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GENERALIZED SPLIT FEASIBILITY PROBLEMS AND WEAK
CONVERGENCE THEOREMS IN HILBERT SPACES

SOMYOT PLUBTIENG AND WATARU TAKAHASHI

ABSTRACT. In this paper, motivated by the idea of the split feasibility prob-
lem and results for solving the problem, we consider generalized split feasibility
problems and then obtain weak convergence theorems which are related to the
problems. We first obtain some fundamental properties for inverse strongly mono-
tone mappings and resolvents of maximal monotone operators in Hilbert spaces.
Then using these properties, we establish two weak convergence theorems which
generalize established weak convergence theorems. As applications, we get well-
known and new weak convergence theorems which are connected with generalized
split feasibility problems and equilibrium problems.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a non-empty, closed and convex subset
of H. A mapping U : C — H is called inverse strongly monotone if there exists
k > 0 such that

(r —y, Uz = Uy) > kl|Uzx = Uy|*, Va,yeC.

Such a mapping U is called k-inverse strongly monotone. Let Hy and Hs be two real
Hilbert spaces. Let D and @ be non-empty, closed and convex subsets of H; and
Ho, respectively. Let A : Hi — Hs be a bounded linear operator. Then the split
feasibility problem [4] is to find 2 € Hy such that 2 € D N A71Q. Recently, Byrne,
Censor, Gibali and Reich [3] considered the following problem: Given set-valued
mappings A4; : H; — 281, 1 < i < m, and Bj : Hy — 2H2 1 < j < n, respectively,
and bounded linear operators T : Hy — Ha, 1 < j < n, the split common null
point problem [3] is to find a point z € H; such that
e (N2, Ai_lo) N (ﬂylej_l(Bj_l )

where A;lo and B;l(] are null point sets of A; and Bj, respectively. Defining
U = A*(I — Pg)A in the split feasibility problem, we have that U : Hy — Hj is
an inverse strongly monotone operator, where A* is the adjoint operator of A and
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Pg is the metric projection of H onto Q. Furthermore, if DN A~1(Q is non-empty,
then z € DN A™'Q is equivalent to

(1.1) 2= Pp(I — MA*(I — Po)A)z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility peoblem and generalized split feasibility peoblems including the split
common null point problem; see, for instance, [3, 5, 17, 36]. In the study, they used
established results for solving the problems. In particular, established convergence
theorems have been used for finding solutions of the problems. On the other hand,
we know many existence and convergence theorems for inverse strongly monotone
mappings in Hilbert spaces; see, for instance, [7, 11, 16, 19, 24, 25, 30].

In this paper, motivated by the ideas of these problems and results, we consider
generalized split feasibility problems and then obtain weak convergence theorems
which are related to the problems. We first obtain some fundamental properties
for inverse strongly monotone mappings and resolvents of maximal monotone op-
erators in Hilbert spaces. For example, we extend the result of (1.1) from metric
projections to more general mappings. Then using these properties, we establish
two weak convergence theorems for finding solutions of the generalized split feasibil-
ity peoblems. The results are generalizations of weak convergence theorems which
have already been obtained. As applications, we get well-known and new weak con-
vergence theorems which are connected with generalized split feasibility problems
and equilibrium problems.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a Hilbert space with the inner product (-, -) and
the norm || -||. When {z,} is a sequence in H, we denote the strong convergence
of {x,,} to x € H by x,, — = and the weak convergence by x,, — z. From [28] we
know the following basic equality. For z,y € H and A € R we have

(2.1) 1Az 4 (1= Nyl = AMlzl” + (1= Vgl = 21 = Nz -yl
We also know that for z,y,u,v € H

(2.2) 2(z —y,u—v) = [l —v|*+ |y — ull’ = o —u|* - [ly — o>
A Hilbert space satisfies Opial’s condition [20], that is,

liminf ||z, — | < liminf ||z, — ||
n—oo n—oo

if z,, — u and u # v; see [20]. Let C be a non-empty, closed and convex subset of H
and let T: C'— H be a mapping. We denote by F'(T") be the set of fixed points of T'.
A mapping T : C — H is called nonexpansive if || Tz—Ty| < |[z—y] forall z,y € C.
A mapping T : C' — H is called firmly nonexpansive if | To—Ty||> < (Tx—Ty, x—1y)
for all z,y € C. If a mapping T is firmly nonexpansive, then it is nonexpansive.
If T: C — H is nonexpansive, then F(T) is closed and convex; see [28]. For a
non-empty, closed and convex subset C' of H, the nearest point projection of H
onto C is denoted by Pr, that is, ||z — Pox| < ||z —y|| for all x € H and y € C.
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Such a mapping P¢ is also called the metric projection of H onto C. We know that
the metric projection Pg is firmly nonexpansive, i.e.,

|Pox — Poy||> < (Pex — Poy,x —y)

for all z,y € H. Furthermore, (z— Poxz,y— Pcx) < 0 holds for allz € H and y € C;
see, for instance, [26]. Let B be a set-valued mapping of H into 2. The effective
domain of B is denoted by D(B), that is, D(B) = {z € H : Bz # (}. A set-valued
mapping B is said to be monotone on H if (z —y,u —v) > 0 for all z,y € D(B),
u € Bx, and v € By. A monotone mapping B on H is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator on H.
For a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J, = (I +rB)~': H — D(B), which is called the resolvent of B for r > 0.
Let B be a maximal monotone operator on H and let B~!0 = {x € H : 0 € Bx}.
It is known that the resolvent J, is firmly nonexpansive and B~0 = F(J,) for all
r > 0. The following lemma is crucial in order to prove the main theorems.

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a mazximal monotone
operator on H. Forr >0 and x € H, define the resolvent J.x. Then the following
holds: ;
i (Jox — Jyx, Jex — z) > || Jox — Jyz||?

for all s,t >0 and x € H.

From Lemma 2.1, we have that
(2.3) [ Jsw = Jyx|| < (s = t| /) [l = Jsx]|
for all s,t > 0 and = € H; see also [8, 26].
Lemma 2.2 ([23]). Let H be a real Hilbert space, let {a,} be a sequence of real
numbers such that 0 < a < a,, < b < 1 for alln € N and let {v,} and {w,} be

sequences in H such that for some ¢, limsup,,_, . ||vn] < ¢, limsup,,_, o ||wn|| < ¢
and limsup,, o ||nvn + (1 — ap)wy|| = ¢. Then lim,,_,« ||vn, — wy|| = 0.

Lemma 2.3 ([31]). Let H be a Hilbert space and let E be a non-empty, closed and
convez subset of H. Let {x,} be a sequence in H. If ||xp11 — || < ||xn — || for all
n € N and x € E, then {Pgxy,} converges strongly to some z € E, where Pg is the
metric projection on H onto E.

Using Opial’s theorem [20], we have the following lemma; see, for instance, [28].
Lemma 2.4. Let H be a Hilbert space and let {x,} be a sequence in H such that
there exists a non-empty subset E C H satisfying (i) and (ii):

(1) For every x* € E, limy, oo ||z — z*|| exists:
(ii) if a subsequence {xn;} C {wn} converges weakly to x*, then x* € E.
Then there exists xog € E such that z,, — xg.

Kocourek, Takahashi and Yao [13] defined a broad class of nonlinear mappings

in a Hilbert space. Let H be a Hilbert space and let C' be a non-empty, closed and

convex subset of H. A mapping T : C' — H is called generalized hybrid [13] if there
exist a, 8 € R such that

(2.4) alTe = Tyl* + (1 = a)llz = Ty|* < Bl|Tz — y|* + (1 = B)]lz — y|*
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for all z,y € C. We call such a mapping («, (3)-generalized hybrid. Notice that the
class covers several well-known mappings. For example, a (1, 0)-generalized hybrid
mapping is nonexpansive. It is nonspreading [14, 15| for « =2 and g =1, i.e.,

2Tz — Ty|* < | Tz - y|* + | Ty — 2|, Va,yeC.

It is also hybrid [29] for o = % and 8 = %, ie.,

3Tz — Ty|* < |l — yl* + | Tx — y|* + | Ty — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous. We can give the
following example [10] of nonspreading mappings. Let H be a Hilbert space. Set
E={zecH:|z|<1},D={x e H:|z|| <2}and C ={z € H : ||z]| < 3}.
Define a mapping S : C' — C as follows:

0, r €D,
St =
PE.CIZ, xz ¢ D,

where Pg is the metric projection of H onto E. Then S is a nonspreading mapping
which is not continuous. This implies that the class of nonexpansive mappings does
not contain nonspreading mappings. Kawasaki and Takahashi [12] defined a more
broad class of nonlinear mappings than the class of generalized hybrid mappings.
A mapping S from C into H is said to be widely more generalized hybrid if there
exist «, 8,7,9,¢,(,n € R such that

(2.5) al|Sz — Sy|* + Bllz — Syl|I* +7[|Sz — y||* + 5]z — yl|?
+e||z — Sz||* + ¢|ly — SylI* + nll(z — Sz) — (y — Sy)[|> <0

for all z,y € C. Such a mapping S is called (o, 8,7, 6, ¢, (,n)-widely more general-
ized hybrid. An (a, 8,7, 0,¢,(,n)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [13] ifa+8 = —y—0d =1
and ¢ = ( = n = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. We know the following theorem
from Kawasaki and Takahashi [12].

Theorem 2.5 ([12]). Let H be a Hilbert space, let C' be a non-empty, closed and
convex subset of H and let S be an («, 5,7,9,¢,(,n)-widely more generalized hybrid
mapping from C into itself which satisfies the following conditions (1) or (2):

(1) a+B+~v+6>0,a+vy+e+n>0and (+n>0;

(2) a+p+v+6>0,a+8+(+n>0andec+n>0.
Then S has a fized point if and only if there exists z € C such that {S"z : n =
0,1,...} is bounded. In particular, a fized point of S is unique in the case of o +
B4~ 4+ >0 on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial
for proving our main theorem.

Lemma 2.6 ([12]). Let H be a Hilbert space, let C' be a non-empty, closed and
convez subset of H and let S be an («, B,7,0,¢,(,n)-widely more generalized hybrid
mapping from C into itself such that F(S) # 0 and it satisfies the conditions (1) or

(2):
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(1) a+B8+~v+d>0,(+n>0and a+ 5 >0;

(2) a+8+~7+5>0,e+n>0and a+~y > 0.
Then S is quasi-nonexpansive.
Lemma 2.7 ([9]). Let H be a Hilbert space and let C' be a non-empty, closed and
convex subset of H. Let S : C — H be an («, 8,7, 9, ¢,(,n)-widely more generalized
hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

(1) a+B8+~v+d>0anda+~vy+e+n>0;

(2) a+p+~v+d6>0anda+F+(+n>0.
If v, — z and x, — Sz, — 0, then z € F(S5).

3. LEMMAS

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into
itself with F(S) # (). Then we have that

(3.1) (x — Sz, Sz —y) >0
for all x € H and y € F(S). In fact, we have that for all x € H and y € F(S)
(x—Sz,Sx —y)=(x —y+y— Sx,Sz —y)
=(z —y,Sr —y) + (y — Sz, 5z — y)
> ||z —yl* = Sz - y?
=0.
We have the following lemma from Alsulami and Takahashi [1].

Lemma 3.1 ([1]). Let Hy and Hy be Hilbert spaces and let k > 0. Let A : Hy — Ho
be a bounded linear operator such that A # 0. Let U : Hy — Hy be a k-inverse

strongly monotone mapping. Then a mapping A*UA : Hi — Hy is ”:”2 -inverse

strongly monotone.

Let T : Hy — Hy be a nonexpansive mapping. Since I — T is i-inverse strongly

2
monotone, we have the following result from Lemma 3.1.

Lemma 3.2. Let Hi and Hy be Hilbert spaces. Let A : Hy — Hs be a bounded
linear operator such that A # 0. Let T : Hy — Hy be a monexpansive mapping.
1

Then a mapping A*(I —T)A : Hy — Hy is W—inverse strongly monotone.

The following lemma was proved in Takahashi, Xu and Yao [32].

Lemma 3.3 ([32]). Let Hy and Hy be Hilbert spaces. Let B : Hy — 21 be a
mazximal monotone mapping and let Jy = (I + AB)~! be the resolvent of B for
A > 0. Let T : Hy — Hy be a nonexpansive mapping and let A : Hy — Hy be
a bounded linear operator. Suppose that B0 N A7YF(T) # 0. Let A\,r > 0 and
z € Hy. Then the following are equivalent:

(i) z=J\(I—rA*(I-T)A)z;

(i) 0 € A*(I = T)Az + Bz;

(iii) z € BTN A=LF(T).

Using Lemma 3.3, we can prove the following lemma.
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Lemma 3.4. Let H, and Hy be Hilbert spaces and let k > 0. Let B : Hy — 21
be a mazimal monotone mapping and let Jy = (I + A\B)~! be the resolvent of B
for A > 0. Let U : Hy — Hs be a k-inverse strongly monotone mapping and let
A : Hy — Hy be a bounded linear operator. Suppose that B0 N A=Y({U~10) # 0.
Let A\,7 > 0 and z € Hy. Then the following are equivalent:

(i) z=J\(I—-rA*UA)z;
(ii) 0 € A*UAz + Bz;
(iii) z € B7ton A=Y U 10).

Proof. Since B0 N A=Y(U~10) # 0, there exists z9p € B~10 such that Az €
U~'0. Furthermore, since U : Hy — Ho is x-inverse strongly monotone, I — 2xU is
nonexpansive; see [28].

(i) < (iii). Suppose z = Jy(I — rA*UA)z. We have that

z=J\(I—-1rA"UA)z
1 .
= J\(I - ey 2kA*UA)z
1
=J\(I—-—rA"2xUA
In( 5" kKUA)z
1
= J\(I - ﬂrA*(I — (I —2kU))A)z.
From Lemma 3.3, this equality is equivalent to
ze B'0NnAT'F(I - 2kU) = B 'on AL (U10).
(ii) = (iii). From 0 € A*UAz + Bz, we have —A*UAz € Bz. Since
—A*UAz = —iQ,%A*UAz
2K
= —iA*2f<;UAz
2K
1
=——A"(I-(I-2 A
S AT(T — (1~ 2500)) Az
1 .1 1
= —lA*(I - (11 + 1(I —2rU)))A
Tk ' TV TS

we have —2A*(I — (31 + £(I — 2kU)))Az € Bz. Put S = §1 + (I — 2kU). Since
B is monotone, we have from 0 € Bzy that

(—%A*(I — S)Az,z - z) > 0.
Then we have that (A*(1 — S)Az,z — zp) < 0 and hence
(3.2) (Az — SAz, Az — Azp) < 0.
On the other hand, since S is firmly nonexpansive, we have from (3.1) that

(3.3) (Az — SAz,SAz — Azy) > 0.
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From (3.2) and (3.3) we have that
(3.4) |Az — SAz||? = (Az — SAz, Az — SA2) <0

and hence Az = SAz. This implies that Az € F(S) = F(I — 2xkU) = U~0. Using
this, we have 0 € A*UAz + Bz = Bz. Therefore, z € B~10N A=Y (U10).

(iii) = (ii). From z € B~'0N A~Y(U~10), we have that UAz = 0 and 0 € Bz.
Thus we have 0 € A*(I —T)Az + Bz. The proof is complete. O

Using Lemmas 3.1 and 3.4, we also have the following lemma.

Lemma 3.5. Let H, and Hy be Hilbert spaces and let k > 0. Let B : Hy — 21
be a mazimal monotone mapping and let Jy = (I + AB)~! be the resolvent of B
for A > 0. Let U : Hy — Hs be a k-inverse strongly monotone mapping and let
A : Hy — Hs be a bounded linear operator. Suppose that 0 € A*U Au + Bu and
0 € A*UAv+Bv. Then A*UAu = A*U Av. Furthermore, if B~10NA~Y(U10) # 0,
then (A*UA + B)~0 is closed and convez.

Proof. If 0 € A*U Au+ Bu and 0 € A*U Av+ Bv, then we have that —A*U Au € Bu
and —A*U Av € Bv. Since B is monotone, we have

(u—v,—A"UAu — (—A*U Av)) > 0

and hence
(3.5) (u—v, A*UAu — A*U Av) < 0.
On the other hand, since A*U A is W—inverse strongly monotone from Lemma 3.1,
we have
(u— v, A*UAu — A*U Av) > IIZHQ |A*U Au — A*U Av|2.

We have from (3.5) that||A*U Au — A*U Av||? = 0 and hence
A*UAu = A*U Aw.

Since U is a-inverse strongly monotone, U~ '0 is closed and convex. Then
A=YHU710) is closed and convex because A is linear and continuous. We also have
that since B is maximal monotone, B~10 is closed and convex. Hence B~10 N
A=YU710) is closed and convex. Using Lemma 3.4, we have that (A*UA + B)~10
is closed and convex. This completes the proof. O

4. MAIN RESULTS

Now we can prove the main theorems.

Theorem 4.1. Let H, and Ho be Hilbert spaces. Let B : Hi — 281 be a mazimal
monotone mapping and let Jy = (I + AB)™! be the resolvent of B for A > 0.
Let U : Hy — Hs be a k-inverse strong monotone mapping. Let A : Hi — Hs be a
bounded linear operator. Suppose that B-10NA~Y(U~10) # 0. For anyx; = = € Hy,
define

Tnt1 = PnTn + (1 — Bn)Jdr, (I — \A*UA)z,, VYneN,
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where {Bn} C (0,1) and {\,} C (0,00) satisfy the following:
Zﬁn(l —Bp) =00, 0<a<\,< ||f24”2 and Z [An — Ant1] < 0.
n=1

Then xn, — 20 € BT'0N AN ({U10), where 2o = limy, 00 Pp-1004-1(0-10)Zn

Proof. Let z € B0 N A=1(U~'0). Then we have that z = Jy, z and UAz = 0.
Put y, = Jr,(I — M\yA*UA)zy, for all n € N. Since J,, is nonexpansive and U is
k-inverse strongly monotone, we have that

lyn=21% = 1 I0, (I = M A UA)wy — Iy, 2]°
< |lzy — M A U Azy, — 2|
(4.1) = [lzn — 2|1 = 2Xn(zn — 2, A"U Azy) + (An)? || AU Az, |
= [lzn — 2|1 — 2X\n (Azy — Az, UAzy,) + (\n)? | A*U Ay, ||?
<l — 21° = 2620 [U Az |* + (M) | AlI? U Az |
= [lzn = 21* + A (A [|AII* = 26) U Azy |
From0<a <\, < ||A||2 we have that ||y, — z|| < ||z, — 2| for all n € N and hence
201 — 2|l = [|Bnzn + (1 = Bp)yn — 2|
< B llon = 2[ + (1= Bn) llyn — 2|
< B llon — 2] + (1 = Bn) [lzn — 2]
< lzn — 2| -
Then lim, oo ||xn, — 2| exists. Thus {z,}, {Az,} and {y,} are bounded. Since
k| UAzy||> < (UAzy,, Az, — A2) < ||UAz,||||Az, — Az|,
{UAz,} is bounded. Then {A*UAx,} is bounded. Using the equality (2.1), we
have that for n € Nand z € B~'0n A~1({U~10)
zns1 = 2[1* = [|Bazn + (1= Ba)yn — 2|1
= B llzn = 21% + (1 = Ba) llyn — 211> = Bu(1 = Ba) |70 — yul®
< Bullzn = 21 + (1 = Ba) llzn — 2[1* = Ba(1 = Ba) Iz — ynl®
= |l#n = 21> = Ba(1 = Bn) 20 — yal®
and hence
Bu(1 = Ba) 20 = ynll* < llzn = 2[I* = [2ns1 — 2.
Thus we have

[e.e]
D Bl =) ln = yal® < lloy — 21° = lim ||z — 2.
n—o0

n=1

Since > >7; Bn(1 — Bn) = oo, we have from [28, p. 114] that
.. 2
(4.2) lim inf [|z, — yn|” = 0.
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Put u, = (I — \yA*UA)x,,. Since Jy, (I — A\, A*UA) is nonexpansive, we have from
Lemma 2.1 that
lYn+1 — ynll = HJAn+1 (I = A1 AU A)zp41 — Iy, (1 — )\nA*UA)an
< | rss (I = A1 AU A) w1 — Iy (I = A1 AU Ay |
+ | Tanss (I = A1 A U Ay — T, un|
< ||Tpe1 — x| + HJ)\HI(I — M1 A UA)z), — J)\nunH
<[ Trn s (T = Ans 1 AU Az — Jn, o (T = A AU Az
+ | Trniatn = Irptin]| + [|2ns1 — 2|
< (I = Aps1 A*UA)z), — (I — MyA* U A) |

7L+1

+ HJ)\H+1 J)\nunH + ||.’En+1 — :CnH
< i1 — Aol |A*U Az, |
A An
l;ﬁilggggiuj;n+l T

Therefore, we have that

Hxn+1 - yn+1|| = Hﬂnxn + (1 - Bn)yn - ynJrlH
< Bn ||xn - yn+1|| + (1 - Bn) ”yn - ynJrlH
< Bn Hxn — Tp41 + Tpi1 — yn+1|| + (1 - ﬁn){||$n+1 - :ETLH

An An
Do = M AT Ay P =2l

< Bn HSUn xn-i—l” + Bn ”xn+1 - yn-i—lH
+ (1= B){llzns1 — @nll + [Ans1 — An| || AU Azy|

An A
Lot 20l )

= Hxn — Tpy1|l + B ”3771—1—1 — Yn+1]|
+ (1 = Bu){|Ant1 — A [|A*U Az, |

‘)\n—‘rl - An’
# Pt 2l
and hence
(1= Bn) 1n1 — Ynt1l] < ||z — Tpga |
(1= Bn{[Antr = Al |4V Az + 25— ||,y — |}
= (1= Bn) |z — ynll
* ’)‘n-&-l — )‘n|
+ (1 - ﬁn){’/\n—kl - )‘n‘ HA UAan + T HJ>\n+1u" - UnH}

From 1 — 3,, > 0, we have

[2n+1 = yntall < llon = ynll + [Ans1 = A [A(I = T) Az |
Antl — An
| n+ ‘ HJ n+1

— ||
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Using Tan and Xu’s lemma [33], we have that lim,_, ||, — yn|| exists. Hence, we
have from (4.2) that

lim ||z, — yn|| = iminf ||z, — y,|| = 0.
n—oo n—oo

We finally show that z, — 29 € B~!0 N A~}(U~10). Since {z,} is bounded,
there exists a subsequence {z,,} of {z,} such that z,, — x*. We first show z* €
B7lonA=1(U710). Since 3°°7 ;[\ — Ant1| < 00, {A,} is a Cauchy sequence. Then
there exists \g € [a, Hiﬁ] such that A\, — A\o. We have that z,,, = 2* and \,, — Ao.
For such A\g, we have that
HJ)\O (- )‘OA*UA):C'M — Yn, H
= [[Iag(I = A AU A)zp, — Iy, (I = Ay AU A)y,, ||
< | Ixg(I = M A*UA)xy, — Irg(I — A\, A"UA)y, ||
(4.3) + | (I = A, AU A) g, — I, (I = Ay A"U Ay, |
< NI = XA UA)xy, — (I — Ay, A" UA)zy, ||
+ HJ)\oum - J)\ni Un, ||
A0 — An,
202l = =0,
where uy,, = (I — Ay, A*UA)z,,. We also have that
(4.4) |zn;, — Ing(I — XA UA)x,,||
< Hxnz - ym” + ”ym - JAO(I - )‘OA*UA)'rmH — 0.

< Ao = A, [[A"U Az, || +

Since Jy,(I — AgA*UA) is nonexpansive, we have from (4.4) and x,, — x* that
x* = Jy, (I =X\ A*UA))z*. We have from Lemma 3.3 that 2* € B~10Nn A~1(U~10).
We next show that if z,,, — z* and ,,; — y*, then 2™ = y*. We know z2*,y* €
B710NA~Y(U~10) and hence lim,, oo ||z, —2*|| and lim,, oo ||, —y*|| exist. Suppose
x* # y*. Since H satisfies Opial’s condition, we have that

lim [zn =27 = lim [z, —2*[| < lim [lz,, — "]
n—oo 1—00 1—00
= lim |z, —y*[| = lim [z, — 7|
n—00 J—00
< lim ||z, — 2% = lim |z, — 2™
j—o0 n—00

This is a contradiction. Then we have z* = y*. Therefore, z, — 2* € B0 N
A~Y(U~10). Moreover, since for any z € B~10Nn A~Y(U~10)

Jnss = 2l < o — 2ll, VneN,
we have from Lemma 2.3 that Pp-1gn4-1@y-10)2n — 20 for some zy € B~lon
A~Y(U~10). The property of metric projection implies that

<l'* — PB—lomA—l(U—lo)l'n,.’En - PB—loﬂA—l(U—lo)l‘n> S 0.

Therefore, we have

(@ — 20,2" — 20) = [|l2* — 20> 0.

This means that z* = zg, i.e., x, — 2p. O
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Theorem 4.2. Let Hy and Hy be real Hilbert spaces and let C' be a non-empty,
closed and convex subset of Hy. Let B : Hy — 281 be a mazimal monotone mapping
such that the domain of B is included in C and let Jy = (I +rB)~! be the resolvent
of B forr > 0. Let S : C — C be an (a,f,7,96,¢,(,n)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) a+B+v+0>0,a+8>0and(+n>0;

(2 a+8+v+5>0,a+y>0andec+n>0.
and let U : Hy — Hs be a k-inverse strong monotone mapping. Let A : Hi — Hy
be a bounded linear operator. Suppose that F(S)NB~0N A=Y U~10) # 0. For any
x1 =x € C, define

Tnt1 = PnTn + (1 — Bn)S(JIr, (I — \yA*UA)x,), VneN,

where {Bn} and {\,} satisfy the following:
2K
Ik
Then the sequence {x,} converges weakly to a point zg € F(S)NB~0NA~Y(U~10),
where zo = limy 00 Pp(s)nB-10na-1(U~10)Tn-

Proof. Set E = F(S)N B~'0N A~Y(U~10). Then we have that E is closed and
convex. Let y, = Jy, (I — A\yA*UA)z,, for all n € N and let z € E. Since z = J,, 2,
UAz =0 and U is k-inverse strongly monotone, we have that

lyn = 2I* = I, (I = M AU Ay = I, 2]
< lzn — MA U Ay, — 2|2
(4.5) = ||zn — 2||* = 20p(@p — 2, AU Az,) + (M) 2 | A*U Ay, ||
= ||&n — 2||* = 20 (Azy, — Az, UAzy,) + (M) || A*U Az ||
< lzn = 21* = 2620 [[U Az |2 + (M) [ A]I* U Az
= [lzn = 2[* + A (A [|A]* = 26) |U Az ||
From (4.5) we have that ||y, — z|| < ||z, — 2| for all n € N and hence
[#n41 — 2]l = [|Bran + (1 = Bn)Syn — 2|
< Bnllen — 2l + (1 = Bn) [|Syn — 2|
< Bnllen — 2l + (1 = Bn) lyn — 2|l
< Bnllen — 2l + (1 = Bp) lzn — 2|

= [lzn — 2]

O0<c<pfr<d<landl<a<\, <b<

Then lim,, o ||z, — 2|| exists. This also means that the condition (i) of Lemma 2.4
holds for E. Thus {z,},{yn} and {Sy,} are bounded. As in the proof of Theorem
4.1, we also have that {A*U Az, } is bounded. By the inequality (4.5),

Zns1 — 2)|* < Bnllzn — 2lI° + (1 = Bn) [|Syn — 2|2
< B l|lzn — ZH2 + (1 = Bn) lyn — 2”2
< B llwn — 217 + (1 = Ba){llzn — 2II° + An(An 1A — 26) |U Az ||*}
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<l — 21+ Aa(n | = 26) (1 = Bn) |U Az |
Thus we have
A N7 = 20) (1=8,) |U Az |*
<l = 2)* = Jonsn — 21
Since limy, o ||z — 2| exists, we have that
(4.6) nh—>120 |UAzy,| = 0.
On the other hand, since J), is firmly nonexpansive and I — \,,A*U A is nonexpan-
sive, we have from (2.2) that

yn—2z)? = 2||Jx, (I — MA* U Az, — Jy, (I — MA*UA)z|?
<2yn — 2, (I = \A* U Az — (I = M\ A* U A)2)
=2yn — 2z, — MfAUA)z,, — 2)
= llyn = 21° + [|(I = M A U Az, — 2|
—lyn — (I — )‘nA*UA)anQ
< lyn = 2l* + llzn — 20° = llyn — 20 + A A™U Az |®
= llyn — 2lI> + lzn — 2)1* = llyn — 2nl®
— D (yn — T, AU Axy) — N2 || AU Az |2
Therefore we have
[y — ZH2 <llzn - ZH2 — [lyn — an2
— 20 (Y, — T, AU Azy) — N2 || AU Az, ||
and hence
|Znt1—2]1* < Bn llzn — 21 + (1 = Ba) [|Syn — 2|17
<Bn llzn — 20> + (1= Bn) llyn — 2117
<Bn [l — 21> + (1= Bu){llzn — 21> = llyn — @nl|®
— 20 (yn — a2, AU Ay — N2 || A*U Ay ||2Y
<lwn — ZHQ — (1= Bn) lyn — ang - )\n2(1 — Bn) HA*UAan2
=20, (1 = Bn)(yn — Tpn, A*U Axy,).
This means that
(1= Bn) lyn — 2nl® < llon — 2)1* = 2ns1 — 2|
- /\n2(1 — Bn) ||A*UA$nH2 =22 (1 = Bn)(yn — wnyA*UA$n>-

Since {y,} and {z,} are bounded, lim, o ||A*UAz,| = 0 and lim,_, ||zn — 2||
exists, we have that

lim ||y, — z,| = 0.
n—oo
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Let {z,,} be a subsequence of {z,} such that x,, — z*.

linear operator, we have that Az,, — Az*. Since
K|\ UAzy; — UAz*||> < (UAzy; — UAx", Axy, — Az™),

we have from (4.6) that x||UAz*||? < 0. This implies UAz* = 0 and hence z* €
A~YU70). Let us prove that 2* € B71(0). Since y, = Jy, ([ — \yA*UA)x,, we
have that

Since A is a bounded

Yn = JIx, (I = \A*UA)x,
< (I = NAUA)zy, € yp + A\ Byn
S Ty — Yn — MA*U Az, € N\, By,

1
& )\—(:z:n — Yn — MATU Azy,) € By,

Since B is monotone, we have that for (u,v) € B,

1

<yn - u, T(lin —Yn — )\nA*UAxn) - 'U> >0
and hence
In — Yn *
(yn = u, =5 = A"UAw, —v) 2 0.

Replacing n by n;, we have that

Tn; = Yn, "

J

<ynj - u,

Since T, —yn; — 0,0 < a < Ay, < b, yp; — 2* and A*UAx,; — 0, we have that
(* —u,—v) > 0. Since B is maximal monotone, we have that 0 € Bz*. Let us
show z* € F(S). Putting ¢ = lim,, s ||zr, — 2|, we have

limsup || Sy, — z|| <limsup ||y, — 2||

n—oo n—oo

<limsup ||z, — z|| < ¢
n—oo

On the other hand, we have that

1 [|Bn (s — 2) + (1= B2)(Spn — 2| = lim nsr — 2] =c.
From Lemma 2.2, we have that
(47) i [|(zn — 2) — (Syn — )| = lim [l — Sy ]| =0.
From

lyn — Synll < lyn — 2ol + 20 — Synll,

we have
(4.8) Tim [y — Syal = 0.

Since yn; — x*, we have from Lemma 2.7 and (4.8) that z* € F/(S). Therefore, we
obtain that

z* € E=F(S)n B Y0)nA YU 10).
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This implies that the condition (ii) of Lemma 2.4 holds for . We have from Lemma
2.4 that there exists z* € E such that x,, — z* as n — oo. Moreover, since

|Znt1 — 2| < |lzn — 2|, VYneN, zeE,

by Lemma 2.3 there exists some 2y € E such that Pgx, — 2. The property of
metric projection implies that

(z* — Ppxy, xy — Ppxy,) < 0.
Therefore, we have
(2% — 20,2 — 2z9) = ||2" — z0||2 <0.

This means that z* = 2, i.e., z, = 2" = lim, 00 Pr(x,). O

5. APPLICATIONS

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex
function of H into (—oo, 00]. Then the subdifferential df of f is defined as follows:

Of(x) ={z€ H: f(x) +(z,y —x) < f(y), Vy € H}

for all z € H. By Rockafellar [22], it is shown that Jf is maximal monotone. Let C
be a non-empty, closed and convex subset of H and let ¢ be the indicator function

of C, i.e.,
) 0, ifzeC,
ic(x) = .
00, ifedgC.
Then i¢c : H — (—00, 00| is a proper, lower semicontinuous and convex function on

H and hence 0i¢ is a maximal monotone operator. Thus we can define the resolvent
Jy of di¢ for XA > 0 as follows:

Ix = I+ Nic) e, YzeH \>0.

We know that Jyz = Pex for all z € H and A > 0; see [28]. Using Theorem
4.1, we first obtain the following weak convergence theorem which was proved by
Takahashi, Xu and Yao [32].

Theorem 5.1 ([32]). Let Hy and Hy be Hilbert spaces. Let B : Hy — 21 be a
mazimal monotone operator and let Jy = (I+AB)™! be its resolvent of index A > 0.
Let T : Hy — Hy be a nonexpansive mapping. Let A : Hi — Ho be a bounded linear
operator. Suppose that B~10N A=YF(T) # 0. For any v1 = x € Hy, define

Tpt1 = PBnn + (1= Bn)Jdx, (I — M\A* (I —T)A)x,, YneN,
where {B,} C (0,1) and {\,} C (0,00) satisfy the following:

1
IA]I?

D Bu(l=Ba) =00, 0<a<A, < and Y |An = Anpa| < 0.
n=1 n=1

Then z, — zo € B~10N A7 F(T), where zy = lim, .« Pp-10na-1F(T)Tn-

Proof. Suppose that T is nonexpansive. Then U = I — T is %-inverse strongly
monotone. Thus we obtain the desired result by Theorem 4.1. g

We also have the following theorem from Theorem 4.2.
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Theorem 5.2 ([32]). Let Hy and Hy be real Hilbert spaces and let C' be a non-
empty, closed and convex subset of Hy. Let B : Hy — 21 be a mazimal monotone
mapping such that D(B) C C and let Jy\ = (I + AB)~! be the resolvent of B for
A>0. Let V : C — C be a generalized hybrid mapping and let T : Hy — Ha be
a nonexrpansive mapping. Let A : Hi — Hy be a bounded linear operator. Suppose
that S :== F(V)NB10N A=YF(T) # 0. For any v1 = x € C, generate a sequence
{zn} by the algorithm

Tn+1 = Bnn + (1 - Bn)v(t})\n (I - )\nA*(I - T)A)l'n)a Vn € N,

where the sequences of parameters {8,} and {\,} satisfy the following:

1

Then {z,} converges weakly to a point zy € S, where zy = limy,,_, o0 PsTy,.

Proof. A generalized hybrid mapping V : C' — C' is widely more generalized hybrid.
Since T is nonexpansive, then U = I — T is %—inverse strongly monotone. Thus we
have the desired result from Theorem 4.2. O

Next, we deal with the equilibrium problem with an inverse strongly monotone
mapping in Hilbert spaces. Let C' be a non-empty, closed and convex subset of a
real Hilbert space H and let f : C' x C' — R be a bifunction. Then we consider the
following equilibrium problem: Find z € C such that

(5.1) flz,y) 20, VyeC.
The set of such z € C is denoted by EP(f), i.e.,
EP(f)={z€C: f(z,y) >0, Yy € C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies
the following conditions:

(Al) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,x) <0 for all z,y € C,
(A3) for all z,y,z € C,

limsup f(tz+ (1 —t)z,y) < f(z,y);
£10

(A4) f(x,-) is convex and lower semicontinuous for all z € C.
We know the following lemmas; see, for instance, [2] and [6].
Lemma 5.3 ([2]). Let C be a non-empty, closed and convex subset of H, let f be a

bifunction from C x C to R satisfying (A1)-(A4) and let r > 0 and x € H. Then,
there exists z € C such that

f(z,y)+%<y—z,z—m> >0

forally e C.
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Lemma 5.4 ([6]). Forr >0 and x € H, define the resolvent T, : H — C of f for
r >0 as follows:

1
Trx:{zEC:f(z,y)—l—r@—z,z—a:)20, VyEC}.

Then, the following hold:
(i) T) is single-valued;
(ii) T; is firmly nonezpansive, i.e., for all x,y € H,
| T — TryH2 <(Tyx — Ty, x —y);
(iii) F(T) = EP(f);
(iv) EP(f) is closed and conver.
Takahashi, Takahashi and Toyoda [25] showed the following.

Lemma 5.5 ([25]). Let C' be a no-nempty, closed and convexr subset of a Hibert
space H and let f : C' x C' — R be a bifunction satisfying the conditions (A1)-(A4).
Define Ay as follows:

A {kefﬁf@w)zw—xJ%VyGCL if v € C,
JT = .
0, ifx & C.

Then, EP(f) = AJTIO and Ay is a maximal monotone operator with D(Ay) C C.
Furthermore,
Tox = (I+rAp) e, Vr>0.

We obtain the following theorem from Theorem 4.1.

Theorem 5.6. Let Hi and Ho be Hilbert spaces. Let C' be a mon-empty, closed
and convex subset of Hy. Let f : C x C — R satisfy the conditions (A1)-(A4)
and let Ty, be the resolvent of Ay for Ay, > 0 in Lemma 5.5. Let U : Hy — H»
be a k-inverse strongly monotone mapping. Let A : Hi — Hy be a bounded linear
operator. Suppose that EP(f) N A=Y (U~'0) # 0. For xy = x € Hy, define

Tnt1l = BnTn + (1 — Bn)Th, (I — MyAUA)zy), VYneN,
where {B,} C (0,1) and {\,} C (0,00) satisfy the following:

o0 2[{/ o0
> Ba(l = Ba) = o0, O<a§An§Eﬂ§ami§:Mn—Mwﬂ<mm
n=1 n=1

Then, x, — 20 € EP(f) N A=Y U~0), where zp = lim,, o0 Prp(f)na-1(U-10)Tn-
Proof. Define A for the bifunction f and set B = A; in Theorem 4.1. Thus we

have the desired result from Theorem 4.1. O

As in the proof of Theorems 5.2 and 5.6, we obtain the following result from
Theorem 4.2.

Theorem 5.7. Let Hy and Hy be Hilbert spaces. Let C be a non-empty, closed
and convexr subset of a real Hilbert space Hi. Let f : C x C — R satisfy the
conditions (A1)-(A4) and let Ty, be the resolvent of Ay for A, >0 in Lemma 5.5.
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Let S : C — C be a generalized hybrid mapping and let U : Hy — Hs be a k-
inverse strongly monotone mapping. Let A : Hi — Hs be a bounded linear operator.

Suppose that F(S)NEP(f)N AN (U~'0) # (. For x1 = x € C, define
Tnt1 = Pntn + (1 — Bn) STy, (I — \yA*UA)zy,, VYneN,
where {Bn} and {\,} satisfy the following:

2
0<e<B,<d<1 and 0<a§/\n§b<ﬁ.

Then, z, — 29 € F(S) N EP(f) N A~Y(U10), where

z0 = lim Prs)npp()na-1u-10)Tn-
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