{2}.

We need the following lemma to show Theorem 2.2.
Lemma 3.1. Suppose that $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+y)$ holds for all $x, y \in \mathbf{R}$. Then

$$
\varphi^{-1}(\varphi(a+c)+\varphi(b+c))=\varphi^{-1}(\varphi(a)+\varphi(b))+c
$$

holds for all $a, b, c \in \mathbf{R}$.
Proof. Put $\lambda=\frac{1}{\varphi(0)}$. Then we have from hypothesis that

$$
\begin{equation*}
x+y=\varphi^{-1}(\lambda \varphi(x) \varphi(y)) \tag{3.3}
\end{equation*}
$$

for all $x, y \in \mathbf{R}$. Take $a, b, c \in \mathbf{R}$ arbitrarily. Then we have from hypothesis and (3.3), applied to $x=\varphi^{-1}(\varphi(a)+\varphi(b))$ and $y=c$ that

$$
\begin{aligned}
\varphi^{-1}(\varphi(a+c)+\varphi(b+c)) & =\varphi^{-1}(\lambda \varphi(a) \varphi(c)+\lambda \varphi(b) \varphi(c)) \\
& =\varphi^{-1}(\lambda(\varphi(a)+\varphi(b)) \varphi(c)) \\
& =\varphi^{-1}\left(\lambda \varphi\left(\varphi^{-1}(\varphi(a)+\varphi(b))\right) \varphi(c)\right) \\
& =\varphi^{-1}(\varphi(a)+\varphi(b))+c
\end{aligned}
$$

which implies the desired equation.

Proof of Theorem 2.2. The implication (i) \Rightarrow (ii) follows from definition.
(ii) \Rightarrow (iii). Suppose that

$$
\left(\left(A *_{\varphi} B\right)+C\right)^{-}=\left((A+C) *_{\varphi}(B+C)\right)^{-}
$$

holds for all $A, B, C \in \mathbf{R}^{2}$. Take $x, y \in \mathbf{R}$ arbitrarily and put

$$
A=(x+1, x-1), B=(0,0) \text { and } C=(y, y) .
$$

Then

$$
\begin{equation*}
A^{+}=x, B^{+}=0, C^{+}=y, A^{-}=1, B^{-}=0 \text { and } C^{-}=0 . \tag{3.4}
\end{equation*}
$$

By hypothesis, we have

$$
\left(A *_{\varphi} B\right)^{-}+C^{-}=\left(\left(A *_{\varphi} B\right)+C\right)^{-}=\left((A+C) *_{\varphi}(B+C)\right)^{-},
$$

and hence

$$
\begin{align*}
& \frac{\varphi\left(A^{+}\right) A^{-}+\varphi\left(B^{+}\right) B^{-}}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)}+C^{-} \tag{3.5}\\
& \quad=\frac{\varphi\left(A^{+}+C^{+}\right)\left(A^{-}+C^{-}\right)+\varphi\left(B^{+}+C^{+}\right)\left(B^{-}+C^{-}\right)}{\varphi\left(A^{+}+C^{+}\right)+\varphi\left(B^{+}+C^{+}\right)} .
\end{align*}
$$

Then we have from (3.4) and (3.5) that

$$
\begin{equation*}
\frac{\varphi(x)}{\varphi(x)+\varphi(0)}=\frac{\varphi(x+y)}{\varphi(x+y)+\varphi(y)} . \tag{3.6}
\end{equation*}
$$

By deforming (3.6), we obtain that $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+y)$.
(iii) \Rightarrow (i). Suppose that $\varphi(x) \varphi(y)=\varphi(0) \varphi(x+y)$ holds for all $x, y \in \mathbf{R}$. Take $A, B, C \in \mathbf{R}^{2}$ arbitrarily. Then we have

$$
\begin{equation*}
\left(\left(A *_{\varphi} B\right)+C\right)^{+}=\left(A *_{\varphi} B\right)^{+}+C^{+}=\varphi^{-1}\left(\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)\right)+C^{+} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left(A *_{\varphi} B\right)+C\right)^{-}=\left(A *_{\varphi} B\right)^{-}+C^{-}=\frac{\varphi\left(A^{+}\right) A^{-}+\varphi\left(B^{+}\right) B^{-}}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)}+C^{-} . \tag{3.8}
\end{equation*}
$$

Also we have from Lemma 3.1 that

$$
\begin{aligned}
\left((A+C) *_{\varphi}(B+C)\right)^{+} & =\varphi^{-1}\left(\varphi\left(A^{+}+C^{+}\right)+\varphi\left(B^{+}+C^{+}\right)\right) \\
& =\varphi^{-1}\left(\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)\right)+C^{+},
\end{aligned}
$$

and hence we obtain from (3.7) that

$$
\begin{equation*}
\left(\left(A *_{\varphi} B\right)+C\right)^{+}=\left((A+C) *_{\varphi}(B+C)\right)^{+} . \tag{3.9}
\end{equation*}
$$

Put $\lambda=\frac{1}{\varphi(0)}$. Then we have from hypothesis that

$$
\begin{aligned}
\left((A+C) *_{\varphi}(B+C)\right)^{-} & =\frac{\varphi\left(A^{+}+C^{+}\right)\left(A^{-}+C^{-}\right)+\varphi\left(B^{+}+C^{+}\right)\left(B^{-}+C^{-}\right)}{\varphi\left(A^{+}+C^{+}\right)+\varphi\left(B^{+}+C^{+}\right)} \\
& =\frac{\lambda \varphi\left(A^{+}\right) \varphi\left(C^{+}\right)\left(A^{-}+C^{-}\right)+\lambda \varphi\left(B^{+}\right) \varphi\left(C^{+}\right)\left(B^{-}+C^{-}\right)}{\lambda \varphi\left(A^{+}\right) \varphi\left(C^{+}\right)+\lambda \varphi\left(B^{+}\right) \varphi\left(C^{+}\right)} \\
& =\frac{\varphi\left(A^{+}\right)\left(A^{-}+C^{-}\right)+\varphi\left(B^{+}\right)\left(B^{-}+C^{-}\right)}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)}
\end{aligned}
$$

$$
=\frac{\varphi\left(A^{+}\right) A^{-}+\varphi\left(B^{+}\right) B^{-}}{\varphi\left(A^{+}\right)+\varphi\left(B^{+}\right)}+C^{-}
$$

and hence we obtain from (3.8) that

$$
\begin{equation*}
\left(\left(A *_{\varphi} B\right)+C\right)^{-}=\left((A+C) *_{\varphi}(B+C)\right)^{-} \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10), we have $\left(A *_{\varphi} B\right)+C=(A+C) *_{\varphi}(B+C)$. Thus we see that the distribution law (1.3) holds.

Remark 3.2. One of the reviewers of this paper obtained a simple proof of the implication (iii) \Rightarrow (i) in Theorem 2.2 by using the transform $\Psi(x)=\log \psi(x)-$ $\log \psi(0)$ introduced in Remark 2.3.

Acknowledgement. The authors are grateful to the reviewer for the carful reading of the paper and for helpful suggestions and comments.

References

[1] J. Aczél, Sur les opérations défines pour nombres réels, Bull. Soc. Math. France 76 (1948), 59-64.
[2] J. Aczél, The state of the second part of Hilbert's Fifth Problem, Bull. Amer. Math. Soc. 20 (1989), 153-163.
[3] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31, Cambridge University Press, Cambridge, 1989.
[4] R. Craigen and Z. Páles, The associativity equation revisited, Aequationes. Math. 37 (1989), 306-312.

Manuscript received 4 June 2014 revised 23 February 2015

Seiji Anbe

The Open University of Japan, Chiba, 261-8586, Japan
E-mail address: 5zp7ac@bma.biglobe.ne.jp
Sin-Ei TAKAhasi
Department of Information Science, Faculty of Science, Toho University, Funabashi, Chiba 2748510, Japan

E-mail address: sin_ei1@yahoo.co.jp
Makoto Tsukada
Department of Information Science, Faculty of Science, Toho University, Funabashi, Chiba 2748510, Japan

E-mail address: tsukada@is.sci.toho-u.ac.jp
Takeshi Miura
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
E-mail address: miura@math.sc.niigata-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 22A15; Secondary 06F05, 39B22.
 Key words and phrases. Commutative semigroup operation, distribution law.
 The second and third authors are partially supported by JSPS Kakenhi Grant (C)-25400120. Also the fourth author partially supported by JSPS Kakenhi Grant Number 15K04921.

