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(1) The boundary {x ∈ X : ∥x∥ = 1} of the unit ball contains no closed
segments.

(2) For all x, y ∈ X, with x ̸= y, if ∥x∥ = ∥y∥ = 1, then ∥x+ y∥ < 2.
(3) For all x, y ∈ X and t ∈ [0, 1], there exists a unique z ∈ X such that

∥x− z∥ = t∥x− y∥ and ∥z − y∥ = (1− t)∥x− y∥.
In 1963, De Marr [11] obtained the following fixed point theorem:
If K is a nonempty compact convex subset of a Banach space X, and A is a

nonempty family of commuting nonexpansive self-maps of K, then the family A has
a common fixed point in K.

In [9], Chen and Li extended De Marr’s fixed point theorem to a noncommuting
family of nonexpansive maps.

Convexity in metric spaces was first introduced by Takahashi in [17]. In 1999,
Bula [5] extended the notion of strict convexity to metric spaces using condition (3).
A metric space (X, d) is called convex [1, 5, 6] if for each x, y ∈ X and for each
t ∈ [0, 1], there exists a z ∈ X such that d(x, z) = td(x, y) and d(z, y) = (1−t)d(x, y).
If this point z is unique for all possible combinations of x, y and t, then the spaceX is
called strictly convex (see also [2]). In strictly convex metric spaces, the intersection
of convex sets is convex, however closed balls in these spaces need not be convex
(see [7]). To overcome this difficulty, Bula imposed an additional condition in the
notion of strict convexity, namely the convex round balls condition: for all w ∈ X,
d(w, z) < max{d(w, x), d(w, y)}. Among other things, Bula extended the Browder-
Göhde-Kirk fixed point theorem and De Marr’s theorem to strictly convex metric
spaces.

This paper deals with a study of fixed points theorems in strictly convex metric
spaces and their applications. A variant of De Marr’s theorem for the family of
Banach operator pairs is given. We also derive an application in best approximation
theory.

2. Preliminaries

Let (X, d) be a metric space.

Definition 2.1 ([5, Definition 2.5]). A set K ⊆ X is said to be convex if for each
x, y ∈ K and for each t ∈ [0, 1], there exists z ∈ K such that

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y).

Definition 2.2 ([5, Definition 2.6]). A metric space X is said to be strictly convex
if for each x, y ∈ X and for each t ∈ [0, 1], there exists a unique z ∈ X such that

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y).

Lemma 2.3. Let {Kα : α ∈ I} be a family of convex sets in a strictly convex metric
space. Then

∩
α∈I Kα is also a convex subset of X.

Lemma 2.3 lets us define the notion of convex hull in a strictly convex metric
space.

Definition 2.4 ([2, Definition 2.13]). Let X be a strictly convex metric space and
K ⊆ X. The convex hull of K is the set

co (K) =
∩

{C ⊆ X : K ⊆ C and C is convex}.
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co (K) will denote the closure of the convex hull of K.

Remark 2.5. Let (X, d) be a strictly convex metric space and K ⊆ X. Then:

(i) co (K) is convex and K ⊆ co (K);
(ii) co (K) = K if and only if K is convex;
(iii) co (K) = K if and only if K is closed and convex.

In a strictly convex metric space, the intersection of convex sets is a convex set.
However, closed balls in strictly convex metric space are not necessarily convex sets
(see [7]). So, we require the following definition in addition.

Definition 2.6 ([5, Definition 3.1]). A strictly convex metric space (X, d) is said
to be a strictly convex metric space with convex round balls if for all x, y, w ∈ X
(x ̸= y) and for all t ∈ (0, 1), there exists z ∈ X such that

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)

d(w, z) < max{d(w, x), d(w, y)}.

The above strict inequality shows that if x and y belong to

S(w, r) = {a ∈ X : d(a,w) = r}, r > 0,

then z does not belong to S(w, r), that is, S(w, r) does not contain straight lines.

Lemma 2.7 ([5, Lemma 3.1]). Let (X, d) be a strictly convex metric space with
convex round balls. Then the closed ball B(a, r) = {y ∈ X : d(a, y) ⩽ r} is a convex
set for every r > 0 and every a ∈ X.

Remark 2.8 ([5, page 8]). The condition:
For all x, y, w ∈ X (x ̸= y) and for all t ∈ (0, 1), there exists z ∈ X such that
d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y) and d(w, z) ≤ max{d(w, x), d(w, y)}
is equivalent with the condition of convexity of closed balls.

Example 2.9 ([5, page 8]). The set R with the metric d(x, y) = |x − y| and the

set R2 with the metric d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2, where x = (x1, x2),
y = (y1, y2) are both strictly convex metric spaces with convex round balls.

Example 2.10 ([5, page 8]). The set R2 with the metric d(x, y) = max{|x1 −
y1|, |x2 − y2|}, where x = (x1, x2), y = (y1, y2) is not a strictly convex metric space.

Example 2.11 ([5, page 8]). A trivial example of a strictly convex metric space
that is not a strictly convex metric space with convex round balls is X = {x} with
d(x, x) = 0. For a nontrivial example see [7, Section 3].

Lemma 2.12 ([5, Lemma 3.2]). Let (X, d) be a strictly convex metric space with
convex round balls, let K ⊆ X be a compact and convex set, and y ∈ X. Then there
exists a unique z ∈ K such that

d(y, z) = inf{d(x, y) : x ∈ K}.

Definition 2.13 ([5, Definition 3.2]). A convex set K in a metric space (X, d) is
said to have normal structure if for each bounded and convex subset C ⊆ K that
contains more than one point, there is some point y ∈ C such that

ry(C) = sup{d(x, y) : x ∈ C} < δ(C) = sup{d(x, y) : x, y ∈ C}.
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Lemma 2.14 ([5, Lemma 3.3]). Every convex and compact set in a strictly convex
metric space (X, d) with convex round balls has normal structure.

In 2007, Chen and Li [8] introduced the class of Banach operator pairs.

Definition 2.15 ([8, Definition 2.1]). The pair (I, T ) of two self-maps I and T in a
metric space (X, d) is called a Banach operator pair if the set F (T ) of fixed points
of T is I-invariant, namely I(F (T )) ⊆ F (T ).

Note that if (I, T ) is a Banach operator pair, (T, I) need not be such a pair (see [8,
Example 1]).

Definition 2.16 ([9, Definition 3.2]). Let T and I be two self-maps of a metric space
(X, d). The pair (I, T ) is called a symmetric Banach operator pair if both (T, I)
and (I, T ) are Banach operator pairs, i.e., T (F (I)) ⊆ F (I) and I(F (T )) ⊆ F (T ).

Definition 2.17 ([9, Definition 3.4]). A nonempty family A of self-maps of a metric
spaceX is called a Banach operator family if for all S, T ∈ A, (S, T ) is a symmetrical
Banach operator pair.

It is easy to see that the pair (I, T ) is a symmetric Banach operator pair if and
only if T and I are commuting on F (T ) ∪ F (I).

3. Fixed point results

Motivated by the results of the paper [5], we prove first the following theorem.

Theorem 3.1. Let (X, d) be a strictly convex metric space with convex round balls.
Let K ⊆ X be a closed convex set. If T : K → K is a nonexpansive map and
co (T (K)) is compact, then T has a fixed point in K.

Proof. Let A = co (T (K)). Since T (K) ⊆ K, we have

A = co (T (K)) ⊆ co(K) = K.

Thus A is a compact convex subset of K and

T (A) ⊆ T (K) ⊆ co (T (K)) = A.

So the restriction T : A → A has a fixed point by [5, Theorem 4.1]. □

In the next result, we consider two nonexpansive mappings which form a Banach
operator pair.

Theorem 3.2. Let (X, d) be a strictly convex metric space with convex round balls.
Let K ⊆ X be a closed convex set and let S, T : K → K be two nonexpansive maps.
If (S, T ) is a Banach operator pair and co (T (K)) is compact, then F (S, T ) ̸= ∅.

Proof. By Theorem 3.1, Fix(T ) ̸= ∅. Also Fix(T ) is closed and convex by [5,
Lemma 4.1]. Notice that

Fix(T ) ⊆ co (T (K))

and so Fix(T ) is compact. Since S(Fix(T )) ⊆ Fix(T ), S has a fixed point in
Fix(T ) by Theorem 3.1. As a result, F (S, T ) = Fix(S) ∩ Fix(T ) ̸= ∅. □
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Corollary 3.3. Let (X, d) be a strictly convex metric space with convex round
balls. Let K ⊆ X be a closed convex set and S, T : K → K such that (T, S) is a
Banach operator pair on K. If S is continuous on K, T is nonexpansive, Fix(S)
is nonempty and convex and co (T (K)) is compact, then F (S, T ) ̸= ∅.

Proof. We have T (Fix(S)) ⊆ Fix(S). Also, Fix(S) is closed and convex. It is clear
that T is a selfmap of Fix(S). Since co (T (Fix(S))) ⊆ co (T (K)), it follows that
co (T (Fix(S))) is compact. By Theorem 3.1, F (S, T ) ̸= ∅. □

The following result extends [9, Proposition 3.3] from normed to strictly convex
metric spaces.

Proposition 3.4. Let (X, d) be a strictly convex metric space. Let K ⊆ X be a
convex set, S : K → K and α : K → [0, 1] be a map such that the set {x ∈ X :
α(x) = 0} is S-invariant, that is, α(Sx) = 0, for all x ∈ {x ∈ X : α(x) = 0}. Let
Tα : K → K satisfy

d(x, Tαx) = α(x)d(x, Sx) and d(Sx, Tαx) = (1− α(x))d(x, Sx).

Then (S, Tα) is a symmetric Banach operator pair.

Proof. If x ∈ Fix(S), then d(x, Sx) = 0 and so d(x, Tαx) = 0 and d(Sx, Tαx) = 0,
which imply that x = Tαx and Sx = Tαx. As a result, Tαx = Sx = x ∈ Fix(S)
and hence Tα(Fix(S)) ⊆ Fix(S).

Now let x ∈ Fix(Tα). Then x = Tαx and so α(x)d(x, Sx) = 0. We consider
two cases. If α(x) ̸= 0, then Sx = x ∈ Fix(Tα). If α(x) = 0, then α(Sx) = 0
and so d(Sx, Tα(Sx)) = α(Sx)d(Sx, S(Sx)) = 0, which implies that Tα(Sx) = Sx,
that is, Sx ∈ Fix(Tα). Consequently, S(Fix(Tα)) ⊆ Fix(Tα). Hence, (S, Tα) is a
symmetric Banach operator pair. □

The following theorem extends [9, Lemma 2.2] from normed to strictly convex
metric spaces.

Theorem 3.5. Let (X, d) be a strictly convex metric space with convex round balls.
Let K ⊆ X be a closed convex set and let T : K → K be a nonexpansive map such
that there exists a nonempty compact convex set C ⊆ K satisfying T (C) = C and
the last set does not reduce to a point. Then there exists a closed convex set K1

such that:

(i) K1 ⊆ K and T (K1) ⊆ K1,
(ii) C ∩ (K1)

c ̸= ∅.

Proof. By Lemma 2.14, there is u ∈ C such that

p = ru(C) = sup{d(x, u) : x ∈ C} < δ(C)

where δ(C) is the diameter of C. Since C is not reduced to a point, δ(C) > 0.
Define, for each x ∈ C,

U(x) = {y : d(y, x) ⩽ p}.
Since u ∈ U(x) for each x ∈ C, we have

K1 =
∩
x∈C

U(x) ̸= ∅.
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Note that K1 is closed and convex. For any x ∈ K1 ∩ K and any z ∈ C we have
x ∈ U(z), that is, d(x, z) ⩽ p. Since T (C) = C, there exists y ∈ C such that
z = Ty. Since T is nonexpansive,

d(Tx, z) = d(Tx, Ty) ⩽ d(x, y) ⩽ p

and so Tx ∈ U(z). Since this holds for any z ∈ C, we have

Tx ∈
∩
z∈C

U(z) = K1,

which implies that Tx ∈ K1 ∩K. Thus Tx ∈ K1 ∩K for all x ∈ K1 ∩K. Since C
is compact, there exist x0, x1 ∈ C such that

d(x0, x1) = δ(C) > p.

Note also that x1 /∈ U(x0) ⊇ K1 and hence x1 ∈ C∩(K1)
c, that is, C∩(K1)

c ̸= ∅. □

We conclude this section with the following result which generalizes De Marr’s
theorem, that is, main result of [9] (Theorem 3.5) for a family of nonexpansive
mappings, from normed to strictly convex spaces.

Theorem 3.6. Let (X, d) be a strictly convex metric space with convex round balls.
Let K ⊆ X be a nonempty closed convex set and A a nonempty family of nonex-
pansive maps of K into itself. If A is a Banach operator family and there exists a
T ∈ A such that co (T (K)) is compact, then A has a common fixed point in K.

Proof. We shall show that

F (T, S1, S2) ̸= ∅
for any two maps S1, S2 ∈ A. Let Γ denote the set of all nonempty closed and
convex subsets C of K such that T (C) ⊆ C, S1(C) ⊆ C,S2(C) ⊆ C and co (T (C))
is compact for all C ∈ Γ. On the set Γ, define a partial order “≤” as the set
inclusion, that is, Ci ≤ Cj if and only if Ci ⊆ Cj . We can find a minimal set
C0 ∈ Γ. If the set C0 is a singleton, then F (T, S1, S2) ̸= ∅. Suppose to the contrary
that C0 contains at least two different points. By Theorem 3.2, T and S1 have a
nonempty compact convex common fixed point set F = F (T, S1) in C0 satisfying
T (F ) = F and S1(F ) = F . Since both (S2, T ) and (S2, S1) are Banach operator
pairs, we have S2(F ) ⊆ F . Using Zorn’s lemma, there is a minimal nonempty
compact convex subset of C0, say C1 such that

T (C1) = C1, S1(C1) = C1 and S2(C1) ⊆ C1.

Next, we show that S2(C1) = C1. Indeed, if S2(C1) ̸= C1, then S2(S2(C1)) ⊆
S2(C1) and S2(C1) is compact. Hence, S2(C1) ⊆ C1 ⊆ F and T (S2(C1)) = S2(C1)
and S1(S2(C1)) = S2(C1). But this contradicts the minimality of C1. If C1 has only
one point, then

F (T, S1, S2) ̸= ∅.
So suppose that C1 has at least two points. Then, by Theorem 3.5, there exists a
set K1 ∈ Γ satisfying C1 ∩ (K1)

c ̸= ∅, which implies that K1 is a proper subset of
C0. This contradicts the minimality of C0. Consequently C0 is a singleton and so

F (T, S1, S2) ̸= ∅.
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It can be shown by induction that for any finite family of maps Sj ∈ A, j =
1, 2, . . . , n, the common fixed point set F (T, S1, S2, . . . , Sn) ̸= ∅. Let

Λ = {F (T, S) : S ∈ A}.

Then for any S ∈ A, F (T, S) is a nonempty compact set and for any Sj ∈ A,
j = 1, 2, . . . , n, we have

n∩
j=1

F (T, Sj) = F (T, S1, S2, . . . , Sn) ̸= ∅.

Thus the set family Λ has the finite intersection property and hence∩
S∈A

F (T, S) ̸= ∅,

that is, the family A has a fixed point in K. □

4. Best approximations and fixed points

Let (X, d) be a metric space, K ⊆ X and x ∈ X. Recall (see, e.g., [8, 16]) that a
point y ∈ K is called a best approximation of x in K if

d(x, y) = dist (x,K) = inf{d(x, z) : z ∈ K}.

The set of all best approximations of x in K will be denoted by PK(x). The
problem of proving the existence, and possibly finding, best approximations is one
of the important ones in applications.

Lemma 4.1. In a strictly convex metric space (X, d) with convex round balls, PK(x)
is a singleton if PK(x) is nonempty and K ⊆ X is convex.

Proof. Suppose PK(x) is nonempty. If y1, y2 ∈ PK(x) with y1 ̸= y2, then

d(y1, x) = dist (x,K) and d(y2, x) = dist (x,K).

Since K is convex, for fixed t ∈ [0, 1], there exists y0 ∈ K such that

d(y1, y0) = td(y1, y2) and d(y2, y0) = (1− t)d(y1, y2),

d(x, y0) < max{d(x, y1), d(x, y2)}.

This implies that

dist (x,K) ≤ d(x, y0) < max{dist (x,K), dist(x,K)} = dist (x,K),

which is a contradiction. Hence PK(x) is a singleton. □

The following theorem gives sufficient conditions in order that the set PK(z) be
nonempty, for some specific z ∈ X.

Theorem 4.2. Let (X, d) be a strictly convex metric space. Let K ⊆ X be a closed
convex set and T : X → X be a nonexpansive map. If T has a fixed point z ∈ X, K
is T -invariant and co (T (K)) is compact, then the set of best approximations PK(z)
is not empty.
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Proof. Since co (T (K)) is compact, there exists y ∈ co (T (K)) such that

dist (z, co(T (K))) = d(z, y).

Note that y ∈ K, since K is closed and co (T (K)) ⊆ K. Also,

dist (z, co(T (K))) ⩽ dist (z, T (K)) ⩽ d(z, Tw)

= d(Tz, Tw) ⩽ d(z, w)

for all w ∈ K. Now

dist (z,K) ≤ dist (z, co(T (K))) ≤ d(z, w)

for all w ∈ K. Thus

dist (z,K) = dist (z, co(T (K)) = d(z, y).

So y ∈ PK(z), which means that PK(z) ̸= ∅. □

By strengthening the conditions of the previous theorem, we can prove the unique-
ness of best approximation.

Theorem 4.3. Let (X, d) be a strictly convex metric space with convex round balls.
Let K ⊆ X be a closed convex set and T : K → K a nonexpansive map. If T
has a fixed point z and co (T (K)) is compact, then the point z has a unique best
approximation y in K which is also a fixed point of T .

Proof. By Theorem 4.2, PK(z) ̸= ∅. Let y ∈ PK(z). Then d(z, y) = dist (z,K).
Notice that

dist (z,K) ≤ d(z, Ty) = d(Tz, Ty) ≤ d(z, y) = dist (z,K).

This implies that Ty ∈ PK(z) and so T (PK(z)) ⊆ PK(z). But since X is a strictly
convex metric space with convex round balls, PK(z) is a singleton by Lemma 4.1
and so PK(z) = {y}. Hence Ty = y. □
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