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PQ is the metric projection of H2 onto Q. Furthermore, if D ∩A−1Q is non-empty,
then z ∈ D ∩A−1Q is equivalent to

(1.1) z = PD(I − λA∗(I − PQ)A)z,

where λ > 0 and PD is the metric projection of H1 onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility peoblem and generalized split feasibility peoblems including the split
common null point problem; see, for instance, [3, 5, 17, 36]. In the study, they used
established results for solving the problems. In particular, established convergence
theorems have been used for finding solutions of the problems. On the other hand,
we know many existence and convergence theorems for inverse strongly monotone
mappings in Hilbert spaces; see, for instance, [7, 11, 16, 19, 24, 25, 30].

In this paper, motivated by the ideas of these problems and results, we consider
generalized split feasibility problems and then obtain weak convergence theorems
which are related to the problems. We first obtain some fundamental properties
for inverse strongly monotone mappings and resolvents of maximal monotone op-
erators in Hilbert spaces. For example, we extend the result of (1.1) from metric
projections to more general mappings. Then using these properties, we establish
two weak convergence theorems for finding solutions of the generalized split feasibil-
ity peoblems. The results are generalizations of weak convergence theorems which
have already been obtained. As applications, we get well-known and new weak con-
vergence theorems which are connected with generalized split feasibility problems
and equilibrium problems.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a Hilbert space with the inner product ⟨·, ·⟩ and
the norm ∥ · ∥. When {xn} is a sequence in H, we denote the strong convergence
of {xn} to x ∈ H by xn → x and the weak convergence by xn ⇀ x. From [28] we
know the following basic equality. For x, y ∈ H and λ ∈ R we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

We also know that for x, y, u, v ∈ H

(2.2) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

A Hilbert space satisfies Opial’s condition [20], that is,

lim inf
n→∞

∥xn − u∥ < lim inf
n→∞

∥xn − v∥

if xn ⇀ u and u ̸= v; see [20]. Let C be a non-empty, closed and convex subset of H
and let T : C → H be a mapping. We denote by F (T ) be the set of fixed points of T .
A mapping T : C → H is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥ for all x, y ∈ C.
A mapping T : C → H is called firmly nonexpansive if ∥Tx−Ty∥2 ≤ ⟨Tx−Ty, x−y⟩
for all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive.
If T : C → H is nonexpansive, then F (T ) is closed and convex; see [28]. For a
non-empty, closed and convex subset C of H, the nearest point projection of H
onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and y ∈ C.
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Such a mapping PC is also called the metric projection of H onto C. We know that
the metric projection PC is firmly nonexpansive, i.e.,

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
for all x, y ∈ H. Furthermore, ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see, for instance, [26]. Let B be a set-valued mapping of H into 2H . The effective
domain of B is denoted by D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. A set-valued
mapping B is said to be monotone on H if ⟨x − y, u − v⟩ ≥ 0 for all x, y ∈ D(B),
u ∈ Bx, and v ∈ By. A monotone mapping B on H is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator on H.
For a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I + rB)−1 : H → D(B), which is called the resolvent of B for r > 0.
Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}.
It is known that the resolvent Jr is firmly nonexpansive and B−10 = F (Jr) for all
r > 0. The following lemma is crucial in order to prove the main theorems.

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a maximal monotone
operator on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following
holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

From Lemma 2.1, we have that

(2.3) ∥Jsx− Jtx∥ ≤ (|s− t| /s) ∥x− Jsx∥
for all s, t > 0 and x ∈ H; see also [8, 26].

Lemma 2.2 ([23]). Let H be a real Hilbert space, let {αn} be a sequence of real
numbers such that 0 < a ≤ αn ≤ b < 1 for all n ∈ N and let {vn} and {wn} be
sequences in H such that for some c, lim supn→∞ ∥vn∥ ≤ c, lim supn→∞ ∥wn∥ ≤ c
and lim supn→∞ ∥αnvn + (1− αn)wn∥ = c. Then limn→∞ ∥vn − wn∥ = 0.

Lemma 2.3 ([31]). Let H be a Hilbert space and let E be a non-empty, closed and
convex subset of H. Let {xn} be a sequence in H. If ∥xn+1 − x∥ ≤ ∥xn − x∥ for all
n ∈ N and x ∈ E, then {PExn} converges strongly to some z ∈ E, where PE is the
metric projection on H onto E.

Using Opial’s theorem [20], we have the following lemma; see, for instance, [28].

Lemma 2.4. Let H be a Hilbert space and let {xn} be a sequence in H such that
there exists a non-empty subset E ⊂ Hsatisfying (i) and (ii):

(i) For every x∗ ∈ E, limn→∞ ∥xn − x∗∥ exists:
(ii) if a subsequence {xnj} ⊂ {xn} converges weakly to x∗, then x∗ ∈ E.

Then there exists x0 ∈ E such that xn ⇀ x0.

Kocourek, Takahashi and Yao [13] defined a broad class of nonlinear mappings
in a Hilbert space. Let H be a Hilbert space and let C be a non-empty, closed and
convex subset of H. A mapping T : C → H is called generalized hybrid [13] if there
exist α, β ∈ R such that

(2.4) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2
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for all x, y ∈ C. We call such a mapping (α, β)-generalized hybrid. Notice that the
class covers several well-known mappings. For example, a (1, 0)-generalized hybrid
mapping is nonexpansive. It is nonspreading [14, 15] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [29] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous. We can give the
following example [10] of nonspreading mappings. Let H be a Hilbert space. Set
E = {x ∈ H : ∥x∥ ≤ 1}, D = {x ∈ H : ∥x∥ ≤ 2} and C = {x ∈ H : ∥x∥ ≤ 3}.
Define a mapping S : C → C as follows:

Sx =

{
0, x ∈ D,

PEx, x /∈ D,

where PE is the metric projection of H onto E. Then S is a nonspreading mapping
which is not continuous. This implies that the class of nonexpansive mappings does
not contain nonspreading mappings. Kawasaki and Takahashi [12] defined a more
broad class of nonlinear mappings than the class of generalized hybrid mappings.
A mapping S from C into H is said to be widely more generalized hybrid if there
exist α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Sx− Sy∥2 + β∥x− Sy∥2 + γ∥Sx− y∥2 + δ∥x− y∥2(2.5)

+ε∥x− Sx∥2 + ζ∥y − Sy∥2 + η∥(x− Sx)− (y − Sy)∥2 ≤ 0

for all x, y ∈ C. Such a mapping S is called (α, β, γ, δ, ε, ζ, η)-widely more general-
ized hybrid. An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [13] if α+β = −γ−δ = 1
and ε = ζ = η = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. We know the following theorem
from Kawasaki and Takahashi [12].

Theorem 2.5 ([12]). Let H be a Hilbert space, let C be a non-empty, closed and
convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself which satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then S has a fixed point if and only if there exists z ∈ C such that {Snz : n =
0, 1, . . .} is bounded. In particular, a fixed point of S is unique in the case of α +
β + γ + δ > 0 on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial
for proving our main theorem.

Lemma 2.6 ([12]). Let H be a Hilbert space, let C be a non-empty, closed and
convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself such that F (S) ̸= ∅ and it satisfies the conditions (1) or
(2):
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(1) α+ β + γ + δ ≥ 0, ζ + η ≥ 0 and α+ β > 0;
(2) α+ β + γ + δ ≥ 0, ε+ η ≥ 0 and α+ γ > 0.

Then S is quasi-nonexpansive.

Lemma 2.7 ([9]). Let H be a Hilbert space and let C be a non-empty, closed and
convex subset of H. Let S : C → H be an (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0 and α+ γ + ε+ η > 0;
(2) α+ β + γ + δ ≥ 0 and α+ β + ζ + η > 0.

If xn ⇀ z and xn − Sxn → 0, then z ∈ F (S).

3. Lemmas

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into
itself with F (S) ̸= ∅. Then we have that

(3.1) ⟨x− Sx, Sx− y⟩ ≥ 0

for all x ∈ H and y ∈ F (S). In fact, we have that for all x ∈ H and y ∈ F (S)

⟨x−Sx, Sx− y⟩ = ⟨x− y + y − Sx, Sx− y⟩
= ⟨x− y, Sx− y⟩+ ⟨y − Sx, Sx− y⟩
≥ ∥Sx− y∥2 − ∥Sx− y∥2

= 0.

We have the following lemma from Alsulami and Takahashi [1].

Lemma 3.1 ([1]). Let H1 and H2 be Hilbert spaces and let κ > 0. Let A : H1 → H2

be a bounded linear operator such that A ̸= 0. Let U : H2 → H2 be a κ-inverse
strongly monotone mapping. Then a mapping A∗UA : H1 → H1 is κ

∥A∥2 -inverse

strongly monotone.

Let T : H2 → H2 be a nonexpansive mapping. Since I − T is 1
2 -inverse strongly

monotone, we have the following result from Lemma 3.1.

Lemma 3.2. Let H1 and H2 be Hilbert spaces. Let A : H1 → H2 be a bounded
linear operator such that A ̸= 0. Let T : H2 → H2 be a nonexpansive mapping.
Then a mapping A∗(I − T )A : H1 → H1 is 1

2∥A∥2 -inverse strongly monotone.

The following lemma was proved in Takahashi, Xu and Yao [32].

Lemma 3.3 ([32]). Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a
maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for
λ > 0. Let T : H2 → H2 be a nonexpansive mapping and let A : H1 → H2 be
a bounded linear operator. Suppose that B−10 ∩ A−1F (T ) ̸= ∅. Let λ, r > 0 and
z ∈ H1. Then the following are equivalent:

(i) z = Jλ(I − rA∗(I − T )A)z;
(ii) 0 ∈ A∗(I − T )Az +Bz;
(iii) z ∈ B−10 ∩A−1F (T ).

Using Lemma 3.3, we can prove the following lemma.
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Lemma 3.4. Let H1 and H2 be Hilbert spaces and let κ > 0. Let B : H1 → 2H1

be a maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B
for λ > 0. Let U : H2 → H2 be a κ-inverse strongly monotone mapping and let
A : H1 → H2 be a bounded linear operator. Suppose that B−10 ∩ A−1(U−10) ̸= ∅.
Let λ, r > 0 and z ∈ H1. Then the following are equivalent:

(i) z = Jλ(I − rA∗UA)z;
(ii) 0 ∈ A∗UAz +Bz;
(iii) z ∈ B−10 ∩A−1(U−10).

Proof. Since B−10 ∩ A−1(U−10) ̸= ∅, there exists z0 ∈ B−10 such that Az0 ∈
U−10. Furthermore, since U : H2 → H2 is κ-inverse strongly monotone, I − 2κU is
nonexpansive; see [28].

(i) ⇔ (iii). Suppose z = Jλ(I − rA∗UA)z. We have that

z = Jλ(I − rA∗UA)z

= Jλ(I −
1

2κ
r · 2κA∗UA)z

= Jλ(I −
1

2κ
rA∗2κUA)z

= Jλ(I −
1

2κ
rA∗(I − (I − 2κU))A)z.

From Lemma 3.3, this equality is equivalent to

z ∈ B−10 ∩A−1F (I − 2κU) = B−10 ∩A−1(U−10).

(ii) ⇒ (iii). From 0 ∈ A∗UAz +Bz, we have −A∗UAz ∈ Bz. Since

−A∗UAz = − 1

2κ
2κA∗UAz

= − 1

2κ
A∗2κUAz

= − 1

2κ
A∗(I − (I − 2κU))Az

= −1

κ
A∗(1

2
I − 1

2
(I − 2κU)

)
Az

= −1

κ
A∗(I −

(1
2
I +

1

2
(I − 2κU)

)
)Az,

we have − 1
κA

∗(I − (12I +
1
2(I − 2κU)))Az ∈ Bz. Put S = 1

2I +
1
2(I − 2κU). Since

B is monotone, we have from 0 ∈ Bz0 that

⟨−1

κ
A∗(I − S)Az, z − z0⟩ ≥ 0.

Then we have that ⟨A∗(I − S)Az, z − z0⟩ ≤ 0 and hence

(3.2) ⟨Az − SAz,Az −Az0⟩ ≤ 0.

On the other hand, since S is firmly nonexpansive, we have from (3.1) that

(3.3) ⟨Az − SAz, SAz −Az0⟩ ≥ 0.
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From (3.2) and (3.3) we have that

(3.4) ∥Az − SAz∥2 = ⟨Az − SAz,Az − SAz⟩ ≤ 0

and hence Az = SAz. This implies that Az ∈ F (S) = F (I − 2κU) = U−10. Using
this, we have 0 ∈ A∗UAz +Bz = Bz. Therefore, z ∈ B−10 ∩A−1(U−10).

(iii) ⇒ (ii). From z ∈ B−10 ∩ A−1(U−10), we have that UAz = 0 and 0 ∈ Bz.
Thus we have 0 ∈ A∗(I − T )Az +Bz. The proof is complete. □

Using Lemmas 3.1 and 3.4, we also have the following lemma.

Lemma 3.5. Let H1 and H2 be Hilbert spaces and let κ > 0. Let B : H1 → 2H1

be a maximal monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B
for λ > 0. Let U : H2 → H2 be a κ-inverse strongly monotone mapping and let
A : H1 → H2 be a bounded linear operator. Suppose that 0 ∈ A∗UAu + Bu and
0 ∈ A∗UAv+Bv. Then A∗UAu = A∗UAv. Furthermore, if B−10∩A−1(U−10) ̸= ∅,
then (A∗UA+B)−10 is closed and convex.

Proof. If 0 ∈ A∗UAu+Bu and 0 ∈ A∗UAv+Bv, then we have that −A∗UAu ∈ Bu
and −A∗UAv ∈ Bv. Since B is monotone, we have

⟨u− v,−A∗UAu− (−A∗UAv)⟩ ≥ 0

and hence

(3.5) ⟨u− v,A∗UAu−A∗UAv⟩ ≤ 0.

On the other hand, since A∗UA is κ
∥A∥2 -inverse strongly monotone from Lemma 3.1,

we have

⟨u− v,A∗UAu−A∗UAv⟩ ≥ κ

∥A∥2
∥A∗UAu−A∗UAv∥2.

We have from (3.5) that∥A∗UAu−A∗UAv∥2 = 0 and hence

A∗UAu = A∗UAv.

Since U is α-inverse strongly monotone, U−10 is closed and convex. Then
A−1(U−10) is closed and convex because A is linear and continuous. We also have
that since B is maximal monotone, B−10 is closed and convex. Hence B−10 ∩
A−1(U−10) is closed and convex. Using Lemma 3.4, we have that (A∗UA+B)−10
is closed and convex. This completes the proof. □

4. Main results

Now we can prove the main theorems.

Theorem 4.1. Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal
monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0.
Let U : H2 → H2 be a κ-inverse strong monotone mapping. Let A : H1 → H2 be a
bounded linear operator. Suppose that B−10∩A−1(U−10) ̸= ∅. For any x1 = x ∈ H1,
define

xn+1 = βnxn + (1− βn)Jλn(I − λnA
∗UA)xn, ∀n ∈ N,
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where {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy the following:

∞∑
n=1

βn(1− βn) = ∞, 0 < a ≤ λn ≤ 2κ

∥A∥2
and

∞∑
n=1

|λn − λn+1| < ∞.

Then xn ⇀ z0 ∈ B−10 ∩A−1(U−10), where z0 = limn→∞ PB−10∩A−1(U−10)xn.

Proof. Let z ∈ B−10 ∩ A−1(U−10). Then we have that z = Jλnz and UAz = 0.
Put yn = Jλn(I − λnA

∗UA)xn for all n ∈ N. Since Jλn is nonexpansive and U is
κ-inverse strongly monotone, we have that

∥yn−z∥2 = ∥Jλn(I − λnA
∗UA)xn − Jλnz∥

2

≤ ∥xn − λnA
∗UAxn − z∥2

= ∥xn − z∥2 − 2λn⟨xn − z,A∗UAxn⟩+ (λn)
2 ∥A∗UAxn∥2(4.1)

= ∥xn − z∥2 − 2λn⟨Axn −Az,UAxn⟩+ (λn)
2 ∥A∗UAxn∥2

≤ ∥xn − z∥2 − 2κλn ∥UAxn∥2 + (λn)
2 ∥A∥2 ∥UAxn∥2

= ∥xn − z∥2 + λn(λn ∥A∥2 − 2κ) ∥UAxn∥2 .

From 0 < a ≤ λn ≤ 2κ
∥A∥2 we have that ∥yn − z∥ ≤ ∥xn − z∥ for all n ∈ N and hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
≤ ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. Thus {xn}, {Axn} and {yn} are bounded. Since

κ∥UAxn∥2 ≤ ⟨UAxn, Axn −Az⟩ ≤ ∥UAxn∥∥Axn −Az∥,

{UAxn} is bounded. Then {A∗UAxn} is bounded. Using the equality (2.1), we
have that for n ∈ N and z ∈ B−10 ∩A−1(U−10)

∥xn+1 − z∥2 = ∥βnxn + (1− βn)yn − z∥2

= βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2 − βn(1− βn) ∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2 − βn(1− βn) ∥xn − yn∥2

= ∥xn − z∥2 − βn(1− βn) ∥xn − yn∥2

and hence

βn(1− βn) ∥xn − yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .
Thus we have

∞∑
n=1

βn(1− βn) ∥xn − yn∥2 ≤ ∥x1 − z∥2 − lim
n→∞

∥xn − z∥2 .

Since
∑∞

n=1 βn(1− βn) = ∞, we have from [28, p. 114] that

(4.2) lim inf
n→∞

∥xn − yn∥2 = 0.
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Put un = (I −λnA
∗UA)xn. Since Jλn(I −λnA

∗UA) is nonexpansive, we have from
Lemma 2.1 that

∥yn+1 − yn∥ =
∥∥Jλn+1(I − λn+1A

∗UA)xn+1 − Jλn(I − λnA
∗UA)xn

∥∥
≤

∥∥Jλn+1(I − λn+1A
∗UA)xn+1 − Jλn+1(I − λn+1A

∗UA)xn
∥∥

+
∥∥Jλn+1(I − λn+1A

∗UA)xn − Jλnun
∥∥

≤ ∥xn+1 − xn∥+
∥∥Jλn+1(I − λn+1A

∗UA)xn − Jλnun
∥∥

≤
∥∥Jλn+1(I − λn+1A

∗UA)xn − Jλn+1(I − λnA
∗UA)xn

∥∥
+

∥∥Jλn+1un − Jλnun
∥∥+ ∥xn+1 − xn∥

≤ ∥(I − λn+1A
∗UA)xn − (I − λnA

∗UA)xn∥
+

∥∥Jλn+1un − Jλnun
∥∥+ ∥xn+1 − xn∥

≤ |λn+1 − λn| ∥A∗UAxn∥

+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥+ ∥xn+1 − xn∥ .

Therefore, we have that

∥xn+1 − yn+1∥ = ∥βnxn + (1− βn)yn − yn+1∥
≤ βn ∥xn − yn+1∥+ (1− βn) ∥yn − yn+1∥
≤ βn ∥xn − xn+1 + xn+1 − yn+1∥+ (1− βn){∥xn+1 − xn∥

+ |λn+1 − λn| ∥A∗UAxn∥+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥}

≤ βn ∥xn − xn+1∥+ βn ∥xn+1 − yn+1∥
+ (1− βn){∥xn+1 − xn∥+ |λn+1 − λn| ∥A∗UAxn∥

+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥}

= ∥xn − xn+1∥+ βn ∥xn+1 − yn+1∥
+ (1− βn){|λn+1 − λn| ∥A∗UAxn∥

+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥}

and hence

(1− βn) ∥xn+1 − yn+1∥ ≤ ∥xn − xn+1∥

+ (1− βn{|λn+1 − λn| ∥A∗UAxn∥+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥}

= (1− βn) ∥xn − yn∥

+ (1− βn){|λn+1 − λn| ∥A∗UAxn∥+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥}.

From 1− βn > 0, we have

∥xn+1 − yn+1∥ ≤ ∥xn − yn∥+ |λn+1 − λn| ∥A∗(I − T )Axn∥

+
|λn+1 − λn|

a

∥∥Jλn+1un − un
∥∥ .
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Using Tan and Xu’s lemma [33], we have that limn→∞ ∥xn − yn∥ exists. Hence, we
have from (4.2) that

lim
n→∞

∥xn − yn∥ = lim inf
n→∞

∥xn − yn∥ = 0.

We finally show that xn ⇀ z0 ∈ B−10 ∩ A−1(U−10). Since {xn} is bounded,
there exists a subsequence {xni} of {xn} such that xni ⇀ x∗. We first show x∗ ∈
B−10∩A−1(U−10). Since

∑∞
n=1 |λn−λn+1| < ∞, {λn} is a Cauchy sequence. Then

there exists λ0 ∈ [a, 2κ
∥A∥2 ] such that λn → λ0. We have that xni ⇀ x∗ and λni → λ0.

For such λ0, we have that

∥Jλ0(I − λ0A
∗UA)xni − yni∥

= ∥Jλ0(I − λ0A
∗UA)xni − Jλni

(I − λniA
∗UA)xni∥

≤ ∥Jλ0(I − λ0A
∗UA)xni − Jλ0(I − λniA

∗UA)xni∥
+ ∥Jλ0(I − λniA

∗UA)xni − Jλni
(I − λniA

∗UA)xni∥(4.3)

≤ ∥(I − λ0A
∗UA)xni − (I − λniA

∗UA)xni∥
+ ∥Jλ0uni − Jλni

uni∥

≤ |λ0 − λni |∥A∗UAxni∥+
|λ0 − λni |

λ0
∥Jλ0uni − uni∥ → 0,

where uni = (I − λniA
∗UA)xni . We also have that

∥xni − Jλ0(I − λ0A
∗UA)xni∥(4.4)

≤ ∥xni − yni∥+ ∥yni − Jλ0(I − λ0A
∗UA)xni∥ → 0.

Since Jλ0(I − λ0A
∗UA) is nonexpansive, we have from (4.4) and xni ⇀ x∗ that

x∗ = Jλ0(I−λ0A
∗UA))x∗. We have from Lemma 3.3 that x∗ ∈ B−10∩A−1(U−10).

We next show that if xni ⇀ x∗ and xnj ⇀ y∗, then x∗ = y∗. We know x∗, y∗ ∈
B−10∩A−1(U−10) and hence limn→∞ ∥xn−x∗∥ and limn→∞ ∥xn−y∗∥ exist. Suppose
x∗ ̸= y∗. Since H satisfies Opial’s condition, we have that

lim
n→∞

∥xn−x∗∥ = lim
i→∞

∥xni − x∗∥ < lim
i→∞

∥xni − y∗∥

= lim
n→∞

∥xn − y∗∥ = lim
j→∞

∥xnj − y∗∥

< lim
j→∞

∥xnj − x∗∥ = lim
n→∞

∥xn − x∗∥.

This is a contradiction. Then we have x∗ = y∗. Therefore, xn ⇀ x∗ ∈ B−10 ∩
A−1(U−10). Moreover, since for any z ∈ B−10 ∩A−1(U−10)

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N,

we have from Lemma 2.3 that PB−10∩A−1(U−10)xn → z0 for some z0 ∈ B−10 ∩
A−1(U−10). The property of metric projection implies that

⟨x∗ − PB−10∩A−1(U−10)xn, xn − PB−10∩A−1(U−10)xn⟩ ≤ 0.

Therefore, we have

⟨x∗ − z0, x
∗ − z0⟩ = ∥x∗ − z0∥2 ≤ 0.

This means that x∗ = z0, i.e., xn ⇀ z0. □
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Theorem 4.2. Let H1 and H2 be real Hilbert spaces and let C be a non-empty,
closed and convex subset of H1. Let B : H1 → 2H1 be a maximal monotone mapping
such that the domain of B is included in C and let Jλ = (I+ rB)−1 be the resolvent
of B for r > 0. Let S : C → C be an (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

and let U : H2 → H2 be a κ-inverse strong monotone mapping. Let A : H1 → H2

be a bounded linear operator. Suppose that F (S)∩B−10∩A−1(U−10) ̸= ∅. For any
x1 = x ∈ C, define

xn+1 = βnxn + (1− βn)S(Jλn(I − λnA
∗UA)xn), ∀n ∈ N,

where {βn} and {λn} satisfy the following:

0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b <
2κ

∥A∥2
.

Then the sequence {xn} converges weakly to a point z0 ∈ F (S)∩B−10∩A−1(U−10),
where z0 = limn→∞ PF (S)∩B−10∩A−1(U−10)xn.

Proof. Set E = F (S) ∩ B−10 ∩ A−1(U−10). Then we have that E is closed and
convex. Let yn = Jλn(I − λnA

∗UA)xn for all n ∈ N and let z ∈ E. Since z = Jλnz,
UAz = 0 and U is κ-inverse strongly monotone, we have that

∥yn − z∥2 = ∥Jλn(I − λnA
∗UA)xn − Jλnz∥

2

≤ ∥xn − λnA
∗UAxn − z∥2

= ∥xn − z∥2 − 2λn⟨xn − z,A∗UAxn⟩+ (λn)
2 ∥A∗UAxn∥2(4.5)

= ∥xn − z∥2 − 2λn⟨Axn −Az,UAxn⟩+ (λn)
2 ∥A∗UAxn∥2

≤ ∥xn − z∥2 − 2κλn ∥UAxn∥2 + (λn)
2 ∥A∥2 ∥UAxn∥2

= ∥xn − z∥2 + λn(λn ∥A∥2 − 2κ) ∥UAxn∥2 .

From (4.5) we have that ∥yn − z∥ ≤ ∥xn − z∥ for all n ∈ N and hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)Syn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥Syn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
= ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. This also means that the condition (i) of Lemma 2.4
holds for E. Thus {xn}, {yn} and {Syn} are bounded. As in the proof of Theorem
4.1, we also have that {A∗UAxn} is bounded. By the inequality (4.5),

∥xn+1 − z∥2 ≤ βn ∥xn − z∥2 + (1− βn) ∥Syn − z∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2

≤ βn ∥xn − z∥2 + (1− βn){∥xn − z∥2 + λn(λn ∥A∥2 − 2κ) ∥UAxn∥2}
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≤ ∥xn − z∥2 + λn(λn ∥A∥2 − 2κ)(1− βn) ∥UAxn∥2 .

Thus we have

λn(λn ∥A∥2 − 2κ)(1−βn) ∥UAxn∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .

Since limn→∞ ∥xn − z∥ exists, we have that

(4.6) lim
n→∞

∥UAxn∥ = 0.

On the other hand, since Jλn is firmly nonexpansive and I − λnA
∗UA is nonexpan-

sive, we have from (2.2) that

2∥yn−z∥2 = 2 ∥Jλn(I − λnA
∗UA)xn − Jλn(I − λnA

∗UA)z∥2

≤ 2⟨yn − z, (I − λnA
∗UA)xn − (I − λnA

∗UA)z⟩
= 2⟨yn − z, (I − λnA

∗UA)xn − z⟩

= ∥yn − z∥2 + ∥(I − λnA
∗UA)xn − z∥2

− ∥yn − (I − λnA
∗UA)xn∥2

≤ ∥yn − z∥2 + ∥xn − z∥2 − ∥yn − xn + λnA
∗UAxn∥2

= ∥yn − z∥2 + ∥xn − z∥2 − ∥yn − xn∥2

− 2λn⟨yn − xn, A
∗UAxn⟩ − λn

2 ∥A∗UAxn∥2 .

Therefore we have

∥yn − z∥2 ≤∥xn − z∥2 − ∥yn − xn∥2

− 2λn⟨yn − xn, A
∗UAxn⟩ − λn

2 ∥A∗UAxn∥2

and hence

∥xn+1−z∥2 ≤ βn ∥xn − z∥2 + (1− βn) ∥Syn − z∥2

≤βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2

≤βn ∥xn − z∥2 + (1− βn){∥xn − z∥2 − ∥yn − xn∥2

− 2λn⟨yn − xn, A
∗UAxn⟩ − λn

2 ∥A∗UAxn∥2}

≤∥xn − z∥2 − (1− βn) ∥yn − xn∥2 − λn
2(1− βn) ∥A∗UAxn∥2

− 2λn(1− βn)⟨yn − xn, A
∗UAxn⟩.

This means that

(1− βn) ∥yn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2

− λn
2(1− βn) ∥A∗UAxn∥2 − 2λn(1− βn)⟨yn − xn, A

∗UAxn⟩.

Since {yn} and {xn} are bounded, limn→∞ ∥A∗UAxn∥ = 0 and limn→∞ ∥xn − z∥
exists, we have that

lim
n→∞

∥yn − xn∥ = 0.
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Let {xnj} be a subsequence of {xn} such that xnj ⇀ x∗. Since A is a bounded
linear operator, we have that Axnj ⇀ Ax∗. Since

κ∥UAxnj − UAx∗∥2 ≤ ⟨UAxnj − UAx∗, Axnj −Ax∗⟩,

we have from (4.6) that κ∥UAx∗∥2 ≤ 0. This implies UAx∗ = 0 and hence x∗ ∈
A−1(U−10). Let us prove that x∗ ∈ B−1(0). Since yn = Jλn(I − λnA

∗UA)xn, we
have that

yn = Jλn(I − λnA
∗UA)xn

⇔ (I − λnA
∗UA)xn ∈ yn + λnByn

⇔ xn − yn − λnA
∗UAxn ∈ λnByn

⇔ 1

λn
(xn − yn − λnA

∗UAxn) ∈ Byn.

Since B is monotone, we have that for (u, v) ∈ B,

⟨yn − u,
1

λn
(xn − yn − λnA

∗UAxn)− v⟩ ≥ 0

and hence

⟨yn − u,
xn − yn

λn
−A∗UAxn − v⟩ ≥ 0.

Replacing n by nj , we have that

⟨ynj − u,
xnj − ynj

λnj

−A∗UAxnj − v⟩ ≥ 0.

Since xnj − ynj → 0, 0 < a ≤ λnj ≤ b, ynj ⇀ x∗ and A∗UAxnj → 0, we have that
⟨x∗ − u,−v⟩ ≥ 0. Since B is maximal monotone, we have that 0 ∈ Bx∗. Let us
show x∗ ∈ F (S). Putting c = limn→∞ ∥xn − z∥, we have

lim sup
n→∞

∥Syn − z∥ ≤ lim sup
n→∞

∥yn − z∥

≤ lim sup
n→∞

∥xn − z∥ ≤ c.

On the other hand, we have that

lim
n→∞

∥βn(xn − z) + (1− βn)(Syn − z)∥ = lim
n→∞

∥xn+1 − z∥ = c.

From Lemma 2.2, we have that

(4.7) lim
n→∞

∥(xn − z)− (Syn − z)∥ = lim
n→∞

∥xn − Syn∥ = 0.

From

∥yn − Syn∥ ≤ ∥yn − xn∥+ ∥xn − Syn∥,
we have

(4.8) lim
n→∞

∥yn − Syn∥ = 0.

Since ynj ⇀ x∗, we have from Lemma 2.7 and (4.8) that x∗ ∈ F (S). Therefore, we
obtain that

x∗ ∈ E = F (S) ∩B−1(0) ∩A−1(U−10).
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This implies that the condition (ii) of Lemma 2.4 holds for E. We have from Lemma
2.4 that there exists z∗ ∈ E such that xn ⇀ z∗ as n → ∞. Moreover, since

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N, z ∈ E,

by Lemma 2.3 there exists some z0 ∈ E such that PExn → z0. The property of
metric projection implies that

⟨z∗ − PExn, xn − PExn⟩ ≤ 0.

Therefore, we have

⟨z∗ − z0, z
∗ − z0⟩ = ∥z∗ − z0∥2 ≤ 0.

This means that z∗ = z0, i.e., xn ⇀ z∗ = limn→∞ PE(xn). □

5. Applications

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex
function of H into (−∞,∞]. Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}
for all x ∈ H. By Rockafellar [22], it is shown that ∂f is maximal monotone. Let C
be a non-empty, closed and convex subset of H and let iC be the indicator function
of C, i.e.,

iC(x) =

{
0, if x ∈ C,

∞, if x ̸∈ C.

Then iC : H → (−∞,∞] is a proper, lower semicontinuous and convex function on
H and hence ∂iC is a maximal monotone operator. Thus we can define the resolvent
Jλ of ∂iC for λ > 0 as follows:

Jλx = (I + λ∂iC)
−1x, ∀x ∈ H, λ > 0.

We know that Jλx = PCx for all x ∈ H and λ > 0; see [28]. Using Theorem
4.1, we first obtain the following weak convergence theorem which was proved by
Takahashi, Xu and Yao [32].

Theorem 5.1 ([32]). Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a
maximal monotone operator and let Jλ = (I+λB)−1 be its resolvent of index λ > 0.
Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear
operator. Suppose that B−10 ∩A−1F (T ) ̸= ∅. For any x1 = x ∈ H1, define

xn+1 = βnxn + (1− βn)Jλn(I − λnA
∗(I − T )A)xn, ∀n ∈ N,

where {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy the following:
∞∑
n=1

βn(1− βn) = ∞, 0 < a ≤ λn ≤ 1

∥A∥2
and

∞∑
n=1

|λn − λn+1| < ∞.

Then xn ⇀ z0 ∈ B−10 ∩A−1F (T ), where z0 = limn→∞ PB−10∩A−1F (T )xn.

Proof. Suppose that T is nonexpansive. Then U = I − T is 1
2 -inverse strongly

monotone. Thus we obtain the desired result by Theorem 4.1. □
We also have the following theorem from Theorem 4.2.
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Theorem 5.2 ([32]). Let H1 and H2 be real Hilbert spaces and let C be a non-
empty, closed and convex subset of H1. Let B : H1 → 2H1 be a maximal monotone
mapping such that D(B) ⊂ C and let Jλ = (I + λB)−1 be the resolvent of B for
λ > 0. Let V : C → C be a generalized hybrid mapping and let T : H2 → H2 be
a nonexpansive mapping. Let A : H1 → H2 be a bounded linear operator. Suppose
that S := F (V ) ∩ B−10 ∩ A−1F (T ) ̸= ∅. For any x1 = x ∈ C, generate a sequence
{xn} by the algorithm

xn+1 = βnxn + (1− βn)V (Jλn(I − λnA
∗(I − T )A)xn), ∀n ∈ N,

where the sequences of parameters {βn} and {λn} satisfy the following:

0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b <
1

∥A∥2
.

Then {xn} converges weakly to a point z0 ∈ S, where z0 = limn→∞ PSxn.

Proof. A generalized hybrid mapping V : C → C is widely more generalized hybrid.
Since T is nonexpansive, then U = I − T is 1

2 -inverse strongly monotone. Thus we
have the desired result from Theorem 4.2. □

Next, we deal with the equilibrium problem with an inverse strongly monotone
mapping in Hilbert spaces. Let C be a non-empty, closed and convex subset of a
real Hilbert space H and let f : C ×C → R be a bifunction. Then we consider the
following equilibrium problem: Find z ∈ C such that

(5.1) f(z, y) ≥ 0, ∀y ∈ C.

The set of such z ∈ C is denoted by EP (f), i.e.,

EP (f) = {z ∈ C : f(z, y) ≥ 0, ∀y ∈ C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies
the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) f(x, ·) is convex and lower semicontinuous for all x ∈ C.

We know the following lemmas; see, for instance, [2] and [6].

Lemma 5.3 ([2]). Let C be a non-empty, closed and convex subset of H, let f be a
bifunction from C × C to R satisfying (A1)-(A4) and let r > 0 and x ∈ H. Then,
there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ C.
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Lemma 5.4 ([6]). For r > 0 and x ∈ H, define the resolvent Tr : H → C of f for
r > 0 as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(iii) F (Tr) = EP (f);
(iv) EP (f) is closed and convex.

Takahashi, Takahashi and Toyoda [25] showed the following.

Lemma 5.5 ([25]). Let C be a no-nempty, closed and convex subset of a Hibert
space H and let f : C ×C → R be a bifunction satisfying the conditions (A1)-(A4).
Define Af as follows:

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, if x ∈ C,

∅, if x ̸∈ C.

Then, EP (f) = A−1
f 0 and Af is a maximal monotone operator with D(Af ) ⊂ C.

Furthermore,

Trx = (I + rAf )
−1x, ∀r > 0.

We obtain the following theorem from Theorem 4.1.

Theorem 5.6. Let H1 and H2 be Hilbert spaces. Let C be a non-empty, closed
and convex subset of H1. Let f : C × C → R satisfy the conditions (A1)-(A4)
and let Tλn be the resolvent of Af for λn > 0 in Lemma 5.5. Let U : H2 → H2

be a κ-inverse strongly monotone mapping. Let A : H1 → H2 be a bounded linear
operator. Suppose that EP (f) ∩A−1(U−10) ̸= ∅. For x1 = x ∈ H1, define

xn+1 = βnxn + (1− βn)Tλn(I − λnA
∗UA)xn), ∀n ∈ N,

where {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy the following:
∞∑
n=1

βn(1− βn) = ∞, 0 < a ≤ λn ≤ 2κ

∥A∥2
and

∞∑
n=1

|λn − λn+1| < ∞.

Then, xn ⇀ z0 ∈ EP (f) ∩A−1(U−10), where z0 = limn→∞ PEP (f)∩A−1(U−10)xn.

Proof. Define Af for the bifunction f and set B = Af in Theorem 4.1. Thus we
have the desired result from Theorem 4.1. □

As in the proof of Theorems 5.2 and 5.6, we obtain the following result from
Theorem 4.2.

Theorem 5.7. Let H1 and H2 be Hilbert spaces. Let C be a non-empty, closed
and convex subset of a real Hilbert space H1. Let f : C × C → R satisfy the
conditions (A1)-(A4) and let Tλn be the resolvent of Af for λn > 0 in Lemma 5.5.
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Let S : C → C be a generalized hybrid mapping and let U : H2 → H2 be a κ-
inverse strongly monotone mapping. Let A : H1 → H2 be a bounded linear operator.
Suppose that F (S) ∩ EP (f) ∩A−1(U−10) ̸= ∅. For x1 = x ∈ C, define

xn+1 = βnxn + (1− βn)STλn(I − λnA
∗UA)xn, ∀n ∈ N,

where {βn} and {λn} satisfy the following:

0 < c ≤ βn ≤ d < 1 and 0 < a ≤ λn ≤ b <
2κ

∥A∥2
.

Then, xn ⇀ z0 ∈ F (S) ∩ EP (f) ∩A−1(U−10), where

z0 = lim
n→∞

PF (S)∩EP (f)∩A−1(U−10)xn.
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