Yokohama Publishers

EXTREMAL STRUCTURE OF ABSOLUTE NORMS AND THE SKEWNESS

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND NAOTO KOMURO

Abstract

The skewness of Banach spaces was introduced by Fitzpatrick and Reznick. In this paper, we consider the skewness for absolute normalized norms on \mathbb{R}^{2}. In particular, we calculate the skewness of $\left(\mathbb{R}^{2},\|\cdot\|\right)$ when $\|\cdot\|$ is an extreme point of $A N_{2}$, where $A N_{2}$ is the set of all absolute normalized norms on \mathbb{R}^{2}.

1. Introduction and Preliminaries

The notion of the skewness of a real Banach space X was introduced and investigated by Fitzpatrick and Reznick [3], as follows:

$$
s(X)=\sup \left\{\lim _{t \rightarrow+0} \frac{\|x+t y\|-\|y+t x\|}{t}: x, y \in S_{X}\right\}
$$

where $S_{X}=\{x \in X:\|x\|=1\}$. We set

$$
\langle x, y\rangle=\|x\| \cdot \lim _{t \rightarrow+0} \frac{\|x+t y\|-\|x\|}{t}
$$

for $x, y \in X$. As in [3] we note that $\langle\cdot, \cdot\rangle$ is the generalized inner product by Ritt [14], and that

$$
s(X)=\sup \left\{\langle x, y\rangle-\langle y, x\rangle: x, y \in S_{X}\right\}
$$

(cf. [1, 12]). From [3], we have $0 \leq s(X) \leq 2$ for any Banach space X, X is a Hilbert space if and only if $s(X)=0$, and $s(X)=s\left(X^{*}\right)$ for any real Banach space $X\left(X^{*}\right.$ is the dual space of X). Also, Fitzpatrick and Reznick calculated the skewness for L_{p} spaces where $1 \leq p \leq \infty$. Namely, they showed that

$$
s\left(L_{p}\right)=\max _{t>0} \frac{2\left(t-t^{p-1}\right)}{1+t^{p}}
$$

for $2<p<\infty, s\left(L_{2}\right)=0$, and $s\left(L_{1}\right)=s\left(L_{\infty}\right)=2$. Note that the computation of skewness is not known for other Banach spaces.

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(x, y)\|=\|(|x|,|y|)\|$ for all $x, y \in \mathbb{R}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The ℓ_{p}-norms $\|\cdot\|_{p}(1 \leq p \leq \infty)$ are basic

[^0]examples,
\[

\|(x, y)\|_{p}=\left\{$$
\begin{array}{lll}
\left(|x|^{p}+|y|^{p}\right)^{1 / p}, & \text { if } \quad 1 \leq p<\infty \\
\max (|x|,|y|), & \text { if } \quad p=\infty
\end{array}
$$\right.
\]

Let $A N_{2}$ be the set of all absolute normalized norms on \mathbb{R}^{2}, and let Ψ_{2} be the set of all continuous convex functions on $[0,1]$ satisfying $\psi(0)=\psi(1)=1$ and $\max \{1-t, t\} \leq \psi(t) \leq 1$ for $t \in[0,1]$. According to Bonsall and Duncan [2], $A N_{2}$ and Ψ_{2} are in a one-to-one correspondence with $\psi(t)=\|(1-t, t)\|$ for $t \in[0,1]$ and

$$
\|(x, y)\|_{\psi}=\left\{\begin{array}{lr}
(|x|+|y|) \psi\left(\frac{|y|}{|x|+|y|}\right), & \text { if } \quad(x, y) \neq(0,0) \\
0, & \text { if } \quad(x, y)=(0,0)
\end{array}\right.
$$

For ℓ_{p}-norm $\|\cdot\|_{p}$, the corresponding convex function ψ_{p} is

$$
\psi_{p}(t)= \begin{cases}\left((1-t)^{p}+t^{p}\right)^{1 / p}, & \text { if } 1 \leq p<\infty \\ \max (1-t, t), & \text { if } p=\infty\end{cases}
$$

From this we can consider many non- ℓ_{p}-type norms easily (see [13]).
A norm $\|\cdot\| \in A N_{2}$ is an extreme point of $A N_{2}$ if

$$
\|\cdot\|=\frac{1}{2}\left(\|\cdot\|^{\prime}+\|\cdot\|^{\prime \prime}\right),\|\cdot\|^{\prime},\|\cdot\|^{\prime \prime} \in A N_{2} \Rightarrow\|\cdot\|^{\prime}=\|\cdot\|^{\prime \prime}
$$

The definition of extreme point of Ψ_{2} is similar to that of $A N_{2}$. In [6], the authors determined the family of all extreme points of the set $A N_{2}$ by considering Ψ_{2}. For $0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1$ and for the case $(\alpha, \beta) \neq\left(\frac{1}{2}, \frac{1}{2}\right)$ we define

$$
\psi_{\alpha, \beta}(t)= \begin{cases}1-t & \text { if } 0 \leq t \leq \alpha \\ \frac{\alpha+\beta-1}{\beta-\alpha} t+\frac{\beta-2 \alpha \beta}{\beta-\alpha} & \text { if } \alpha \leq t \leq \beta \\ t & \text { if } \beta \leq t \leq 1\end{cases}
$$

For the case $(\alpha, \beta)=\left(\frac{1}{2}, \frac{1}{2}\right)$ we put $\psi_{\frac{1}{2}, \frac{1}{2}}=\psi_{\infty}$. Put $E=\left\{\psi_{\alpha, \beta}: 0 \leq \alpha \leq 1 / 2 \leq\right.$ $\beta \leq 1\}$. Then, for all $\psi \in \Psi_{2},\|\cdot\|_{\psi}$ is an extreme point of $A N_{2}$ (resp. Ψ_{2}) if and only if $\psi \in E$ (see also [4]). Computation of von Neumann-Jordan constant and James constant for such norms can be found in $[5,6,7,8,9,10]$.

In this paper, we consider the skewness of absolute normalized norms on \mathbb{R}^{2} by means of the corresponding continuous convex functions in Ψ_{2}. In particular, we calculate the skewness of $\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ when $\|\cdot\|$ is an extreme point of $A N_{2}$. To do this we will use the fact

$$
s(X)=\sup \left\{x^{*}(y)-y^{*}(x): x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\}
$$

where ∇_{x} is the set of all norming (supporting) functionals at x on X ([3]).

2. Norming functionals

In this section we study norming functionals on \mathbb{R}^{2} by considering Ψ_{2} (cf. [11]). An element $x^{*} \in S_{X^{*}}$ is said to be a norming functional of $x \in X$ with $x \neq 0$ if $x^{*}(x)=\|x\|$. We denote by ∇_{x} the set of all norming functionals of x. The Hahn-Banach theorem yields that, for every $x \in X$ with $x \neq 0$, there exists at least
one norming functional of X. For each $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ with $\|x\|_{\psi}=1$, we put $t=\left|x_{2}\right| /\left(\left|x_{1}\right|+\left|x_{2}\right|\right)$ and

$$
x(t)=\frac{1}{\psi(t)}(1-t, t)
$$

For each $t \in(0,1]$ (resp. $t \in[0,1)$ we denote by $\psi_{L}^{\prime}(t)$ (resp. $\left.\psi_{R}^{\prime}(t)\right)$ is the left derivative (resp. the right derivative) of ψ at t. We define a mapping G from $[0,1]$ into the set of subintervals of $[0,1]$ as

$$
G(t)=\left\{\begin{array}{l}
{\left[-1, \psi_{R}^{\prime}(0)\right], \text { if } t=0} \\
{\left[\psi_{L}^{\prime}(t), \psi_{R}^{\prime}(t)\right], \text { if } 0<t<1} \\
{\left[\psi_{L}^{\prime}(1), 1\right], \text { if } t=1}
\end{array}\right.
$$

Bonsall and Duncan [2] characterized the family of norming functionals of $x(t)$ on \mathbb{C}^{2} by considering Ψ_{2} (see also [11]). For the case \mathbb{R}^{2} we similarly have,

Lemma 2.1 (cf. [2, 11]). Let t with $0 \leq t \leq 1$. Then

$$
\nabla_{x(t)}=\left\{\begin{array}{l}
\{(1, c(1+a)): a \in G(0), c= \pm 1\}, \text { if } t=0 \\
\{(\psi(t)-a t, \psi(t)+a(1-t)): a \in G(t)\}, \text { if } 0<t<1 \\
\{(c(1-a), 1): a \in G(1), c= \pm 1\}, \text { if } t=1
\end{array}\right.
$$

As a direct consequence of Lemma 2.1 we have the following.
Lemma 2.2 (cf. [2, 11]). Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ with $\|x\|_{\psi}=1$ and put $t=$ $\left|x_{2}\right| /\left(\left|x_{1}\right|+\left|x_{2}\right|\right)$. Then we can write

$$
x=\frac{1}{\psi(t)}\left(\xi_{1}(1-t), \xi_{2} t\right)
$$

where $\xi_{1}, \xi_{2}= \pm 1$. Moreover,

$$
\nabla_{x}=\left\{\begin{array}{l}
\left\{\left(\xi_{1}, c(1+a)\right): a \in G(0), c= \pm 1\right\}, \text { if } t=0 \\
\left\{\left(\xi_{1}(\psi(t)-a t), \xi_{2}(\psi(t)+a(1-t))\right): a \in G(t)\right\}, \quad \text { if } 0<t<1 \\
\left\{\left(c(1-a), \xi_{2}\right): a \in G(1), c= \pm 1\right\}, \text { if } t=1
\end{array}\right.
$$

3. Skewness

In this section, we estimate the skewness of absolute normalized norms on \mathbb{R}^{2}. Fitzpatrick and Reznick [3] proved the following useful lemma.

Lemma 3.1 ([3]). For any Banach space X,

$$
s(X)=\sup \left\{x^{*}(y)-y^{*}(x): x, y \in S_{X}, x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\}
$$

For a Banach space X, we put $B_{X}=\{x \in X:\|x\| \leq 1\}$. Let $\operatorname{ext}\left(B_{X}\right)$ be the set of all extreme points of B_{X}. In 2-dimensional spaces we can improve Lemma 3.1 by using Krein-Milman theorem.
Lemma 3.2. Let $X=\left(\mathbb{R}^{2},\|\cdot\|\right)$. Then

$$
s(X)=\sup \left\{x^{*}(y)-y^{*}(x): x, y \in \operatorname{ext}\left(B_{X}\right), x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\}
$$

Proof. It is enough to show

$$
\begin{equation*}
s(X)=\sup \left\{x^{*}(y)-y^{*}(x): x \in \operatorname{ext}\left(B_{X}\right), y \in S_{X}, x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\} . \tag{3.1}
\end{equation*}
$$

Let $x, y \in S_{X}, x^{*} \in \nabla_{x}$ and $y^{*} \in \nabla_{y}$. Assume that $x=(1-\lambda) x_{1}+\lambda x_{2}$, where $0<\lambda<1$ and $x_{1}, x_{2} \in \operatorname{ext}\left(B_{X}\right)$. By $x^{*} \in \nabla_{x}$, we have

$$
1=(1-\lambda) x^{*}\left(x_{1}\right)+\lambda x^{*}\left(x_{2}\right) \leq(1-\lambda)\left\|x^{*}\right\|\left\|x_{1}\right\|+\lambda\left\|x^{*}\right\|\left\|x_{2}\right\|=1,
$$

which implies $x^{*} \in \nabla_{x_{1}} \cap \nabla_{x_{2}}$. Together with

$$
x^{*}(y)-y^{*}(x)=(1-\lambda)\left(x^{*}(y)-y^{*}\left(x_{1}\right)\right)+\lambda\left(x^{*}(y)-y^{*}\left(x_{2}\right)\right),
$$

we obtain (3.1).
Moreover,
Lemma 3.3. Let $X=\left(\mathbb{R}^{2},\|\cdot\|\right)$. Then

$$
\begin{equation*}
s(X)=\sup \left\{s(X, x, y): x, y \in \operatorname{ext}\left(B_{X}\right) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)\right\} \tag{3.2}
\end{equation*}
$$

where

$$
s(X, x, y)=\sup \left\{\left|x^{*}(y)-y^{*}(x)\right|: x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\},
$$

Proof. Let $x, y \in \operatorname{ext}\left(B_{X}\right), x^{*} \in \nabla_{x}$ and $y^{*} \in \nabla_{y}$. We consider the case when x is in the first quadrant and y is in the third quadrant. Then $-y \in \operatorname{ext}\left(B_{X}\right)$ and $-y^{*} \in \nabla_{-y}$, and hence

$$
x^{*}(y)-y^{*}(x) \leq\left|x^{*}(-y)-\left(-y^{*}\right)(x)\right| \leq s(X, x,-y)
$$

The rest cases are similar. Together with Lemma 3.2, we have (3.2).
We consider the case $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$. When $\alpha=1 / 2, \beta=1 / 2$ or $(\alpha, \beta)=(0,1)$, we have $s(X)=2$. It is clear that $\operatorname{ext}\left(B_{X}\right) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, where $x_{1}=\left(1, \frac{\alpha}{1-\alpha}\right), x_{2}=\left(\frac{1-\beta}{\beta}, 1\right), x_{3}=\left(-\frac{1-\beta}{\beta}, 1\right), x_{4}=\left(-1, \frac{\alpha}{1-\alpha}\right)$. We first calculate norming functional of each x_{i}.
Lemma 3.4. Let $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$ for α, β. Let $\alpha>0$. Then

$$
\begin{equation*}
\nabla_{x_{1}}=\left\{(-\alpha a+1-\alpha,(1-\alpha) a+1-\alpha): a \in\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\nabla_{x_{4}}=\left\{(\alpha a-1+\alpha,(1-\alpha) a+1-\alpha): a \in\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]\right\} .
$$

If $\alpha=0$, then

$$
\nabla_{x_{1}}=-\nabla_{x_{4}}=\left\{(1, c(1+a)): a \in\left[-1, \frac{\beta-1}{\beta}\right], c= \pm 1\right\} .
$$

Let $\beta<1$. Then

$$
\nabla_{x_{2}}=\left\{(-\beta a+\beta,(1-\beta) a+\beta): a \in\left[\frac{\alpha+\beta-1}{\beta-\alpha}, 1\right]\right\}
$$

and

$$
\nabla_{x_{3}}=\left\{(\beta a-\beta,(1-\beta) a+\beta): a \in\left[\frac{\alpha+\beta-1}{\beta-\alpha}, 1\right]\right\} .
$$

If $\beta=1$, then

$$
\nabla_{x_{2}}=\nabla_{x_{3}}=\left\{(c(1-a), 1): a \in\left[\frac{\alpha}{1-\alpha}, 1\right], c= \pm 1\right\}
$$

Proof. Let $\alpha>0$. From Lemma 2.1,

$$
\nabla_{x_{1}}=\nabla_{x(\alpha)}=\left\{\left(\psi_{\alpha, \beta}(\alpha)-a \alpha, \psi_{\alpha, \beta}(\alpha)+a(1-\alpha)\right): a \in G(\alpha)\right\}
$$

By $\psi_{L}^{\prime}(\alpha)=-1$ and $\psi_{R}^{\prime}(\alpha)=\frac{\alpha+\beta-1}{\beta-\alpha}$, we obtain $G(\alpha)=\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]$ and hence (3.3) holds. The rest cases are similar.

For each $x, y \in \operatorname{ext}\left(B_{X}\right)$, we define

$$
M(X, x, y)=\sup \left\{x^{*}(y)-y^{*}(x): x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\}
$$

and

$$
m(X, x, y)=\inf \left\{x^{*}(y)-y^{*}(x): x^{*} \in \nabla_{x}, y^{*} \in \nabla_{y}\right\}
$$

We shall calculate $s\left(X, x_{i}, x_{j}\right)$. Note that $s\left(X, x_{i}, x_{i}\right)=0$ for all i.
Lemma 3.5. Let $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$ for α, β. If $\alpha>0$ and $\beta<1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{2}\right)=\max \left\{\frac{1-2 \alpha}{1-\alpha}, \frac{2 \beta-1}{\beta}\right\} . \tag{3.4}
\end{equation*}
$$

If $\alpha=0$ and $\beta<1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{2}\right)=\max \left\{1, \frac{2(2 \beta-1)}{\beta}\right\} \tag{3.5}
\end{equation*}
$$

If $\alpha>0$ and $\beta=1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{2}\right)=\max \left\{1, \frac{2(1-2 \alpha)}{1-\alpha}\right\} \tag{3.6}
\end{equation*}
$$

Proof. Let $\alpha>0$ and $\beta<1$. Take $x_{1}^{*} \in \nabla_{x_{1}}$ and $x_{2}^{*} \in \nabla_{x_{2}}$. By Lemma 3.4 we can write $x_{1}^{*}=(-\alpha a+1-\alpha,(1-\alpha) a+1-\alpha)$ and $x_{2}^{*}=(-\beta b+\beta,(1-\beta) b+\beta)$, where $a \in\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]$ and $b \in\left[\frac{\alpha+\beta-1}{\beta-\alpha}, 1\right]$. Hence

$$
\begin{aligned}
x_{1}^{*}\left(x_{2}\right)-x_{2}^{*}\left(x_{1}\right)= & \left\langle(-\alpha a+1-\alpha,(1-\alpha) a+1-\alpha),\left(\frac{1-\beta}{\beta}, 1\right)\right\rangle \\
& -\left\langle(-\beta b+\beta,(1-\beta) b+\beta),\left(1, \frac{\alpha}{1-\alpha}\right)\right\rangle \\
= & \frac{\beta-\alpha}{\beta} a+\frac{\beta-\alpha}{1-\alpha} b+\frac{1-\alpha}{\beta}-\frac{\beta}{1-\alpha}
\end{aligned}
$$

By $\frac{\beta-\alpha}{\beta} \geq 0$ and $\frac{\beta-\alpha}{1-\alpha} \geq 0$,

$$
\begin{aligned}
M\left(X, x_{1}, x_{2}\right) & =\frac{\beta-\alpha}{\beta} \cdot \frac{\alpha+\beta-1}{\beta-\alpha}+\frac{\beta-\alpha}{1-\alpha}+\frac{1-\alpha}{\beta}-\frac{\beta}{1-\alpha} \\
& =\frac{1-2 \alpha}{1-\alpha}
\end{aligned}
$$

and

$$
m\left(X, x_{1}, x_{2}\right)=\frac{\beta-\alpha}{\beta} \cdot(-1)+\frac{\beta-\alpha}{1-\alpha} \cdot \frac{\alpha+\beta-1}{\beta-\alpha}+\frac{1-\alpha}{\beta}-\frac{\beta}{1-\alpha}
$$

$$
=-\frac{2 \beta-1}{\beta}
$$

Thus we obtain (3.4). If $\alpha=0$ and $\beta<1$, then we similarly have

$$
x_{1}^{*}\left(x_{2}\right)-x_{2}^{*}\left(x_{1}\right)=\frac{1-\beta}{\beta}+c(1+a)+\beta b-\beta
$$

where $a \in\left[-1, \frac{\beta-1}{\beta}\right], c= \pm 1$ and $b \in\left[\frac{\beta-1}{\beta}, 1\right]$. Hence $M\left(X, x_{1}, x_{2}\right)=1$ and

$$
m\left(X, x_{1}, x_{2}\right)=\frac{2(1-2 \beta)}{\beta}
$$

Thus we obtain (3.5). If $\alpha>0$ and $\beta=1$, then

$$
x_{1}^{*}\left(x_{2}\right)-x_{2}^{*}\left(x_{1}\right)=(1-\alpha) a+1-\alpha-c(1-b)-\frac{\alpha}{1-\alpha}
$$

where $a \in\left[-1, \frac{\alpha}{1-\alpha}\right], b \in\left[\frac{\alpha}{1-\alpha}, 1\right]$ and $c= \pm 1$. Hence

$$
M\left(X, x_{1}, x_{2}\right)=\frac{2(1-2 \alpha)}{1-\alpha}
$$

and $m\left(X, x_{1}, x_{2}\right)=-1$. Thus we obtain (3.6).

In other cases, we similarly have,
Lemma 3.6. Let $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$ for α, β. If $\alpha>0$ and $\beta<1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{3}\right)=\max \left\{\frac{2(1-2 \alpha)(2 \beta-1)}{\beta-\alpha}, \frac{\alpha}{1-\alpha}+\frac{1-\beta}{\beta}\right\} \tag{3.7}
\end{equation*}
$$

If $\alpha=0$ and $\beta<1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{3}\right)=\max \left\{1, \frac{2(2 \beta-1)}{\beta}\right\} \tag{3.8}
\end{equation*}
$$

If $\alpha>0$ and $\beta=1$, then

$$
\begin{equation*}
s\left(X, x_{1}, x_{3}\right)=\max \left\{1, \frac{2(1-2 \alpha)}{1-\alpha}\right\} \tag{3.9}
\end{equation*}
$$

Proof. Let $\alpha>0$ and $\beta<1$. Then

$$
\begin{aligned}
& x_{1}^{*}\left(x_{3}\right)-x_{3}^{*}\left(x_{1}\right) \\
& \quad=\frac{\alpha+\beta-2 \alpha \beta}{\beta} \cdot a-\frac{\alpha+\beta-2 \alpha \beta}{1-\alpha} \cdot b+\frac{(1-\alpha)(2 \beta-1)}{\beta}-\frac{(2 \alpha-1) \beta}{1-\alpha},
\end{aligned}
$$

where $a \in\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]$ and $b \in\left[\frac{\alpha+\beta-1}{\beta-\alpha}, 1\right]$. Hence we have by $\alpha+\beta-2 \alpha \beta>0$,

$$
\begin{aligned}
M\left(X, x_{1}, x_{3}\right)= & \frac{\alpha+\beta-2 \alpha \beta}{\beta} \cdot \frac{\alpha+\beta-1}{\beta-\alpha}-\frac{\alpha+\beta-2 \alpha \beta}{1-\alpha} \cdot \frac{\alpha+\beta-1}{\beta-\alpha} \\
& +\frac{(1-\alpha)(2 \beta-1)}{\beta}-\frac{(2 \alpha-1) \beta}{1-\alpha} \\
= & \frac{2}{\beta-\alpha}(1-2 \alpha)(2 \beta-1)
\end{aligned}
$$

and

$$
\begin{aligned}
m\left(X, x_{1}, x_{3}\right)= & \frac{\alpha+\beta-2 \alpha \beta}{\beta} \cdot(-1)-\frac{\alpha+\beta-2 \alpha \beta}{1-\alpha} \\
& +\frac{(1-\alpha)(2 \beta-1)}{\beta}-\frac{(2 \alpha-1) \beta}{1-\alpha} \\
= & -\frac{\alpha}{1-\alpha}-\frac{1-\beta}{\beta} .
\end{aligned}
$$

Thus we obtain (3.7). Let $\alpha=0$ and $\beta<1$. Then

$$
x_{1}^{*}\left(x_{3}\right)-x_{3}^{*}\left(x_{1}\right)=-\frac{1-\beta}{\beta}+c(1+a)-(\beta b-\beta)
$$

where $a \in\left[-1, \frac{\beta-1}{\beta}\right], c= \pm 1$ and $b \in\left[\frac{\beta-1}{\beta}, 1\right]$. Hence

$$
M\left(X, x_{1}, x_{3}\right)=\frac{2(2 \beta-1)}{\beta}
$$

and $m\left(X, x_{1}, x_{3}\right)=-1$. Thus we obtain (3.8). Let $\alpha>0$ and $\beta=1$. Then

$$
x_{1}^{*}\left(x_{3}\right)-x_{3}^{*}\left(x_{1}\right)=(1-\alpha) a+1-\alpha-c(1-b)-\frac{\alpha}{1-\alpha}
$$

where $a \in\left[-1, \frac{\alpha}{1-\alpha}\right], b \in\left[\frac{\alpha}{1-\alpha}, 1\right]$ and $c= \pm 1$. Hence

$$
M\left(X, x_{1}, x_{3}\right)=\frac{2(1-2 \alpha)}{1-\alpha}
$$

and $m\left(X, x_{1}, x_{3}\right)=-1$. Thus we obtain (3.9).
Lemma 3.7. Let $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$ for α, β. Then

$$
\begin{equation*}
s\left(X, x_{1}, x_{4}\right)=\frac{2 \alpha(2 \beta-1)}{\beta-\alpha} \tag{3.10}
\end{equation*}
$$

Proof. Let $\alpha>0$ and $\beta<1$. Then

$$
x_{1}^{*}\left(x_{4}\right)-x_{4}^{*}\left(x_{1}\right)=2 \alpha(a-b)
$$

where $a, b \in\left[-1, \frac{\alpha+\beta-1}{\beta-\alpha}\right]$. Hence

$$
M\left(X, x_{1}, x_{4}\right)=\frac{2 \alpha(2 \beta-1)}{\beta-\alpha}
$$

and

$$
m\left(X, x_{1}, x_{4}\right)=-\frac{2 \alpha(2 \beta-1)}{\beta-\alpha}
$$

Thus we have (3.10). For the rest cases, we similarly have (3.10).
Lemma 3.8. Let $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)$ for α, β. Then

$$
\begin{equation*}
s\left(X, x_{2}, x_{3}\right)=\frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha} \tag{3.11}
\end{equation*}
$$

Proof. Let $\beta<1$. Then

$$
x_{2}^{*}\left(x_{3}\right)-x_{3}^{*}\left(x_{2}\right)=2(1-\beta)(a-b)
$$

where $a, b \in\left[\frac{\alpha+\beta-1}{\beta-\alpha}, 1\right]$. Hence

$$
M\left(X, x_{2}, x_{3}\right)=\frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha}
$$

and

$$
m\left(X, x_{2}, x_{3}\right)=-\frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha}
$$

Thus we have (3.11). If $\beta=1$, then $s\left(X, x_{2}, x_{3}\right)=0$ by $x_{2}=x_{3}$.

Moreover, we similarly obtain $s\left(X, x_{2}, x_{4}\right)=s\left(X, x_{1}, x_{3}\right)$ and $s\left(X, x_{3}, x_{4}\right)=$ $s\left(X, x_{1}, x_{2}\right)$.

Remark 3.9. (i) Let $0 \leq \alpha \leq 1 / 2<\beta \leq 1$. Then it is easy to prove that

$$
\max \left\{\frac{2(1-2 \alpha)(2 \beta-1)}{\beta-\alpha}, \frac{2 \alpha(2 \beta-1)}{\beta-\alpha}\right\} \geq \frac{2 \beta-1}{\beta}
$$

and

$$
\max \left\{\frac{2(1-2 \alpha)(2 \beta-1)}{\beta-\alpha}, \frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha}\right\} \geq \frac{1-2 \alpha}{1-\alpha}
$$

(ii) When $\alpha=0$, note that

$$
\frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha} \geq \frac{\alpha}{1-\alpha}+\frac{1-\beta}{\beta}
$$

and

$$
\max \left\{\frac{2(2 \beta-1)}{\beta}, \frac{2(1-\beta)}{\beta}\right\} \geq 1
$$

When $\beta=1$, note that

$$
\frac{2 \alpha(2 \beta-1)}{\beta-\alpha} \geq \frac{\alpha}{1-\alpha}+\frac{1-\beta}{\beta}
$$

and

$$
\max \left\{\frac{2(1-2 \alpha)}{1-\alpha}, \frac{2 \alpha}{1-\alpha}\right\} \geq 1
$$

Thus we obtain the main theorem.
Theorem 3.10. Let $0 \leq \alpha \leq 1 / 2<\beta \leq 1$. Then

$$
\begin{aligned}
s\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, \beta}}\right)\right)=\max \{ & \frac{2(1-2 \alpha)(2 \beta-1)}{\beta-\alpha}, \frac{2 \alpha(2 \beta-1)}{\beta-\alpha} \\
& \left.\frac{2(1-\beta)(1-2 \alpha)}{\beta-\alpha}, \frac{\alpha}{1-\alpha}+\frac{1-\beta}{\beta}\right\} .
\end{aligned}
$$

Corollary 3.11. Let $0 \leq \alpha \leq 1 / 2$. Then

$$
s\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha, 1-\alpha}}\right)\right)=2 \max \left\{1-2 \alpha, \frac{\alpha}{1-\alpha}\right\} .
$$

Remark 3.12. It follows from Corollary 3.11 that the minimum of $s\left(\left(\mathbb{R}^{2}, \|\right.\right.$. $\left.\|_{\psi_{\alpha, 1-\alpha}}\right)$) over $0 \leq \alpha \leq 1 / 2$ attains at $\alpha=1-\sqrt{2} / 2$, and the value is $2(\sqrt{2}-1)(=$ $0.8284 \cdots)$. This is just the case that the unit ball is a regular octagon. However, it is not always true for general ψ in E. Indeed, for $\alpha_{0}=0.25$ and $\beta_{0}=0.67$, we have $s\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\alpha_{0}, \beta_{0}}}\right)\right)=0.8258 \cdots$ by Theorem 3.10.

References

[1] M. Baronti and P. L. Papini, Projections, skewness and related constants in real normed spaces, Math. Pannonica 3 (1992), 31-47.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc., Lecture Note Series, vol. 10, Cambridge University Press, New York-London, 19731973.
[3] S. Fitzpatrick and B. Reznick, Skewness in Banach spaces, Trans. Amer. Math. Soc. 275 (1983), 587-597.
[4] R. Grzaślewicz, Extreme symmetric norms on \mathbb{R}^{2}, Colloq. Math. 56(1988), 147-151.
[5] N. Komuro, K.-S. Saito, and K.-I. Mitani, Extremal structure of Absolute Normalized Norms on \mathbb{R}^{2}, In: Asian Conference on Nonlinear Analysis and Optimization, Yokohama Pubishers, Yokohama, 2009, 185-191.
[6] N. Komuro, K.-S. Saito and K.-I. Mitani, Extremal structure of the set of absolute norms on \mathbb{R}^{2} and the von Neumann-Jordan constant, J. Math. Anal. Appl. 370 (2010), 101-106.
[7] N. Komuro, K.-S. Saito and K.-I. Mitani, Extremal structure of absolute normalized norms on $\mathbb{R}^{2} I I$, In: Nonlinear analysis and convex analysis, Yokohama Publishers, Yokohama, 2010, pp. 139-145.
[8] N. Komuro, K.-S. Saito and K.-I. Mitani, Extremal structure of absolute normalized norms on \mathbb{R}^{2} and the James constant, Appl. Math. Comput. 217 (2011), 10035-10048.
[9] N. Komuro, K.-S. Saito and K.-I. Mitani, Extremal structure of absolute normalized norms on \mathbb{R}^{2} III, In: Banach and function spaces III (ISBFS 2009), Yokohama Publishers, Yokohama, 2011, pp. 271-279.
[10] N. Komuro, K.-S. Saito and K.-I. Mitani, On the James constant of absolute extremal norms on \mathbb{R}^{2} and their dual norms, In: Proceedings of the Seventh International Conference on Nonlinear Analysis and Convex Analysis -I- (Busan, Korea, 2011), Yokohama Publishers, Yokohama, 2013, pp. 255-268.
[11] K. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex. Anal. 10 (2003), 89-107.
[12] K.-I. Mitani, K.-S. Saito and Y. Takahashi, Skewness and James constant of Banach spaces, J. Nonlinear Convex Anal., 14 (2013), 115-122.
[13] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan Constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244(2000) 515-532.
[14] R. K. Ritt, A generalization of inner product, Michigan Math. J. 3 (1955), 23-26.

Manuscript received 12 February 2014
revised 21 June 2015
Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan
E-mail address: mitani@cse.oka-pu.ac.jp
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp
Department of Mathematics, Hokkaido University of Education, Asahikawa Campus, Asahikawa 070-8621, Japan

E-mail address: komuro.naoto@a.hokkyodai.ac.jp

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Absolute norm, skewness.
 The second author is supported in part by Grant-in-Aid for Scientific Research(No. 23540189), Japan Society for the Promotion of Science.

