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STRICT CONVEXITY AND DE MARR’S THEOREM
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ABSTRACT. The paper is devoted to a study of fixed points theorems in strictly
convex metric spaces and their applications. A variant of De Marr’s theorem for
the family of Banach operator pairs is obtained. We also give an application in
best approximation theory.

1. INTRODUCTION

Let (X,d) be a metric space and let T': X — X. T is called a contraction if
d(Tz,Ty) < ad(z,y) for some a € (0,1) and all z,y € X, and nonexpansive if
d(Tz,Ty) < d(z,y) for all z,y € X. Nonexpansive maps can be viewed as natural
extensions of contractions. Nevertheless fixed point theory for nonexpansive maps
differs sharply from that of contractions in the sense that additional assumptions on
the structure of X and/or restrictions on 7" are needed to guarantee the existence
of at least one fixed point.

The systematic study of fixed points of nonexpansive maps was initiated in 1965.
In [3], Browder proved that every nonexpansive map 7T of a closed bounded convex
subset K of a Hilbert space X into K has a fixed point. Browder [4], Gohde [14],
and Kirk [15] observed that this result could be improved assuming the weaker
condition: X is a uniformly convex space or X is a reflexive Banach space with
normal structure. These results are significant for the “geometric” conditions which
X is required to satisfy. From this point of departure, an extensive theory has been
developed which aims to explore more general conditions on the subset K and the
space X which still guarantee the existence of a fixed point of the nonexpansive
map 1. Two important conditions are the convexity of K and strict convexity
of X.

A subset K of a normed space X is said to be convex if for all z,y € K, the closed
segment [x,y] = {z: 2= Az+(1-N)y, A € [0,1]} C K. It is evident that closed balls
are convex and intersection of convex sets is again a convex set. A Banach space
X is called strictly convex [10, 12, 13] if any of the following equivalent conditions
holds:
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(1) The boundary {z € X : ||z|| = 1} of the unit ball contains no closed
segments.

(2) For all z,y € X, with x # y, if ||z|| = ||y|| = 1, then ||z + y|| < 2.

(3) For all z,y € X and t € [0, 1], there exists a unique z € X such that
|z —z|| =tz —yll and ||z —y|| = (1 = t) [z — yl|.

In 1963, De Marr [11] obtained the following fixed point theorem:

If K is a nonempty compact convex subset of a Banach space X, and 2 is a
nonempty family of commuting nonexpansive self-maps of K, then the family 2 has
a common fized point in K.

In [9], Chen and Li extended De Marr’s fixed point theorem to a noncommuting
family of nonexpansive maps.

Convexity in metric spaces was first introduced by Takahashi in [17]. In 1999,
Bula [5] extended the notion of strict convexity to metric spaces using condition (3).
A metric space (X,d) is called convex [1, 5, 6] if for each z,y € X and for each
t € [0,1], there exists a z € X such that d(z, z) = td(x,y) and d(z,y) = (1—t)d(x,y).
If this point z is unique for all possible combinations of x, y and ¢, then the space X is
called strictly convex (see also [2]). In strictly convex metric spaces, the intersection
of convex sets is convex, however closed balls in these spaces need not be convex
(see [7]). To overcome this difficulty, Bula imposed an additional condition in the
notion of strict convexity, namely the convex round balls condition: for all w € X,
d(w, z) < max{d(w,z),d(w,y)}. Among other things, Bula extended the Browder-
Gohde-Kirk fixed point theorem and De Marr’s theorem to strictly convex metric
spaces.

This paper deals with a study of fixed points theorems in strictly convex metric
spaces and their applications. A variant of De Marr’s theorem for the family of
Banach operator pairs is given. We also derive an application in best approximation
theory.

2. PRELIMINARIES

Let (X, d) be a metric space.

Definition 2.1 ([5, Definition 2.5]). A set K C X is said to be convez if for each
x,y € K and for each t € [0, 1], there exists z € K such that

d(z,z) =td(z,y) and d(z,y) = (1 — t)d(z,y).

Definition 2.2 ([5, Definition 2.6]). A metric space X is said to be strictly convex
if for each =,y € X and for each ¢ € [0, 1], there exists a unique z € X such that

d(z,z) =td(z,y) and d(z,y) = (1 — t)d(z,y).

Lemma 2.3. Let {K, : a € I} be a family of convex sets in a strictly convex metric
space. Then (e Ka is also a conver subset of X.

Lemma 2.3 lets us define the notion of convex hull in a strictly convex metric
space.

Definition 2.4 (]2, Definition 2.13]). Let X be a strictly convex metric space and
K C X. The convex hull of K is the set

co(K) = ﬂ{C’ C X :K CC and C is convex}.
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©0 (K) will denote the closure of the convex hull of K.

Remark 2.5. Let (X, d) be a strictly convex metric space and K C X. Then:
(i) co(K) is convex and K C co (K);
(ii) co(K) = K if and only if K is convex;
(iii) o (K) = K if and only if K is closed and convex.

In a strictly convex metric space, the intersection of convex sets is a convex set.
However, closed balls in strictly convex metric space are not necessarily convex sets
(see [7]). So, we require the following definition in addition.

Definition 2.6 ([5, Definition 3.1]). A strictly convex metric space (X,d) is said
to be a strictly convexr metric space with convexr round balls if for all z,y,w € X
(x #y) and for all t € (0, 1), there exists z € X such that

d(z,z) =td(z,y) and d(z,y) = (1 — t)d(z,y)
d(w, z) < max{d(w, z),d(w,y)}.
The above strict inequality shows that if = and y belong to
S(w,r)={{a€ X :d(a,w) =1}, r>0,
then z does not belong to S(w,r), that is, S(w,r) does not contain straight lines.

Lemma 2.7 ([5, Lemma 3.1]). Let (X,d) be a strictly convexr metric space with
convez round balls. Then the closed ball B(a,r) = {y € X : d(a,y) <} is a convex
set for every r > 0 and every a € X.

Remark 2.8 ([5, page 8]). The condition:

For all z,y,w € X (z # y) and for all t € (0,1), there exists z € X such that
d(z,z) = td(z,y) and d(z,y) = (1 — t)d(z,y) and d(w, z) < max{d(w,z),d(w,y)}
is equivalent with the condition of convexity of closed balls.

Example 2.9 ([5, page 8]). The set R with the metric d(z,y) = | — y| and the
set R? with the metric d(z,y) = /(1 —y1)? + (22 — y2)2, where z = (21, 22),
y = (y1,y2) are both strictly convex metric spaces with convex round balls.

Example 2.10 ([5, page 8]). The set R? with the metric d(x,y) = max{|z; —
Y1, |r2 — y2|}, where x = (x1,x2), y = (y1,y2) is not a strictly convex metric space.

Example 2.11 ([5, page 8]). A trivial example of a strictly convex metric space
that is not a strictly convex metric space with convex round balls is X = {z} with
d(z,z) = 0. For a nontrivial example see [7, Section 3.

Lemma 2.12 ([5, Lemma 3.2]). Let (X,d) be a strictly convex metric space with
convex round balls, let K C X be a compact and convex set, and y € X. Then there
exrists a unique z € K such that

d(y, z) = inf{d(z,y) : x € K}.

Definition 2.13 ([5, Definition 3.2]). A convex set K in a metric space (X,d) is
said to have normal structure if for each bounded and convex subset C' C K that
contains more than one point, there is some point y € C such that

ry(C) =sup{d(z,y) : 2 € C} < 6(C) =sup{d(z,y) : x,y € C}.
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Lemma 2.14 ([5, Lemma 3.3]). Every convex and compact set in a strictly convex
metric space (X,d) with convex round balls has normal structure.

In 2007, Chen and Li [8] introduced the class of Banach operator pairs.

Definition 2.15 ([8, Definition 2.1]). The pair (I,T) of two self-maps I and T in a
metric space (X, d) is called a Banach operator pair if the set F(T) of fixed points
of T is I-invariant, namely I(F(T)) C F(T).

Note that if (I, T') is a Banach operator pair, (T, I) need not be such a pair (see [8,
Example 1]).

Definition 2.16 ([9, Definition 3.2]). Let T" and I be two self-maps of a metric space
(X,d). The pair (I,T) is called a symmetric Banach operator pair if both (T, 1)
and (I,T) are Banach operator pairs, i.e., T(F(I)) C F(I) and I(F(T)) C F(T).

Definition 2.17 (]9, Definition 3.4]). A nonempty family 2 of self-maps of a metric
space X is called a Banach operator family if for all S, T € 2, (S, T) is a symmetrical
Banach operator pair.

It is easy to see that the pair (I,7") is a symmetric Banach operator pair if and
only if T and I are commuting on F(T') U F'(I).
3. FIXED POINT RESULTS
Motivated by the results of the paper [5], we prove first the following theorem.

Theorem 3.1. Let (X, d) be a strictly convex metric space with convex round balls.
Let K C X be a closed convex set. If T : K — K is a nonexpansive map and
o (T(K)) is compact, then T has a fized point in K.

Proof. Let A =7¢06(T(K)). Since T(K) C K, we have

A=t (T(K)) Cco(K) =K.
Thus A is a compact convex subset of K and
TA)CT(K)Cdc (T(K)) =A.
So the restriction T': A — A has a fixed point by [5, Theorem 4.1]. O

In the next result, we consider two nonexpansive mappings which form a Banach
operator pair.

Theorem 3.2. Let (X, d) be a strictly convex metric space with convez round balls.
Let K C X be a closed convez set and let S,T : K — K be two nonexpansive maps.
If (S,T) is a Banach operator pair and ¢o (T'(K)) is compact, then F(S,T) # 0.

Proof. By Theorem 3.1, Fiz(T) # 0. Also Fix(T) is closed and convex by [5,
Lemma 4.1]. Notice that

Fiz(T) Cco (T(K))
and so Fiz(T) is compact. Since S(Fiz(T)) C Fixz(T), S has a fixed point in
Fiz(T) by Theorem 3.1. As a result, F(S,T) = Fix(S) N Fix(T) # 0. O
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Corollary 3.3. Let (X,d) be a strictly convex metric space with convex round
balls. Let K C X be a closed conver set and S,T : K — K such that (T,S) is a
Banach operator pair on K. If S is continuous on K, T is nonexpansive, Fix(S)
is nonempty and convex and co (T(K)) is compact, then F(S,T) # (.

Proof. We have T'(Fiz(S)) C Fix(S). Also, Fixz(S) is closed and convex. It is clear
that T is a selfmap of Fiiz(S). Since co (T (Fiz(S))) C co(T'(K)), it follows that
co (T(Fixz(S))) is compact. By Theorem 3.1, F'(S,T) # 0. O

The following result extends [9, Proposition 3.3] from normed to strictly convex
metric spaces.

Proposition 3.4. Let (X,d) be a strictly convex metric space. Let K C X be a
conver set, S : K — K and a : K — [0,1] be a map such that the set {x € X :
a(z) = 0} is S-invariant, that is, a(Sz) = 0, for all x € {z € X : a(x) = 0}. Let
T, : K — K satisfy

d(z, Tox) = a(z)d(x, Sx) and d(Sx, Thx) = (1 — a(x))d(x, Sz).
Then (S,T,) is a symmetric Banach operator pair.

Proof. If x € Fiz(S), then d(z, Sz) = 0 and so d(z,Tax) = 0 and d(Sz,Tax) = 0,
which imply that © = T,z and Sz = Tyx. As a result, T,z = Sx = = € Fiz(S)
and hence T, (Fiz(S)) C Fiz(9).

Now let © € Fix(T,). Then x = Tox and so a(z)d(zr,Sz) = 0. We consider
two cases. If a(z) # 0, then Sz = x € Fiz(T,). If a(x) = 0, then a(Sz) =0
and so d(Sz,Ty(Sz)) = a(Sz)d(Sx,S(Sz)) = 0, which implies that T,(Sz) = Sz,
that is, Sz € Fiz(T,). Consequently, S(Fix(Ty)) C Fix(T,). Hence, (S,T,) is a
symmetric Banach operator pair. O

The following theorem extends [9, Lemma 2.2] from normed to strictly convex
metric spaces.

Theorem 3.5. Let (X, d) be a strictly convex metric space with convezx round balls.
Let K C X be a closed conver set and let T : K — K be a nonexpansive map such
that there exists a nonempty compact convex set C C K satisfying T(C) = C and
the last set does not reduce to a point. Then there exists a closed convex set K;
such that:

(1) Kl g K and T(Kl) g Kl,
(il) CN(K7)¢ # 0.
Proof. By Lemma 2.14, there is u € C such that
p =ry(C) =sup{d(z,u) : x € C} < §(C)

where 6(C') is the diameter of C. Since C' is not reduced to a point, §(C) > 0.
Define, for each z € C,

U(x) = {y: d(y,r) < p}.

Since u € U(x) for each x € C, we have

K= () Ux) # 0.

zeC
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Note that Kj is closed and convex. For any x € K1 N K and any z € C we have
x € U(z), that is, d(x,z) < p. Since T(C) = C, there exists y € C such that
z = Ty. Since T' is nonexpansive,

d(Tw,z) = d(Txz,Ty) < d(z,y) <p
and so Tx € U(z). Since this holds for any z € C, we have

Tze (| U(z) =K,
zeC
which implies that Tz € K1 N K. Thus Tax € K1 N K for all x € K1 N K. Since C
is compact, there exist xg, 1 € C such that

d(xzg,z1) = 6(C) > p.
Note also that 21 ¢ U(x¢) 2 K7 and hence z1 € CN(K7)¢, that is, CN(K1)¢ # 0. O

We conclude this section with the following result which generalizes De Marr’s
theorem, that is, main result of [9] (Theorem 3.5) for a family of nonexpansive
mappings, from normed to strictly convex spaces.

Theorem 3.6. Let (X, d) be a strictly convex metric space with convex round balls.
Let K C X be a nonempty closed convex set and 2 a nonempty family of nonez-
pansive maps of K into itself. If A is a Banach operator family and there exists a
T € A such that o (T'(K)) is compact, then 2 has a common fized point in K.

Proof. We shall show that
F(Ta Sla 52) 7& 0

for any two maps S1,59 € 2A. Let I' denote the set of all nonempty closed and
convex subsets C' of K such that T'(C) C C,S51(C) C C,S52(C) C C and ¢o (T(C))
is compact for all C' € I'. On the set I', define a partial order “<” as the set
inclusion, that is, C; < Cj if and only if C; C C;. We can find a minimal set
Cy € T'. If the set Cy is a singleton, then F(T, Sy, S2) # (). Suppose to the contrary
that Cy contains at least two different points. By Theorem 3.2, T and S; have a
nonempty compact convex common fixed point set F' = F(T,S]) in Cj satisfying
T(F) = F and S1(F) = F. Since both (S2,T) and (S2,S1) are Banach operator
pairs, we have Sy(F) C F. Using Zorn’s lemma, there is a minimal nonempty
compact convex subset of Cp, say C1 such that

T(Cy) = C1, S1(C1) = Cy and S5(Cy) C C.
Next, we show that S(C1) = Cy. Indeed, if So(Cy) # Ci, then So(So(Ch)) C
S5(C1) and S3(Ch) is compact. Hence, S2(C1) € Cy C F and T'(S2(Ch)) = Sa2(Ch)

and S1(S2(C)) = S2(C1). But this contradicts the minimality of Cy. If C; has only
one point, then

F(Ta 51752) ?é @
So suppose that C7 has at least two points. Then, by Theorem 3.5, there exists a
set Ky € T satisfying C1 N (K7)¢ # (), which implies that K; is a proper subset of
Cy. This contradicts the minimality of Cy. Consequently Cy is a singleton and so

F(T7 ‘91752) 7& 0.
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It can be shown by induction that for any finite family of maps S; € 2, j =
1,2,...,n, the common fixed point set F (T, S1,S2,...,S,) # (0. Let

A={F(T,S): S ex}.

Then for any S € 2, F(T,S) is a nonempty compact set and for any S; € 2,
i=1,2,...,n, we have

() F(T,S;) = F(T,51,5,...,5,) #0.
7=1

Thus the set family A has the finite intersection property and hence
() F(T,8) #0,
Sed
that is, the family 2 has a fixed point in K. O

4. BEST APPROXIMATIONS AND FIXED POINTS

Let (X, d) be a metric space, K C X and = € X. Recall (see, e.g., [8, 16]) that a
point y € K is called a best approximation of x in K if

d(z,y) = dist (z, K) = inf{d(z,2) : z € K}.

The set of all best approximations of x in K will be denoted by Pg(x). The
problem of proving the existence, and possibly finding, best approximations is one
of the important ones in applications.

Lemma 4.1. In a strictly convex metric space (X, d) with convex round balls, Py (x)
is a singleton if Px(x) is nonempty and K C X is convez.

Proof. Suppose Pk (x) is nonempty. If y1,y2 € P (x) with y1 # yo, then
d(y1,z) = dist (z, K) and d(ya,x) = dist (z, K).

Since K is convex, for fixed ¢ € [0, 1], there exists yg € K such that

d(y1,90) = td(y1,y2) and d(y2,y0) = (1 — t)d(y1,72),

d(z,y0) < max{d(z,y1),d(z,y2)}
This implies that
dist (z, K) < d(zx,yp) < max{dist (z, K), dist(x, K)} = dist (x, K),

which is a contradiction. Hence Pg(x) is a singleton. O

The following theorem gives sufficient conditions in order that the set Px(z) be
nonempty, for some specific z € X.

Theorem 4.2. Let (X,d) be a strictly conver metric space. Let K C X be a closed
convez set and T : X — X be a nonexpansive map. If T has a fixed point z € X, K
is T-invariant and o (T'(K)) is compact, then the set of best approzimations Pk (z)
15 not empty.
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Proof. Since ¢o (T'(K)) is compact, there exists y € ¢o (T(K)) such that
dist (z,¢0(T(K))) = d(z,y).
Note that y € K, since K is closed and ¢o (T'(K)) C K. Also,
dist (z,c0(T(K))) < dist (2, T(K)) < d(z, Tw)
=d(Tz,Tw) < d(z,w)

for all w € K. Now

dist (z, K) < dist (z,c0(T'(K))) < d(z,w)
for all w € K. Thus

dist (z, K) = dist (z,c0(T'(K)) = d(z,y).
So y € Pk(z), which means that Pg(z) # (. O

By strengthening the conditions of the previous theorem, we can prove the unique-
ness of best approximation.

Theorem 4.3. Let (X, d) be a strictly convex metric space with convex round balls.
Let K C X be a closed convex set and T : K — K a nonexpansive map. If T
has a fixed point z and ©o (T(K)) is compact, then the point z has a unique best
approzimation y in K which is also a fized point of T.

Proof. By Theorem 4.2, Px(z) # (. Let y € Pg(z). Then d(z,y) = dist (z, K).
Notice that
dist (z, K) < d(z,Ty) =d(Tz,Ty) < d(z,y) = dist (z, K).

This implies that Ty € Pk (z) and so T'(Pk(z)) C Pk (z). But since X is a strictly
convex metric space with convex round balls, Pk (z) is a singleton by Lemma 4.1
and so Px(z) = {y}. Hence Ty = y. O
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