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weak convergences, respectively. For a bounded sequence {xn}, let

ωw{xn} = {z : ∃{xnk
} ⊂ {xn} such that xnk

⇀ z as k → ∞}.

The duality mapping J : E → 2E
∗
is the point-to-set mapping defined by

x 7→ Jx := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The following facts are known and referred in the paper.

• If E is smooth, then Jx is a singleton for all x ∈ E, and hence we treat J
as a single-valued mapping from E into E∗.

• If E is Fréchet smooth, then J : E → E∗ is norm-to-norm continuous.
• If E is uniformly smooth, then J : E → E∗ is uniformly norm-to-norm
continuous on bounded subsets of E.

• If E∗ is Fréchet smooth and {xn} is a sequence in E such that xn ⇀ x and
∥xn∥ → ∥x∥, then xn → x.

In a similar way, we consider the duality mapping J∗ : E∗ → 2E
∗∗
. It is not hard to

see that if E and E∗ are smooth and E is reflexive, then J : E → E∗ is bijective and
J∗ = J−1. We refer the readers to [8] and its review [21] for further information on
duality mappings.

Let C be a closed and convex subset of a smooth Banach space E. The follow-
ing mappings are two different generalizations of cutter operators in Banach space
setting. A mapping T : C → E is said to be

• cutter mapping of type (P) if Fix(T ) ̸= ∅ and ⟨Tx − z, J(Tx − x)⟩ ≤ 0 for
all x ∈ C and z ∈ Fix(T );

• cutter mapping of type (Q) if Fix(T ) ̸= ∅ and ⟨Tx − z, JTx − Jx⟩ ≤ 0 for
all x ∈ C and z ∈ Fix(T ).

The notations (P) and (Q) are from the recent paper of Aoyama et al. (see [3]). This
definition of mappings is a particular case of the quasi-Bregman firmly nonexpansive
mappings which was introduced first in 2003 by Bauschke, Borwein and Combettes
in [4]. This class and several more class of operators with respect to Bregman
distances were studied intensively during the last ten years (see, for instance, [4, 17,
24]).

We recall the concept of the distance-like function in a smooth Banach space E.
Let φ : E × E → R be defined by

φ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 for all x, y ∈ E.

It is clear that (∥x∥ − ∥y∥)2 ≤ φ(x, y) ≤ (∥x∥ + ∥y∥)2 for all x, y ∈ E. If E is a
Hilbert space, then φ(x, y) = ∥x−y∥2. It is also known that if E and E∗ are smooth
spaces, then

φ(x, y) = 0 ⇐⇒ x = y.

Due to this function φ, Alber [1] introduced the following type of projection.
Suppose that E is a reflexive Banach space such that E and E∗ are smooth, and
C is a nonempty, closed and convex subset of E. It is known that for each x ∈ E
there exists a unique element z in C, denoted by ΠCx, such that

φ(ΠCx, x) = inf{φ(y, x) : y ∈ C}.
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Moreover, the relation above can be characterized by the following inequalities: for
z ∈ C,

z = ΠCx ⇐⇒ ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C

⇐⇒ φ(y, z) + φ(z, x) ≤ φ(y, x) for all y ∈ C.

It is not hard to see that ΠC : E → C is a cutter mapping of type (Q).
In this paper, we also deal with the metric projection. For a closed and convex

subset C and for x ∈ E, there exists a unique element z in C, denoted by PCx, such
that

∥PCx− x∥ = inf{∥y − x∥ : y ∈ C}.

It is also not hard to see that PC : E → C is a cutter mapping of type (P) (for
example, see [28]).

The following result shows a relation between convergences in the sense of φ and
of the norm.

Lemma 1.1 (Kamimura and Takahashi [12]). Suppose that E is a smooth Banach
space and E∗ is uniformly smooth. If {xn} and {yn} are sequences in E such that
one of them is bounded and φ(xn, yn) → 0, then ∥xn − yn∥ → 0.

We also need the following lemma proved by Maingé.

Lemma 1.2 ([16]). Let {γn} be a sequence of real numbers such that there exists
a subsequence {γnj} of {γn} such that γnj < γnj+1 for all j ≥ 1. Then there exists
a nondecreasing sequence {mk} of positive integers such that limk→∞mk = ∞ and
the following two inequalities:

γmk
≤ γmk+1 and γk ≤ γmk+1

hold for all (sufficiently large) numbers k. In fact, mk is the largest number n in
the set {1, 2, . . . , k} such that the condition γn < γn+1 holds.

2. Main results

2.1. Strong convergence via a new averaged projection method of Halpern
type. Recall that a mapping U : C → E is closed at zero if whenever {xn} is a
sequence in C such that xn → p ∈ C and Uxn → 0 it follows that Up = 0.

Theorem 2.1. Suppose that E and E∗ are uniformly smooth spaces. Let C be a
closed and convex subset of E. Suppose that S, T : C → C are two mappings such
that the following properties are satisfied:

• S is a cutter mapping of type (P);
• T is a cutter mapping of type (Q);
• F := Fix(S) ∩ Fix(T ) ̸= ∅;
• I − S and I − T are closed at zero.
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Define an iterative sequence {xn} by the following way:

x1 = x̂ ∈ C is arbitrarily chosen;

An = {z ∈ C : ⟨Sxn − z, J(Sxn − xn)⟩ ≤ 0};
Bn = {z ∈ C : ⟨Txn − z, JTxn − Jxn⟩ ≤ 0};
Cn = An ∩Bn;

y∗n = αnJx̂+ (1− αn)

(
n∑

k=1

βk
nJΠCk

xn

)
;

xn+1 = ΠCJ
−1y∗n;

where {αn} and {βk
n}n,k are sequences in (0, 1) such that

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(2)
∑n

k=1 β
k
n = 1 for all n;

(3) limn→∞ βk
n = βk ∈ (0, 1) for all k and limn→∞

∑n
k=1 |βk

n − βk| = 0.

Then the sequence {xn} converges to ΠF x̂.

Remark 2.2. It follows from the assumptions of the theorem that
∑∞

k=1 β
k = 1.

We split the proof of Theorem 2.1 into the following six lemmas.

Lemma 2.3. If the element xn is defined, then Cn is a closed and convex subset
containing F .

Denote z := Π∩∞
n=1 Cn

x̂ and Un := J−1
(∑n

k=1 β
k
nJΠCk

)
.

Lemma 2.4. For each n ≥ 1, the following inequalities hold:

φ(z, xn+1) ≤ αnφ(z, x̂) + (1− αn)φ(z, Unxn)

≤ αnφ(z, x̂) + (1− αn)

(
φ(z, xn)−

n∑
k=1

βk
nφ(ΠCk

xn, xn)

)
≤ αnφ(z, x̂) + (1− αn)φ(z, xn).

In particular, the sequence {xn} is bounded.

Lemma 2.5. For each n ≥ 1, the following inequality holds:

φ(z, xn+1) ≤ (1− αn)φ(z, xn) + 2αn⟨J−1y∗n − z, Jx̂− Jz⟩.

Proof. We first observe the following inequality

φ(u, J−1(γJv+(1−γ)Jw)) ≤ (1−γ)φ(u,w)+2γ⟨J−1(γJv+(1−γ)Jw)−u, Jv−Ju⟩

whenever u, v, w ∈ E and γ ∈ (0, 1). In fact, it follows from the subdifferential
inequality of ∥ · ∥2 on E∗. Consequently,

φ(z, J−1y∗n)

= φ

(
z, J−1

(
αnJx̂+ (1− αn)

(
n∑

k=1

βk
nJΠCk

xn

)))



STRONG CONVERGENCE FOR CUTTER OPERATORS 57

≤ (1− αn)φ

(
z, J−1

(
n∑

k=1

βk
nJΠCk

xn

))
+ 2αn⟨J−1y∗n − z, Jx̂− Jz⟩.

Note that z ∈
∩∞

k=1Ck. Hence

φ(z,ΠCk
xn) ≤ φ(z,ΠCk

xn) + φ(ΠCk
xn, xn) ≤ φ(z, xn).

It follows then that

φ

(
z, J−1

(
n∑

k=1

βk
nJΠCk

xn

))
≤

n∑
k=1

βk
nφ(z,ΠCk

xn) ≤ φ(z, xn).

Therefore, since z ∈ C, we have

φ(z, xn+1) ≤ φ(z, J−1y∗n) ≤ (1− αn)φ(z, xn) + 2αn⟨J−1y∗n − z, Jx̂− Jz⟩. □
The following result can be easily obtained by the recent result of Nilsrakoo and

Saejung [20].

Lemma 2.6. Suppose that

U = J−1

( ∞∑
k=1

βkJΠCk

)
and that {zm} is a bounded sequence in C. Then the following are equivalent:

• zm −ΠCnzm → 0 as m → ∞ for all n ∈ N;
• zm − Uzm → 0.

In particular, Fix(U) =
∩∞

n=1Cn. Moreover, JUn → JU uniformly on bounded
sets.

Proof. We prove only the last assertion. Let B be a bounded set and let M be
a number such that ∥x∥ ≤ M for all x ∈ B. It follows from z ∈

∩∞
k=1Ck that

(∥z∥−∥ΠCk
x∥)2 ≤ φ(z,ΠCk

x) ≤ φ(z, x) ≤ (∥z∥+∥x∥)2 ≤ (∥z∥+M)2 for all x ∈ B
and k ∈ N. Hence ∥ΠCk

x∥ ≤ 2∥z∥+M for all x ∈ B and k ∈ N. Consequently, for
x ∈ B, we get

∥JUnx− JUx∥ =

∥∥∥∥∥
n∑

k=1

(βk
n − βk)JΠCk

x+
∞∑

k=n+1

βkJΠCk
x

∥∥∥∥∥
≤

n∑
k=1

|βk
n − βk|∥JΠCk

x∥+
∞∑

k=n+1

βk∥JΠCk
x∥

≤

(
n∑

k=1

|βk
n − βk|+

∞∑
k=n+1

βk

)
(2∥z∥+M).

It follows that limn→∞ sup{∥JUnx− JUx∥ : x ∈ B} = 0. □
Lemma 2.7. If there exists a subsequence {xmj} of {xn} such that

lim inf
j→∞

(φ(z, xmj+1)− φ(z, xmj )) ≥ 0,

then ωw{xmj}∞j=1 ⊂
∩∞

n=1Cn. Moreover, lim supj→∞⟨J−1y∗mj
− z, Jx̂− Jz⟩ ≤ 0.
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Proof. It follows from Lemma 2.4 and limn→∞ αn = 0 that

lim
j→∞

mj∑
k=1

βk
mj

φ(ΠCk
xmj , xmj ) = 0.

In particular, for each k, we have

βk lim
j→∞

φ(ΠCk
xmj , xmj ) = lim

j→∞
βk
mj

φ(ΠCk
xmj , xmj ) = 0.

This implies that xmj −ΠCk
xmj → 0 as j → ∞ because E∗ is uniformly smooth.

Consequently, ωw{xmj} ⊂ Ck. Since the last inclusion holds for all k ∈ N, we have
ωw{xmj} ⊂

∩∞
k=1Ck.

Finally, to prove the “Moreover” part, we claim that J−1y∗mj
−xmj → 0 as j → ∞.

If this is so, then it follows from ωw{xmj}∞j=1 ⊂
∩∞

k=1Ck that

lim sup
j→∞

⟨J−1y∗mj
− z, Jx̂− Jz⟩

= lim sup
j→∞

⟨xmj −Π∩∞
n=1 Cn

x̂, Jx̂− JΠ∩∞
n=1 Cn

x̂⟩ ≤ 0.

To prove the last claim, let us note from the first part that xmj −ΠCk
xmj → 0 as

j → ∞ for all k = 1, 2, . . . . In virtue of Lemma 2.6, we have xmj − Uxmj → 0 as
j → ∞ and hence Jxmj − JUxmj → 0 as j → ∞. Note that JUn → JU uniformly
on bounded sets. It follows then that Jxmj − y∗mj

= Jxmj − JUmjxmj → 0 as

j → ∞, that is, J−1y∗mj
− xmj → 0 as j → ∞. □

The following lemma also plays an important role in this subsection. However,
its proof given there is not quite accurate.

Lemma 2.8 (Saejung and Yotkaew [26]). Let {sn} be a sequence of nonnegative
real numbers, {αn} be a sequence in (0, 1) such that

∑∞
n=1 αn = ∞, and {tn} be a

sequence of real numbers. Suppose that

sn+1 ≤ (1− αn)sn + αntn for all n ≥ 1.

If lim supj→∞ tmj ≤ 0 for every subsequence {smj} of {sn} satisfying

lim inf
j→∞

(smj+1 − smj ) ≥ 0,

then limn→∞ sn = 0.

Proof. The proof is split into two cases.

Case 1: There exists an n0 ∈ N such that sn+1 ≤ sn for all n ≥ n0. It follows
then that limn→∞ sn = s for some s ≥ 0. In particular, lim infn→∞(sn+1 −
sn) = 0 and hence lim supn→∞ tn ≤ 0. On the other hand, for n ≥ n0, we
have

αn(sn − tn) ≤ sn − sn+1.

Let ε > 0 be given. Then there exists an integer n1 ≥ n0 such that sn ≥ s−ε
and tn ≤ ε for all n ≥ n1. For any n ≥ n1, we have

αn(s− 2ε) ≤ αn(sn − tn) ≤ sn − sn+1.
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In particular,

(s− 2ε)
∞∑

n=n1

αn ≤ sn1 − s < ∞.

It follows from
∑∞

n=1 αn = ∞ that s ≤ 2ε. Since ε > 0 is arbitrary, we
conclude that s = 0.

Case 2: There exists a subsequence {snj} of {sn} such that snj < snj+1 for
all j ∈ N. In this case, we can apply Lemma 1.2 to find a nondecreas-
ing sequence {mk} of positive integers such that limk→∞mk = ∞ and the
following two inequalities:

smk
≤ smk+1 and sk ≤ smk+1

hold for all (sufficiently large) numbers k. Note that {smk
} is not necessarily

a subsequence of {sn}. Let {pj} be the subsequence of {mk} such that
{pj} is strictly increasing and each term in {mk} belongs to {pj}. Now
{spj} is a subsequence of {sn}. It follows from the first inequality that
lim infj→∞(spj+1 − spj ) ≥ 0 and hence lim supj→∞ tpj ≤ 0. Moreover, by
the first inequality again, we have

spj+1 ≤ (1− αpj )spj + αpj tpj ≤ (1− αpj )spj+1 + αpj tpj .

In particular, since each αpj > 0, we have spj+1 ≤ tpj . Finally, it follows
from the second inequality that

lim sup
k→∞

sk ≤ lim sup
k→∞

smk+1 = lim sup
j→∞

spj+1 ≤ lim sup
j→∞

tpj ≤ 0.

Hence limk→∞ sk = 0.

This completes the proof. □
We now give the proof of the main result.

Proof of Theorem 2.1. Denote sn := φ(z, xn) and tn := 2⟨J−1y∗n − z, Jx̂ − Jz⟩. It
follows from Lemma 2.5 that

sn+1 ≤ (1− αn)sn + αntn for all n ≥ 1.

All prerequisites of Lemma 2.8 are satisfied. Then xn → z.
We are going to make use of the closedness of I − S and I − T at zero. Since

z = Π∩∞
k=1 Ck

x̂ ∈
∩∞

k=1Ak ⊂ An for all n and Sxn = PAnxn, we have

∥Sxn − xn∥ ≤ ∥z − xn∥ → 0.

It follows then that z = Sz. Similarly, since z = Π∩∞
n=1 Cn

x̂ ∈
∩∞

n=1Bn ⊂ Bn for all
n and Txn = ΠBnxn, we have

φ(Txn, xn) ≤ φ(z, xn) → 0.

In particular, xn − Txn → 0 by Lemma 1.1 and hence z = Tz.
Moreover, it follows from z = Π∩∞

n=1 Cn
x̂ and F ⊂

∩∞
n=1Cn that φ(z, x̂) ≤

φ(ΠF x̂, x̂). Because z ∈ F , so z = ΠF x̂. The proof is finished. □
Using the same proof (with a slight modification) as the preceding result, we also

have the following:
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Theorem 2.9. Suppose that E and E∗ are uniformly smooth. Let C be a closed
convex subset of E. Suppose that T : C → C and S : C → C are two mappings
such that the following properties are satisfied:

• S is a cutter mapping of type (P);
• T is relatively quasi-nonexpansive, that is, Fix(T ) ̸= ∅ and φ(z, Tx) ≤
φ(z, x) for all x ∈ C and z ∈ Fix(T );

• F := Fix(S) ∩ Fix(T ) ̸= ∅;
• I − S and I − T are closed at zero.

Define an iterative sequence {xn} by the following way:

x1 = x̂ ∈ C is arbitrarily chosen;

An = {z ∈ C : ⟨Sxn − z, J(Sxn − xn)⟩ ≤ 0};
Bn = {z ∈ C : φ(z, Txn) ≤ φ(z, xn)};
Cn = An ∩Bn;

y∗n = αnJx̂+ (1− αn)

(
n∑

k=1

βk
nJΠCk

xn

)
;

xn+1 = ΠCJ
−1y∗n;

where {αn} and {βk
n}n,k are sequences in (0, 1) such that

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(2)
∑n

k=1 β
k
n = 1 for all n;

(3) limn→∞ βk
n = βk ∈ (0, 1) for all k and limn→∞

∑n
k=1 |βk

n − βk| = 0.

Then the sequence {xn} converges to ΠF x̂.

Remark 2.10. Theorem 2.9 can be viewed as an extension of the recent result
of Kimura et al. [15]. It is worth mentioning that our assumption on the sequence
{βk

n}n,k is strictly weaker than that of the aforementioned result. In fact, if {βk
n}n,k is

a sequence in (0, 1) such that
∑n

k=1 β
k
n = 1 for all n and

∑∞
n=1

∑n
k=1 |βk

n−βk
n+1| < ∞

and limn→∞ βk
n = βk ∈ (0, 1) for all k, then limn→∞

∑n
k=1 |βk

n − βk| = 0.

Remark 2.11. Theorem 2.1 itself can be regarded as an extension of Kimura et
al. In fact, let T ′ : C → H be a quasi-nonexpansive mapping. It is easy to see that

{z ∈ C : ∥z − T ′x∥ ≤ ∥z − x∥} = {z ∈ C : ⟨Tx− z, Tx− x⟩ ≤ 0}
where T = 1

2(I + T ′). Moreover, T is a cutter mapping.

2.2. Strong convergence via the shrinking projection method. In this sub-
section, we present another strong convergence theorem without assuming the uni-
form smoothness of E and E∗.

Let us recall the concept of Mosco convergence [19] for a sequence of closed and
convex sets in a Banach space. Suppose that E is a reflexive Banach space and
{Cn} is a sequence of nonempty closed and convex subsets of E. We consider the
following two sets:

x ∈ s-liminfn→∞Cn ⇐⇒ ∃{xn} ⊂ E such that xn → x and xn ∈ Cn for all n;

x ∈ w-limsupn→∞Cn ⇐⇒ ∃{nk} ⊂ {n} ∃{xk} ⊂ E such that xk ⇀ x
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and xk ∈ Cnk
for all k.

If there exists a subset C0 ⊂ E such that C0 = s-liminfn→∞Cn = w-limsupn→∞Cn,
then we say that {Cn} converges to C0 in the sense of Mosco and we write C0 =
M-limn→∞Cn. The proof of the following main result makes use of the so-called
Tsukada’s Theorem.

Lemma 2.12 (Tsukada [30]). Suppose that E is a smooth Banach space and E∗ is
Fréchet smooth. If {Cn} is a sequence of nonempty closed and convex subsets of E
such that C0 := M-limn→∞Cn ̸= ∅, then PCnx → PCx for all x ∈ E.

We also need the following lemma.

Lemma 2.13. Suppose that E and E∗ are Fréchet smooth. If {xn} and {yn} are
two sequences in E such that φ(xn, yn) → 0 and yn → z ∈ E, then xn → z.

Proof. Note that {xn} and {yn} are bounded, φ(yn, z) → 0, and Jyn → Jz. Con-
sequently,

φ(xn, z) = φ(xn, yn) + φ(yn, z) + 2⟨xn − yn, Jyn − Jz⟩ → 0.

Next, we show that ωw{xn} = {z}. Suppose that xnk
⇀ z′ for some {xnk

} ⊂ {xn}.
It follows then that

φ(z′, z) ≤ lim inf
k→∞

(∥xnk
∥2 − 2⟨xnk

, Jz⟩+ ∥z∥2) = lim inf
k→∞

φ(xnk
, z) = 0.

In particular, z′ = z. Hence, xn ⇀ z. It follows from ∥xn∥ → ∥z∥ that xn → z. □

Theorem 2.14. Let E be a Banach space such that both E and its dual space
E∗ are Fréchet smooth. Let C be a closed and convex subset of E. Suppose that
S, T : C → C are two mappings such that the following properties are satisfied:

• S is a cutter mapping of type (P);
• T is a cutter mapping of type (Q);
• F := Fix(S) ∩ Fix(T ) ̸= ∅;
• I − S and I − T are closed at zero.

Define an iterative sequence {xn} by the following way:

x1 = x̂ ∈ C1 := C is arbitrarily chosen;

An = {z ∈ C : ⟨Sxn − z, J(Sxn − xn)⟩ ≤ 0};
Bn = {z ∈ C : ⟨Txn − z, JTxn − Jxn⟩ ≤ 0};
Cn+1 = An ∩Bn ∩ Cn;

xn+1 = PCn+1 x̂.

Then the sequence {xn} converges to PF x̂.

Proof. It is clear from the assumption that F ⊂ An ∩ Bn for all n and hence
F ⊂

∩∞
n=1Cn. In particular, each Cn is a nonempty closed and convex subset of E.

Thus {xn} is well-defined. Note that Cn ⊃ Cn+1 for all n. This implies that

C0 := M- lim
n→∞

Cn =

∞∩
n=1

Cn ̸= ∅.
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It follows from Lemma 2.12 that xn → PC0 x̂ =: x′. It is clear from the iteration
that

Sxn = PAnxn and Txn = ΠBnxn.

As xn+1 ∈ Cn+1 ⊂ An ∩Bn, we have

∥Sxn − xn∥ ≤ ∥xn+1 − xn∥ and φ(Txn, xn) ≤ φ(xn+1, xn).

We will prove that

(1) x′ ∈ Fix(S);
(2) x′ ∈ Fix(T ).

To see (1), we will make use of the closedness of I − S at zero. It is clear that
Sxn → x′ and hence (1) holds.

To see (2), let us note from Lemma 2.13 and φ(Txn, xn) → 0 that Txn → x′. It
follows from the closedness of I − T at zero that (2) holds.

Finally, it follows from F ⊂
∩∞

n=1Cn and x′ ∈ F that x′ = PF x̂. □

Remark 2.15. This type of iterative scheme called the shrinking projection method
was first proposed by Takahashi et al. [29]. The technique of the proof using Mosco
convergence is due to Kimura and Takahashi [14]; see also [13].

The following result can be obtained with a slight modification of the preceding
proof so its proof is omitted.

Theorem 2.16. Let E be a Banach space such that both E and its dual space E∗ are
Fréchet smooth. Let C be a closed and convex subset of E. Suppose that T : C → C
and S : C → C are two mappings such that the following properties are satisfied:

• S is a cutter mapping of type (P);
• T is relatively quasi-nonexpansive;
• F := Fix(S) ∩ Fix(T ) ̸= ∅;
• I − S and I − T are closed at zero.

Define an iterative sequence {xn} by the following way:

x1 = x̂ ∈ C := C1 is arbitrarily chosen;

An = {z ∈ C : ⟨Sxn − z, J(Sxn − xn)⟩ ≤ 0};
Bn = {z ∈ C : φ(z, Txn) ≤ φ(z, xn)};
Cn+1 = An ∩Bn ∩ Cn;

xn+1 = PCn+1 x̂.

Then the sequence {xn} converges to PF x̂.

Remark 2.17. Let us note that the metric projection involved in our iterations
in the preceding two theorems can be replaced by Alber’s generalized projections.
To prove this, we just invoke the analogue of Tsukada’s Theorem for generalized
projections. In fact, in the same setting as Tsukada’s theorem, Ibaraki et al. [11]
proved that ΠCnx → ΠC0x for all x ∈ E.

Finally, we present a related result which is deduced from our Theorem 2.14
where T is the identity mapping.
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Theorem 2.18. Let E be a smooth Banach space such that E∗ is Fréchet smooth.
Let C be a closed and convex subset of E. Suppose that f : C ×C → R satisfies the
following conditions:

• f(x, x) = 0 for all x ∈ C;
• f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
• f(x, ·) is convex and lower semicontinuous for all x ∈ C;
• for every x ∈ C and x∗ ∈ E∗ the following implication holds:

f(z, x) + ⟨x− z, x∗⟩ ≤ 0 ∀z ∈ C =⇒ f(x, y) + ⟨y − x, x∗⟩ ≥ 0 ∀y ∈ C.

Define an iterative sequence {xn} by the following way:
x1 = x̂ ∈ C =: C1 is arbitrarily chosen;

Cn+1 = {z ∈ C : ⟨Frnxn − z, J(Frnxn − xn)⟩ ≤ 0} ∩ Cn;

xn+1 = PCn+1 x̂,

where {rn} is a sequence of positive real numbers such that lim infn→∞ rn > 0. If
EP(f) ̸= ∅, then the sequence {xn} converges to PEP(f)x̂. Here for each x ∈ E and
r > 0, the element Frx is a unique element in C such that

f(Frx, y) +
1

r
⟨y − Frx, J(Frx− x)⟩ ≥ 0 ∀y ∈ C.

Remark 2.19. The preceding theorem is proved in [27, Theorem 3.2] under the
assumption that E∗ is uniformly smooth. It is noted that Fr is a cutter mapping
of type (P) and Fix(Fr) = EP(f). Moreover, the proof of Theorem 2.14 does not
alter if we can replace a single mapping S with a sequence of mappings {Sn} such
that

∩∞
n=1 Fix(Sn) ̸= ∅ and the following condition holds:

{zn} ⊂ C, zn → z, Snzn → z =⇒ z ∈
∞∩
n=1

Fix(Sn).

3. Concluding remarks

We propose a new alternative iterative scheme for approximation of a common
fixed point of two different types of generalizations of cutters mappings. This ap-
pears as the first theoretical framework dealing with two different types of mappings
in just only one scheme. Let us consider the convex feasibility problem, that is, the
problem of fining a common element in the intersection of two (or more) closed
and convex subsets of a certain Banach space. As already mentioned that there
are two types of projections for these two sets, we can choose the easier calculated
projection on each set. If these two projections are different, the schemes in this
paper will generates an appropriate sequence for the problem.

The calculation of the projection onto general closed and convex sets is a hard
task. However, if C in our theorems is the whole space E, the closed and convex
set we are dealing with is a half space. To calculate such a projection, we refer to
a formula proposed by Butnariu and Resmerita (see [6, Theorem 4.7] with p = 2).

In the recent works of Reich and Sabach (see [22, 23, 24, 25, 17]), they considered
the classes of operators containing the cutter mappings of type (Q). It is very
interesting to extend our results to these classes.
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