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2. Preliminaries

Throughout this paper we denote by N the set of all positive integers and by
R the set of all real numbers. For n ∈ N ∪ {0}, we define n! by 0! = 1 and
(n+1)! = n! (n+1), that is, n! is the factorial of n. For n, k ∈ N∪ {0} with k ≤ n,
we define C(n, k) = n!/

(
k! (n − k)!

)
, that is, C(n, k) is the binomial coefficient of

(n; k).
A Banach space E is said to be smooth if the limit limt→0(∥x+t y∥−∥x∥)/t exists

for each x, y ∈ E with ∥x∥ = ∥y∥ = 1. The normalized duality mapping J from E
into E∗ is defined by ⟨x, Jx⟩ = ∥x∥2 = ∥Jx∥2 for all x ∈ E.

Let E be a Banach space. E is said to be strictly convex if ∥x + y∥ < 2 for all
x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. We recall that E is said to be uniformly
convex in every direction (UCED, for short) if for ε ∈ (0, 2] and z ∈ E with ∥z∥ = 1,
there exists δ > 0 such that

∥x+ y∥ ≤ 2 (1− δ)

for all x, y ∈ E with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and x − y ∈
{
t z : t ∈ [−2,−ε] ∪ [+ε,+2]

}
.

It is obvious that UCED implies strictly convexity. We know that every separable
Banach space can be equivalently renormed so that it is UCED. See [7, 13] and
others. We know UCED is characterized as follows.

Lemma 2.1 ([14]). For a Banach space E, the following are equivalent :

(i) E is UCED.
(ii) If {un} is a bounded sequence in E, then a function g on E defined by

(2.1) g(x) = lim sup
n→∞

∥un − x∥

is strictly quasiconvex, that is,

g
(
λx+ (1− λ) y

)
< max

{
g(x), g(y)

}
for all λ ∈ (0, 1) and x, y ∈ E with x ̸= y.

Let C be a subset of a Banach space E. C is said to be boundedly weakly compact
if its intersection with any closed ball is weakly compact. It is obvious that if E is
reflexive, then every closed convex subset is boundedly weakly compact. C is said
to have the Opial property [12] if for each weakly convergent sequence {xn} in C
with weak limit z ∈ C,

lim inf
n→∞

∥xn − z∥ < lim inf
n→∞

∥xn − y∥

holds for y ∈ C with y ̸= z. We remark that we may replace ‘lim inf’ by ‘lim sup’.
All nonempty compact subsets have the Opial property. Also, all Hilbert spaces,
ℓp(1 ≤ p < ∞) and finite dimensional Banach spaces have the Opial property. A
Banach space with a duality mapping which is weakly sequentially continuous also
has the Opial property [8]. We know that every separable Banach space can be
equivalently renormed so that it has the Opial property [6].

Let C be a subset of a Banach space E and let f be a function from C into R. f
is said to be nonincreasing with respect to a mapping T on C if f(Tx) ≤ f(x) for
all x ∈ C. Also, from now on, in the case where C is bounded, we consider every
function f to satisfy (2.2) below.



FIXED POINT THEOREM 39

In our proof, we use the following.

Lemma 2.2 ([15]). Let C be a boundedly weakly compact subset of a Banach space
E and let f be a function from C into R which is lower semicontinuous in the weak
topology. Assume that either C is bounded or f satisfies

(2.2) inf{f(x) : x ∈ C} < lim
r→∞

inf
{
f(x) : x ∈ C, ∥x∥ ≥ r

}
.

Then min f(C) exists.

Lemma 2.3 ([15]). Let η be a continuous, strictly increasing function from [0,∞)
into itself. Then the following hold:

(i) s ≤ t if and only if η(s) ≤ η(t).
(ii) If lim supn tn ∈ R, then η(lim supn tn) = lim supn η(tn).

3. Condition (CC)

In this section, we introduce a new condition whose name is Condition (CC).
Let T be a mapping on a subset C of a Banach space E. Then T is said to

satisfy Condition (CC) iff there exist a continuous, strictly increasing function η
from [0,∞) into itself with η(0) = 0 and r, s ∈ [0, 1) such that

r + 2 s = 1 and(3.1)

η(∥Tx− Ty∥) ≤ r η(∥x− y∥) + s η(∥x− Ty∥) + s η(∥Tx− y∥)
for all x, y ∈ C.

Remark. We note that 0 < s ≤ 1/2.

From the definition, we can obtain the following propositions.

Proposition 3.1. Let T be a mapping on a subset C of a Banach space E and let
η be a continuous, strictly increasing function from [0,∞) into itself with η(0) = 0.
Assume that there exist r, s, t ∈ [0, 1] such that r < 1, r + s+ t = 1 and

η
(
∥Tx− Ty∥

)
≤ r η

(
∥x− y∥

)
+ s η

(
∥x− Ty∥

)
+ t η

(
∥Tx− y∥

)
for all x, y ∈ C. Then T satisfies Condition (CC).

Proof. For x, y ∈ C, we have

η
(
∥Tx− Ty∥

)
≤ r η

(
∥x− y∥

)
+ s η

(
∥x− Ty∥) + t η

(
∥Tx− y∥)

and

η
(
∥Ty − Tx∥

)
≤ r η

(
∥y − x∥

)
+ s η

(
∥y − Tx∥) + t η

(
∥Ty − x∥).

Adding the both inequalities, we obtain

η
(
∥Tx− Ty∥

)
≤ r η

(
∥x− y∥

)
+

s+ t

2
η
(
∥x− Ty∥) + s+ t

2
η
(
∥Tx− y∥).

Since r + 2 (s+ t)/2 = 1, T satisfies Condition (CC) with r, (s+ t)/2 and η. □
Proposition 3.2. Let p and q be positive real numbers with p < q. Let r, s ∈ [0, 1)
satisfy r+2 s = 1. Let T be a mapping on a subset C of a Banach space E. Assume
T satisfies Condition (CC) with r, s and t 7→ tp. Then T also satisfies Condition
(CC) with r, s and t 7→ tq.
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Proof. Using the convexity of t 7→ tq/p, we have

∥Tx− Ty∥q =
(
∥Tx− Ty∥p

)q/p
≤

(
r ∥x− y∥p + s∥x− Ty∥p + s ∥Tx− y∥p

)q/p
≤ r ∥x− y∥q + s ∥x− Ty∥q + s ∥Tx− y∥q

for x, y ∈ C. □

Using the following, we can easily make an example of mapping T which satisfies
Condition (CC) but which is not hybrid.

Example 3.3. Let q ∈ (1,∞) and let r, s ∈ [0, 1) satisfy r + 2 s = 1. Put

c1 := (r/s)1/(q−1) ≥ 0 and

c2 :=
1

(1 + c1)q
(
r + s c1

q
)
≥ 0.

Let τ be the unique real number satisfying

(3.2) 0 < τ < 1 and c2 (1− τ)q + s− τ q = 0.

Let E = R and define a mapping T on E by

Tx =

{
0 if x ̸= 1

τ if x = 1.

Then T satisfies Condition (CC) with r, s and t 7→ tq, however, T does not satisfy
Condition (CC) with r, s and t 7→ tp for any p ∈ R with 0 < p < q.

Proof. Define a function f from [0, 1] by

f(t) = c2 (1− t)q + s− tq.

Then f is continuous on [0, 1] and differentiable on (0, 1). Since

f ′(t) = − c2 q (1− t)q−1 − q tq−1 < 0

for any t ∈ (0, 1), f is strictly decreasing. Since

f(0) = c2 + s > 0 and f(1) = s− 1 < 0,

we note that there exists a unique τ satisfying (3.2). We next define a function g
from [τ, 1] into R by

g(u) = r (1− u)q + s+ s (u− τ)q.

Put

υ :=
c1 + τ

c1 + 1
=

1

c1 + 1
τ +

c1
c1 + 1

1 ∈ [τ, 1).

Then we have

g′(u) < 0 if τ < u < υ and

g′(u) > 0 if υ < u < 1.

Hence

min{g(u) : τ ≤ u ≤ 1} = g(υ) = c2 (1− τ)q + s.
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Therefore we obtain

(3.3) 0 = f(τ) = g(υ)− τ q = min
{
r (1− u)q + s+ s (u− τ)q : τ ≤ u ≤ 1

}
− τ q.

We shall show that T satisfies Condition (CC) with r, s and t 7→ tq. In the case
where x < τ , we have by (3.3)

∥T1− Tx∥q = τ q = g(υ) ≤ g(τ) ≤ r (1− x)q + s+ s (τ − x)q

= r ∥1− x∥q + s ∥1− Tx∥q + s ∥T1− x∥q.

In the case where τ ≤ x < 1, we have (3.3)

∥T1− Tx∥q = τ q = g(υ) ≤ r (1− x)q + s+ s (x− τ)q

= r ∥1− x∥q + s ∥1− Tx∥q + s ∥T1− x∥q.

In the case where 1 < x, we have by (3.3)

∥T1− Tx∥q = τ q = g(υ) ≤ g(1) ≤ r (x− 1)q + s+ s (x− τ)q

= r ∥1− x∥q + s ∥1− Tx∥q + s ∥T1− x∥q.

Therefore T satisfies Condition (CC) with r, s and t 7→ tq. Let p ∈ R satisfy

0 < p < q. Then using (3.3), s > 0, 1 ̸= υ − τ and the strict convexity of t 7→ tq/p,
we have

r ∥1− υ∥p + s ∥1− Tυ∥p + s ∥T1− υ∥p

=
(
r (1− υ)p + s (1)p + s (υ − τ)p

)(q/p) (p/q)
<

(
r (1− υ)q + s (1)q + s (υ − τ)q

)p/q
= (τ q)p/q = τp = ∥T1− Tυ∥p.

Therefore T does not satisfy Condition (CC) with r, s and t 7→ tp. □

The following two inform that there exists an example of mapping T which sat-
isfies Condition (CC), but which is not a Chatterjea mapping.

Example 3.4. Let T be a contraction on a subset C of a Banach space E, that is,
there exists r ∈ [0, 1) such that ∥Tx − Ty∥ ≤ r ∥x − y∥ for any x, y ∈ C. Then T
satisfies Condition (CC).

Proof. Obvious. □

Example 3.5. Let r ∈ (1/3, 1). Let E be a Banach space and define a mapping T
on E by Tx = −r x for any x ∈ E. Then T is not a Chatterjea mapping.

Proof. Arguing by contradiction, we assume that T is a Chatterjea mapping. Then
there exists η such that

(3.4) 2 η(∥Tx− Ty∥) ≤ η(∥x− Ty∥) + η(∥Tx− y∥)

for any x, y ∈ E. Fix w ∈ E \ {0}. Put x = w and y = −w. Then (3.4) becomes

2 η(2 r∥w∥) ≤ 2 η
(
(1− r) ∥w∥

)
.

This is a contradiction because 2 r > 1− r. □
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4. Basic properties

In this section, we prove some basic properties of a mapping T which satisfies
Condition (CC).

A mapping T on a subset C of a Banach space E is said to be quasinonexpansive
[5] if

(4.1) ∥Tx− z∥ ≤ ∥x− z∥

for all x ∈ C and z ∈ F (T ).

Proposition 4.1. Assume that a mapping T on a subset C of a Banach space
E satisfies Condition (CC). Assume also that T has a fixed point. Then T is a
quasinonexpansive mapping.

Proof. Let r, s and η satisfy (3.1). For x ∈ C and z ∈ F (T ), we have

η
(
∥Tx− z∥

)
≤ r η

(
∥x− z∥

)
+ s η

(
∥x− Tz∥

)
+ s η

(
∥Tx− z∥

)
.

So,

(1− s) η
(
∥Tx− z∥

)
≤ (r + s) η

(
∥x− z∥) = (1− s) η

(
∥x− z∥)

holds. Using this and the strict increasingness of η, we obtain (4.1). □

From Proposition 4.1, we obtain the following.

Lemma 4.2. Assume that a mapping T on a subset C of a Banach space E satisfies
Condition (CC). Assume also that T has a fixed point. Then {Tnu} is bounded for
all u ∈ C.

Proposition 4.3. Let T be a mapping on a closed subset C of a Banach space
E which satisfies Condition (CC). Then F (T ) is closed. Moreover, if E is strictly
convex and C is convex, then F (T ) is also convex.

The following lemma plays a very important role in this paper.

Lemma 4.4. Put I0 =
{
(m,n) : m,n ∈ N ∪ {0}, m ≤ n

}
and I =

{
(m,n) :

m,n ∈ N, m < n
}
. Let r, s ∈ [0, 1) satisfy r+2 s = 1. Define a function A from I0

into [0,∞) by the following:

A(0, n) = 1 for n ∈ N.(4.2)

A(n, n) = 0 for n ∈ N ∪ {0}.(4.3)

A(m,n) = r A(m− 1, n− 1) + sA(m− 1, n) + sA(m,n− 1) for (m,n) ∈ I.(4.4)

Then the following hold:

(i) A(m,n) ≤ 1 for (m,n) ∈ I0.
(ii) A(m− 1, n− 1) ≥ A(m,n) for (m,n) ∈ I.
(iii) For (m,n) ∈ I and k ∈ N,

A(m+ k, n+ k) ≤ rk +
1

2
A(m− 1, n) +

1

2
A(m,n− 1).
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(iv) For j, n ∈ N ∪ {0} and ℓ ∈ N,
A(j + 2n+ 2nℓ, j + 2n+ 1 + 2nℓ)

≤ 2nrℓ +
1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
A(j + k, j + 2n+ 1− k).

(v) For j, n ∈ N ∪ {0} and ℓ ∈ N,
A(j + 2n+ 1 + (2n+ 1) ℓ, j + 2n+ 2 + (2n+ 1) ℓ)

≤ (2n+ 1)rℓ +
1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
A(j + k, j + 2n+ 2− k).

(vi) lim
n→∞

A(n, n+ 1) = 0.

We use the following in the proof of Lemma 4.4.

Lemma 4.5. The following hold:

(i) For n ∈ N ∪ {0},

1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
≤ 1.

(ii) For n, j ∈ N ∪ {0},
n∑

k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1

(
A(j + k, j + 2n+ 2− k)

+A(j + k + 1, j + 2n+ 1− k)
)

=
n∑

k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
A(j + k, j + 2n+ 2− k).

(iii) For n ∈ N ∪ {0},

1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
≤ 1.

(iv) For n, j ∈ N ∪ {0},
n∑

k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2

(
A(j + k, j + 2n+ 3− k)

+A(j + k + 1, j + 2n+ 2− k)
)

=

n+1∑
k=0

C(2n+ 2, k)
2n− 2 k + 3

2n− k + 3
A(j + k, j + 2n+ 3− k).

(v)

lim
n→∞

1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
= 0.

(vi) The convergence radius of t 7→
∑∞

n=0 n tn is 1.
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Proof. (i)–(v) are proved in the proof of Lemma 11 in [15]. (vi) is obvious. □

Proof of Lemma 4.4. We first define a total order ≤ on I by (m1, n1) ≤ (m2, n2) iff
either n1 < n2 or n1 = n2 and m1 ≤ m2. We will show (i). We note A(m,n) ≤ 1
for (m,n) ∈ I0 \ I by (4.2) and (4.3). Fix (m,n) ∈ I and assume A(m′, n′) ≤ 1 for
(m′, n′) ∈ I with (m′, n′) < (m,n). Then we have by (4.4)

A(m,n) = r A(m− 1, n− 1) + sA(m− 1, n) + sA(m,n− 1)

≤ r + s+ s = 1.

By induction, we obtain (i). We next show (ii). Since

A(1, n) ≤ A(0, n− 1) = 1

for n ∈ N with n ≥ 2, (ii) holds when m = 1. Let (m,n) ∈ I with m > 1 and
assume A(m′ − 1, n′ − 1) ≤ A(m′, n′) for (m′, n′) ∈ I with (m′, n′) < (m,n). Then
noting A(m− 1,m− 1) = A(m,m) if necessary, we have

A(m,n) = r A(m− 1, n− 1) + sA(m− 1, n) + sA(m,n− 1)

≤ r A(m− 2, n− 2) + sA(m− 2, n− 1) + sA(m− 1, n− 2)

= A(m− 1, n− 1).

So, we obtain (ii). Next we prove (iii). Using (4.4) and (ii) several times, (i) and
s/(1− r) = 1/2, we have

A(m+ k, n+ k)

= r A(m+ k − 1, n+ k − 1) + sA(m+ k − 1, n+ k) + sA(m+ k, n+ k − 1)

≤ r2A(m+ k − 2, n+ k − 2)

+ r sA(m+ k − 2, n+ k − 1) + r sA(m+ k − 1, n+ k − 2)

+ sA(m+ k − 2, n+ k − 1) + sA(m+ k − 1, n+ k − 2)

= r2A(m+ k − 2, n+ k − 2) + s (1 + r)A(m+ k − 2, n+ k − 1)

+ s (1 + r)A(m+ k − 1, n+ k − 2)

≤ r3A(m+ k − 3, n+ k − 3) + s (1 + r + r2)A(m+ k − 3, n+ k − 2)

+ s (1 + r + r2)A(m+ k − 2, n+ k − 3)

...

≤ rk+1A(m− 1, n− 1) + s
1− rk+1

1− r
A(m− 1, n) + s

1− rk+1

1− r
A(m,n− 1)

≤ rk+1 +
1

2
A(m− 1, n) +

1

2
A(m,n− 1)

≤ rk +
1

2
A(m− 1, n) +

1

2
A(m,n− 1)

for k ∈ N. In order to show (iv) and (v), we also use induction with respect to n.
When n = 0, (iv) becomes A(j, j+1) ≤ A(j, j+1), which clearly holds. We assume
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(iv) holds for some n ∈ N ∪ {0}. Using (iii) and Lemma 4.5 (i) and (ii), we have

A(j + 2n+ 1 + (2n+ 1) ℓ, j + 2n+ 2 + (2n+ 1) ℓ)

= A(j + 1 + ℓ+ 2n+ 2nℓ, j + 1 + ℓ+ 2n+ 1 + 2nℓ)

≤ 2nrℓ +
1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
A(j + 1 + ℓ+ k, j + 1 + ℓ+ 2n+ 1− k)

= 2nrℓ +
1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
A(j + 1 + k + ℓ, j + 2 + 2n− k + ℓ)

≤ 2nrℓ +
1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1

(
rℓ +

1

2
A(j + k, j + 2 + 2n− k)

+
1

2
A(j + 1 + k, j + 1 + 2n− k)

)
= 2nrℓ +

1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
rℓ

+
1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
A(j + k, j + 2n+ 2− k)

≤ (2n+ 1) rℓ +
1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
A(j + k, j + 2n+ 2− k).

Hence (v) holds provided (iv) holds. Using (iii) and Lemma 4.5 (iii) and (iv), we
also have

A(j + 2 (n+ 1) + 2 (n+ 1)ℓ, j + 2 (n+ 1) + 1 + 2 (n+ 1)ℓ)

= A(j + 1 + ℓ+ 2n+ 1 + (2n+ 1) ℓ, j + 1 + ℓ+ 2n+ 2 + (2n+ 1) ℓ)

≤ (2n+ 1) rℓ +
1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2

×A(j + k + 1 + ℓ, j + 2n+ 2− k + 1 + ℓ)

≤ (2n+ 1) rℓ +
1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2

×
(
rℓ +

1

2
A(j + k, j + 2n+ 3− k) +

1

2
A(j + k + 1, j + 2n+ 2− k)

)
= (2n+ 1) rℓ +

1

22n+1

n∑
k=0

C(2n+ 1, k)
2n− 2 k + 2

2n− k + 2
rℓ

+
1

22n+2

n+1∑
k=0

C(2n+ 2, k)
2n− 2 k + 3

2n− k + 3
A(j + k, j + 2n+ 3− k)

≤ 2 (n+ 1) rℓ +
1

22n+2

n+1∑
k=0

C(2n+ 2, k)
2n− 2 k + 3

2n− k + 3
A(j + k, j + 2n+ 3− k).
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Thus (iv) holds when n := n+ 1. By induction, we obtain (iv) and (v). We finally
prove (vi). Putting j = 0 and ℓ = 2n in (iv), we have

lim
n→∞

A(2n+ 4n2, 2n+ 4n2 + 1)

≤ lim
n→∞

(
2nr2n +

1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1
A(k, 2n+ 1− k)

)
≤ lim

n→∞

(
2nr2n +

1

22n

n∑
k=0

C(2n, k)
2n− 2 k + 1

2n− k + 1

)
= 0

by Lemma 4.5 (v) and (vi). By (ii), we obtain (vi). □

Lemma 4.6. Let I0, I and A be as in Lemma 4.4. Let B be a function from I0
into [0,∞) satisfying the following:

• B(0, n) ≤ 1 for n ∈ N.
• B(n, n) = 0 for n ∈ N ∪ {0}.
• There exist r, s ∈ [0, 1) such that r + 2 s = 1 and

B(m,n) ≤ r B(m− 1, n− 1) + sB(m− 1, n) + sB(m,n− 1)

for (m,n) ∈ I.

Then B(m,n) ≤ A(m,n) holds for (m,n) ∈ I0. Hence lim
n→∞

B(n, n+ 1) = 0 holds.

Proof. We first note that B(m,n) ≤ A(m,n) obviously holds for (m,n) ∈ I0 \ I.
Define a total order ≤ on I as in the proof of Lemma 4.4. Fix (m,n) ∈ I and
assume B(m′, n′) ≤ A(m′, n′) for (m′, n′) ∈ I with (m′, n′) < (m,n). Then we have

B(m,n) ≤ r B(m− 1, n− 1) + sB(m− 1, n) + sB(m,n− 1)

≤ r A(m− 1, n− 1) + sA(m− 1, n) + sA(m,n− 1) = A(m,n).

By induction, B(m,n) ≤ A(m,n) holds for (m,n) ∈ I. By Lemma 4.4, lim
n→∞

B(n, n+

1) = 0 holds. □

A mapping T on C is said to be asymptotically regular at x ∈ C [3] if

(4.5) lim
n→∞

∥Tn+1x− Tnx∥ = 0.

T is said to be asymptotically regular on C if T is asymptotically regular at all
x ∈ C.

Lemma 4.7. Let T be a mapping on a subset C of a Banach space E which satisfies
Condition (CC). Assume {Tnx} is bounded for some x ∈ C. Then T is asymptoti-
cally regular at x.

Proof. Let r, s and η satisfy (3.1). From the assumption, there exists a positive
real number M such that M > η

(
2 ∥Tnx∥

)
for n ∈ N∪{0}. Define a function B by

B(m,n) =
1

M
η
(
∥Tmx− Tnx∥

)
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for m,n ∈ N∪{0} with m ≤ n. Then all the assumption of Lemma 4.6 are satisfied.
So we obtain

lim
n→∞

η
(
∥Tnx− Tn+1x∥

)
= M lim

n→∞
B(n, n+ 1) = 0.

Therefore T is asymptotically regular at x. □

Proposition 4.8. Let T be a mapping on a subset C of a Banach space E which
satisfies Condition (CC). Assume {Tnu} is bounded for some u ∈ C. Then the
following hold:

(i) {Tnx} is bounded for all x ∈ C.
(ii) T is asymptotically regular on C.

Proof. Let r, s and η satisfy (3.1). Define a continuous function f from C into
[0,∞) by

(4.6) f(x) = lim sup
n→∞

η
(
∥Tnu− x∥

)
for all x ∈ C. Then f is well defined from the assumption. We have

f(Tx)

= lim sup
n→∞

η
(
∥Tnu− Tx∥

)
≤ lim sup

n→∞

(
r η

(
∥Tn−1u− x∥

)
+ s η

(
∥Tn−1u− Tx∥

)
+ s η

(
∥Tnu− x∥

))
≤ r lim sup

n→∞
η
(
∥Tn−1u− x∥

)
+s lim sup

n→∞
η
(
∥Tn−1u− Tx∥

)
+s lim sup

n→∞
η
(
∥Tnu− x∥

)
= r f(x) + s f(Tx) + s f(x),

which implies f(Tx) ≤ f(x). Thus, f is nonincreasing with respect to T . Hence
f(Tnx) ≤ f(x) for n ∈ N. This implies that {Tnx} is bounded. We have shown (i).
By Lemma 4.7, we obtain (ii). □

5. Convergence theorems

In the section, we prove convergence theorems under the assumption that the
domain C has the Opial property.

Proposition 5.1. Let T be a mapping on a subset C of a Banach space E which
satisfies Condition (CC). Assume C has the Opial property. If {xn} converges
weakly to z and limn ∥Txn − xn∥ = 0, then Tz = z. That is, I − T is demiclosed at
zero.

Proof. Let r, s and η satisfy (3.1). We note that {xn} is bounded. Since

∥Txn − y∥ − ∥Txn − xn∥ ≤ ∥xn − y∥ ≤ ∥Txn − xn∥+ ∥Txn − y∥,

we have

lim sup
n→∞

∥Txn − y∥ = lim sup
n→∞

∥xn − y∥
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for all y ∈ C. Using this, we have

η
(
lim sup
n→∞

∥xn − Tz∥
)

= η
(
lim sup
n→∞

∥Txn − Tz∥
)

= lim sup
n→∞

η
(
∥Txn − Tz∥

)
≤ lim sup

n→∞

(
r η

(
∥xn − z∥

)
+ s η

(
∥xn − Tz∥

)
+ s η

(
∥Txn − z∥

))
≤ lim sup

n→∞
r η

(
∥xn − z∥

)
+ lim sup

n→∞
s η

(
∥xn − Tz∥

)
+ lim sup

n→∞
s η

(
∥Txn − z∥

)
= r η

(
lim sup
n→∞

∥xn − z∥
)
+ s η

(
lim sup
n→∞

∥xn − Tz∥
)
+ s η

(
lim sup
n→∞

∥Txn − z∥
)

= r η
(
lim sup
n→∞

∥xn − z∥
)
+ s η

(
lim sup
n→∞

∥xn − Tz∥
)
+ s η

(
lim sup
n→∞

∥xn − z∥
)

and hence

(1− s) η
(
lim sup
n→∞

∥xn − Tz∥
)
≤ (r + s) η

(
lim sup
n→∞

∥xn − z∥
)
.

So, we have
η
(
lim sup
n→∞

∥xn − Tz∥
)
≤ η

(
lim sup
n→∞

∥xn − z∥
)
.

Since C has the Opial property, we obtain Tz = z. □
Remark. A function y 7→ lim supn η

(
∥xn − y∥

)
from C into [0,∞) is also nonin-

creasing with respect to T .

Theorem 5.2. Let T be a mapping on a subset C of a Banach space E which
satisfies Condition (CC). Assume {Tnu} is bounded for some u ∈ C; and C is
boundedly weakly compact and has the Opial property. Then {Tnx} converges weakly
to a fixed point of T for all x ∈ C.

Remark. We do not need the convexity of C.

Proof. Fix x ∈ C. By Proposition 4.8, {Tnx} is bounded and limn ∥Tnx−T ◦Tnx∥ =
0. From the assumption, there exist a subsequence {Tnjx} of {Tnx} and z ∈ C
such that {Tnjx} converges weakly to z. By Proposition 5.1, z is a fixed point of T .
By Proposition 4.1, we note that {∥Tnx−z∥} is a nonincreasing sequence. Arguing
by contradiction, assume that {Tnx} does not converge to z. Then there exist a
subsequence {Tnkx} of {Tnx} and w ∈ C such that {Tnkx} converges weakly to w
and z ̸= w. We note Tw = w. From the Opial property,

lim
n→∞

∥Tnx− z∥ = lim
j→∞

∥Tnjx− z∥ < lim
j→∞

∥Tnjx− w∥ = lim
n→∞

∥Tnx− w∥

= lim
k→∞

∥Tnkx− w∥ < lim
k→∞

∥Tnkx− z∥ = lim
n→∞

∥Tnx− z∥.

This is a contradiction. Therefore {Tnx} converges weakly to z. □
As direct consequences of Theorem 5.2, we obtain the following.

Corollary 5.3. Let T be a mapping on a weakly compact subset C of a Banach
space E which satisfies Condition (CC). Assume C has the Opial property. Then
{Tnx} converges weakly to a fixed point of T for all x ∈ C.
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Corollary 5.4. Let T be a mapping on a compact subset C of a Banach space E
which satisfies Condition (CC). Then {Tnx} converges strongly to a fixed point of
T for all x ∈ C.

It is well known that every metric space (X, d) is isometric to some subset of
B(X), where B(X) is the set of all bounded real functions on X with supremum
norm. So we can rewrite Corollary 5.4 as follows.

Corollary 5.5. Let (X, d) be a compact metric space and let T be a mapping on
X. Assume that there exist a continuous, strictly increasing function η from [0,∞)
into itself with η(0) = 0 and r, s ∈ [0, 1) such that

r + 2 s = 1 and

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
for all x, y ∈ X. Then {Tnx} converges to a fixed point of T for all x ∈ X.

6. Existence theorems

In this section, we prove the existence of fixed points of mappings T which satisfy
Condition (CC). By Lemma 4.2 and Theorem 5.2, we obtain the following.

Theorem 6.1. Let T be a mapping on a subset C of a Banach space E which
satisfies Condition (CC). Assume C is boundedly weakly compact and has the Opial
property. Then the following are equivalent:

(i) {Tnu} is bounded for some u ∈ C.
(ii) T has a fixed point.

As direct consequences of Theorem 6.1, we obtain the following.

Corollary 6.2. Let T be a mapping on a subset C of a Banach space E which
satisfies Condition (CC). Assume that either of the following holds:

• C is compact;
• C is weakly compact and has the Opial property.

Then T has a fixed point.

Remark. It is obvious that Corollary 6.2 also can be proved by Corollaries 5.3 and
5.4.

In order to prove fixed point theorems in UCED Banach spaces, we use the
following lemmas.

Lemma 6.3 ([15]). Let C be a boundedly weakly compact and convex subset of a
Banach space E. Let T be a mapping on a subset C. Assume that there exists a
lower semicontinuous, strictly quasiconvex function f from C into R such that f is
nonincreasing with respect to T and f satisfies (2.2). Then T has a fixed point.

Lemma 6.4 ([15]). Let C be a boundedly weakly compact and convex subset of a
Banach space E. Let T0, T1, T2, . . . , Tℓ be commuting mappings on C. Assume that
for every j = 0, 1, 2, . . . , ℓ, there exists a lower semicontinuous, strictly quasiconvex
function fj from C into R such that fj is nonincreasing with respect to Tj and fj
satisfies (2.2). Assume also that F (Tj) is closed and convex for j = 1, 2, . . . , ℓ. Then∩ℓ

j=0 F (Tj) is nonempty.
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Lemma 6.5 ([15]). Let C be a weakly compact and convex subset of a Banach space
E. Let S = {T0} ∪ S′ be a family of commuting mappings on C. Assume that for
every T ∈ S, there exists a lower semicontinuous, strictly quasiconvex function fT
from C into R such that fT is nonincreasing with respect to T . Assume also that
F (T ) is closed and convex for T ∈ S′. Then S has a common fixed point.

Lemma 6.6. Let C be a convex subset of a UCED Banach space E. Let T be
a mapping on C which satisfies Condition (CC). Assume that {Tnu} is bounded
for some u ∈ C. Define a function f from C into [0,∞) by (4.6). Then f is a
continuous, strictly quasiconvex function such that f is nonincreasing with respect
to T and f satisfies (2.2).

Proof. We note that a function g defined by (2.1) is continuous and strictly quasi-
convex; and g satisfies (2.2). So f is also continuous and strictly quasiconvex; and
f satisfies (2.2). We have shown that f is nonincreasing with respect to T in the
proof of Proposition 4.8. □

Using Lemmas 6.3–6.6, we obtain the following.

Theorem 6.7. Let C be a boundedly weakly compact and convex subset of a UCED
Banach space E. Let T be a mapping on C which satisfies Condition (CC). Then
the following are equivalent:

(i) {Tnu} is bounded for some u ∈ C.
(ii) T has a fixed point.

Theorem 6.8. Let C be a boundedly weakly compact and convex subset of a UCED
Banach space E. Let T1, T2, . . . , Tℓ be commuting mappings on C which sat-
isfy Condition (CC). Assume that {Tj

nu} is bounded for all u ∈ C and j. Then∩ℓ
j=1 F (Tj) is nonempty.

Theorem 6.9. Let C be a weakly compact and convex subset of a UCED Banach
space E. Let S be a family of commuting mappings on C which satisfy Condition
(CC). Then S has a common fixed point.

7. A problem

In [2], Aoyama and Kohsaka introduced the concept of α-nonexpansive mappings.
Let T be a mapping on a subset C of a Banach space E. Then T is called α-
nonexpansive iff there exists α ∈ R such that α < 1 and

(7.1) ∥Tx− Ty∥2 ≤ α ∥x− Ty∥2 + α ∥Tx− y∥2 + (1− 2α) ∥x− y∥2

for any x, y ∈ C.

Remark.

(i) In the case where α < 0, the identity mapping on C is a unique α-nonexpansive
mapping.

(ii) In the case where α = 0, every α-nonexpansive mapping is nonexpansive.
(iii) In the case where 0 < α ≤ 1/2, every α-nonexpansive mapping satisfies

Condition (CC) with 1− 2α, α and t 7→ t2.
(iv) In the case where 1/2 < α < 1, we do not know the relation between the

condition on α-nonexpansive mapping and Condition (CC).
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We know more concept of nonlinear mappings; see also [1, 9, 10]. Since we use
the mapping t 7→ t2 in their concepts as in (7.1), the authors believe that Condition
(CC) is not stronger than their concepts.
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