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the spectral projected gradient algorithm [18], the power iteration method [4], and
the nonsmooth algorithm [1]. However, to the best of our knowledge, there are
very few numerical methods proposed for seeking the eigenvalues of A relative to a
nonpolyhedral cone except for [4] where the spectral projected gradient algorithm
[18] is applied for the circular eigenvalue problem.

In this paper, we are concerned with numerical algorithms for the problem of
seeking the eigenvalues of a linear transformation on Rn relative to Lorentz cones.
This problem, called the Lorentz eigenvalue problem, is to find a λ ∈ R and a nonzero
x ∈ Rn such that

(1.2) x ∈ K, A(x)− λx ∈ K, ⟨x,A(x)− λx⟩ = 0,

where A is a given linear transformation from Rn to Rn, and K is the Cartesian
product of Lorentz cones or second-order cones (SOCs). In other words, K can be
expressed as

(1.3) K = Kn1 ×Kn2 × · · · ×Knr ,

where r, n1, . . . , nr ≥ 1, n1+· · ·+nr = n, and Kni is the Lorentz cone in Rni defined
by

Kni :=
{
(xi1, xi2) ∈ R× Rni−1 |xi1 ≥ ∥xi2∥

}
.

It is known that (1.2) has a nonempty solution set, see [27, Corollary 2.1] or [26,
Theorem 2.5]. Moreover, Seeger and Torki [26] presented a characterization for its
cone spectrum

σ(A,K) := {λ ∈ R | (λ, x) solves (1.2) for some x ̸= 0} .
Recently, for a class of special linear transformations, i.e., Z-transformation, Zhou
and Gowda [33] established the finiteness of the general symmetric cone spectrum.

Although seeking the solution to problem (1.2) is equivalent to finding a zero of
a nonlinear second-order cone complementarity system (see Sec. 3), the existing
methods such as the merit function method [7] and the smoothing Newton meth-
ods [9, 8, 10] developed for general nonlinear second-order cone complementarity
problems, are not suitable for finding the solution of (1.2), since their global con-
vergence conditions and stationary point conditions are typically not satisfied by
the nonlinear mapping F (x, λ) ≡ A(x) − λx. Motivated by the efficiency of non-
smooth algorithms for the Pareto eigenvalue problem [1], in this paper we propose
two semismooth Newton methods via the natural equation reformulation and the
normal equation reformulation of (1.2), respectively, and establish their local qua-
dratic convergence under suitable conditions. The convergence analysis results show
that the method based on the natural equation formulation may avoid the influence
of the asymmetry of A well, whereas the method based on the normal equation
formulation suffers from it easily. This is also verified by numerical experiments.

Our numerical results show that the method based on the normal equation for-
mulation is very effective for the Lorentz eigenvalue problem of Z-transformations
such as the Lyapunov transformation and the Stein transformation, and the method
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based on the natural equation formulation is very promising for those Lorentz eigen-
value problems of general linear asymmetric transformations whose dimensions are
within 200, whenever one aims at finding at least one Lorentz eigenvalue.

This paper is organized as follows. Section 2 recalls some background materials
about the Jordan product associated with Kn and the results that will be used in
the subsequent sections. Section 3 gives two nonsmooth system reformulations of
(1.2) and the semismooth Newton methods based on them. Section 4 focuses on
the local convergence analysis of the two semismooth Newton methods. Section 5
reports the computational experience and numerical results with the two methods
solving Lorentz eigenvalue problems of several classes of linear transformations.
Finally, we conclude this paper with some remarks.

Throughout this paper, I denotes an identity matrix of appropriate dimension,
Rn denotes the space of n-dimensional real column vectors endowed with the inner
product ⟨·, ·⟩ and the induced norm ∥ · ∥, and Rn1 × · · · × Rnr is identified with
Rn1+···+nr . For any given linear transformation A on Rn, we denote σ(A) the
spectrum of A, and σ̂(A,K) the spectrum of A consisting of the eigenvalues whose
eigenvectors belong to K. An n×n real (not necessarily symmetric) matrix B is said
to be positive semidefinite if ⟨x,Bx⟩ ≥ 0 for all x ∈ Rn. A linear transformation A
on X is said to have the Z-property [33] or the cross-negativity property [29] with
respect to K if the following implication holds:

(1.4) x ∈ K, y ∈ K∗ and ⟨x, y⟩ = 0 =⇒ ⟨A(x), y⟩ ≤ 0,

and we call A a Z-transformation w.r.t. (an acronym for “with respect to”) K.

2. Preliminaries

We first recall from [11] the definition of Jordan product. The Jordan product of
any two vectors x = (x1, x2), y = (y1, y2) ∈ R× Rn−1 is defined as

x ◦ y := (⟨x, y⟩, x1y2 + y1x2),

and write x2 := x ◦ x. The Jordan product, unlike the matrix multiplication,
is not associative in general. The identity element under this product is en :=
(1, 0, . . . , 0) ∈ Rn, i.e., en ◦x = x for any x ∈ Rn. For any a ∈ Rn, we denote La and
Sa by the Lyapunov transformation and the Stein transformation on Rn associated
with a, respectively, given by

La(x) := a ◦ x ∀x ∈ Rn

and

Sa(x) := x+ a2 ◦ x− 2a ◦ (a ◦ x) ∀x ∈ Rn.

The two linear transformations are symmetric with respect to the inner product ⟨·, ·⟩.
It is trivial to verify that La is a Z-transformation w.r.t. the cone Kn. Observing
that Sa(x) = x − Qa(x) where Qa := 2(La)

2 − La2 is the quadratic representation
associated with a, and Qa(K

n) ⊆ Kn, we also have that Sa is a Z-transformation
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w.r.t. Kn.

We also recall from [11] that each x = (x1, x2) ∈ R×Rn−1 has a spectral factor-
ization

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where λi(x) for i = 1, 2 are the spectral values of x, and u
(i)
x for i = 1, 2 are the

associated spectral vectors, respectively, defined by

λi(x) := x1 + (−1)i∥x2∥, u(i)x :=
1

2

(
1, (−1)ix̄2

)
,

with x̄2 = x2
∥x2∥ if x2 ̸= 0 and otherwise x̄2 being an arbitrary vector in Rn−1 with

∥x̄2∥ = 1. If x2 ̸= 0, the factorization is unique. The trace of x is defined as
tr(x) := λ1(x) + λ2(x). The spectral values of x and the eigenvalues of Lx have the
following relationship.

Lemma 2.1 ([9]). For any given x ∈ Rn, let λ1(x), λ2(x) be the spectral values

of x, and u
(1)
x , u

(2)
x be the associated spectral vectors. Then, Lx has the eigenvalue

decomposition

Lx = U(x) diag (λ2(x), x1, · · · , x1, λ1(x)) U(x)T

where

U(x) =
[√

2u(2)x ;u(3)x ; · · · , u(n)x ;
√
2u(1)x

]
∈ Rn×n

is an orthogonal matrix, and u
(i)
x for i = 3, . . . , n have the form of (0, ūix) with

ū3x, . . . , ū
n
x being any unit vectors in Rn−1 that span the linear subspace orthogonal

to x2.

With the spectral factorization of x, for any given real-valued function f : R → R,
we may define a vector-valued function f soc : Rn → Rn by

f soc(x) := f(λ1(x))u
(1)
x + f(λ2(x))u

(2)
x .

For example, letting f(t) ≡ max{0, t}, f soc(x) is the metric projection of x onto
Kn, written as ΠKn(x) or (x)+. The following lemma recalls the B-subdifferential
of ΠKn(·) at a general point. For the definition of the B-subdifferential, the reader
may refer to [6].

Lemma 2.2 ([21, 22]). Given a general point z = (z1, z2) ∈ R×Rn−1, each element
V ∈ ∂BΠKn(z) has the following representation:

(a): If z1 ̸= ±∥z2∥, then ΠKn(z) is continuously differentiable at z with

V = Π′
Kn(z) =


0 if z1 < −∥z2∥,
I if z1 > ∥z2∥,

1

2

[
1 z̄T2
z̄2 Z̄

]
if − ∥z2∥ < z1 < ∥z2∥,

where

z̄2 =
z2

∥z2∥
, Z̄ :=

(
z1
∥z2∥

+ 1

)
I − z1

∥z2∥
z̄2z̄

T
2 .
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(b): If z2 ̸= 0 and z1 = ∥z2∥, then

V ∈
{
I,

1

2

[
1 z̄T2
z̄2 Z̄

]}
, where z̄2 :=

z2
∥z2∥

and Z̄ := 2I − z̄2z̄
T
2 .

(c): If z2 ̸= 0 and z1 = −∥z2∥, then

V ∈
{
0,

1

2

[
1 z̄T2
z̄2 Z̄

]}
, where z̄2 :=

z2
∥z2∥

and Z̄ := z̄2z̄
T
2 .

(d): If z = 0, then either V = 0, V = I, or V belongs to the set{
1

2

[
1 z̄T2
z̄2 Z̄

] ∣∣∣∣ Z̄ = (z0 + 1)I − z0z̄2z̄
T
2 for some |z0| ≤ 1 and ∥z̄2∥ = 1

}
.

To close this section, we present some properties regarding the cone spectrum
σ(A,Kn).

Lemma 2.3. Let A be a linear transformation on Rn. Then, the following results
hold.

(a): If A has the Z-property w.r.t. Kn, then σ(A,Kn) = σ̂(A,Kn) ⊆ σ(A).
(b): If A is symmetric, then σ(A,Kn) contains at most 3n− 2 elements.
(c): If A is asymmetric and σ(A,Kn) is finite, then σ(A,Kn) has at most

6n− 5 elements.

Proof. (a) By the definitions of σ̂(A,Kn) and σ(A,Kn), clearly, σ̂(A,Kn) ⊆
σ(A,Kn). Conversely, the proof of [33, Theorem 9] implies that σ(A,Kn) ⊆
σ̂(A,Kn). Thus, we have σ(A,Kn) = σ̂(A,Kn). By the definition, it is clear
that σ̂(A,Kn) ⊆ σ(A).
(b) For a general linear transformation A, σ(A,Kn) = σint(A,Kn) ∪ σbd(A,Kn),
where σint(A,Kn) consists of those eigenvalues whose eigenvectors belong to the
interior of Kn, and so σint(A,Kn) ⊆ σ(A), and σbd(A,Kn) consists of those eigen-
values whose eigenvectors are on the boundary of Kn. Note that σint(A,Kn) con-
tains at most one element when A is symmetric since the eigenvectors associated
with different eigenvalues are orthogonal. By [26, Corollary 4.5], we know that
σbd(A,Kn) has a finite number of elements. Since A is symmetric, the cardinality
of σbd(A,Kn) equals the total number of solutions of systems SI-SII in [26, Theorem
4.2], which is at most 3n− 3 by the analysis of [26, Corollary 4.4]. Thus, σ(A,Kn)
contains at most 3n− 2 elements.
(c) In this case, σint(A,Kn) contains at most n elements, and the cardinality of
σbd(A,Kn) equals the total number of solutions to systems SI-SIII in [26, Theorem
4.2], which is at most 5n−5 by the analysis of [26, Corollary 4.4]. Then, the desired
result follows by the same arguments as in part (b). □

3. Semismooth Newton methods

For convenience, in the rest of this paper, a linear transformation A : Rn → Rn

will be identified with an n×n real matrix A. We assume K = Kn throughout this
section, and all analysis can be carried over to the case where K has a structure as
in (1.3).
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Note that problem (1.2) is equivalent to finding a zero (λ∗, x∗) of the following
system

(3.1)

{
x ∈ Kn, Ax− λx ∈ Kn, ⟨x,Ax− λx⟩ = 0,

φ(x) = 1,

where φ : Kn → R is a normalizing function for the Lorentz cone Kn. A normalizing
function for a closed convex cone K is a continuous function φ : K → R satisfying

• φ(x) > 0 for all nonzero vector x ∈ K,
• φ(tx) = tφ(x) for all t > 0 and x ∈ K,
• Kφ := {x ∈ K : φ(x) = 1} is compact.

For the cone Kn, both φ1(x) = tr(x) and φ2(x) = ∥x∥ are normalizing functions.
Recall that a mapping ϕ : Rn × Rn → Rn is said to be an SOC-complementarity
function associated with the cone Kn if it satisfies the following equivalence

(3.2) ϕ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0.

With such a complementarity function ϕ, we can rewrite (3.1) as a system of equa-
tions

(3.3)

 ϕ(x, y) = 0,
Ax− λx− y = 0,
φ(x)− 1 = 0.

Two popular choices for ϕ are the natural residual (NR) SOC-complementarity
function and the Fischer-Burmeister SOC-complementarity function respectively
defined by

(3.4) ϕNR(x, y) := x− (x− y)+ ∀x, y ∈ Rn

and

(3.5) ϕFB(x, y) := (x2 + y2)1/2 − (x+ y) ∀x, y ∈ Rn,

where x1/2 with x ∈ Kn is the unique square root of x, i.e., x1/2 ◦x1/2 = x. The two
functions were proved in [25] to have similar favorable properties such as the globally
Lipschitz continuity and the strong semismoothness. For the Pareto eigenvalue
problem, the computational experience in [1] indicates that the nonsmooth Newton
method based on ϕFB has better numerical performance than the one based on ϕNR .
However, for the nonpolyhedral Kn, we can not expect this result since the B-
subdifferential of ϕFB does not enjoy all good properties of that of ϕNR ; for example,
every element in ∂BϕNR(x, y) has the form of [I − V V ] with V being an n × n
symmetric matrix, but every element in ∂BϕFB(x, y) has the form of [U V ] with
U, V ∈ Rn×n being asymmetric. In view of this, we in this paper concentrate on
the equation formulation involving the NR function ϕNR . In addition, due to the
linearity of φ1, we always choose φ as φ1 instead of φ2. In other words, we focus
on the following nonsmooth system

(3.6) Φ(w) = Φ(x, y, λ) :=

 ϕNR(x, y)
Ax− λx− y
tr(x)− 1

 = 0.
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Proposition 3.1. Let Φ: Rn × Rn × R → Rn × Rn × R be given by (3.6). Then Φ
is strongly semismooth and its B-subdifferential at any point w = (x, y, λ) satisfies

∂BΦ(w) ⊆


 Ux Uy 0

A− λI −I −x
2eTn 0 0

 : [Ux Uy] ∈ ∂BϕNR(x, y)

 .

Also, Φ is Lipschitz continuous on S× Rn × J if S ⊆ Rn and J ⊆ R are bounded.

Proof. Since the mapping F (x, y, λ) = Ax − λx − y is twice continuously differ-
entiable in Rn × Rn × R, it is strongly semismooth. Together with the strong
semismoothness of ϕNR and tr(x) − 1, it follows from [13, Theorem 19] that Φ is
strongly semismooth. The representation for the B-subdifferential of Φ at w is di-
rect by using [6, Prop. 2.6.2(e)] and noting that tr(x) = 2⟨en, x⟩ for x ∈ Rn. Using
the global Lipschitz continuity of ϕNR , it is not hard to verify the last part. □

Note that the system (3.6) has a compact solution set which by Prop. 3.1 implies
that the operator Φ is always Lipschitz continuous on the set of its roots.

With the NR SOC complementarity function ϕNR , we may present an alternative
nonsmooth equation formulation of (1.2), which is based on the following lemma.
Since this lemma is a special case of [14, Prop. 1.5.9], we omit its proof.

Lemma 3.2. The vector (λ, x) ∈ R× Rn is a solution of (1.2) if and only if there
exists a vector z ∈ Rn such that x = z+ ̸= 0 and Az+ − (1 + λ)z+ + z = 0.

Lemma 3.2 means that the solution of (1.2) can be obtained by solving the non-
smooth system

(3.7) Ψ(ω) = Ψ(z, λ) :=

(
Az+ − (1 + λ)z+ + z

tr(z)− 1

)
= 0

in the sense that if (λ∗, z∗) is a root point of (3.7), then (λ∗, z∗+) is a solution to
(1.2), whereas if (λ∗, x∗) is a solution to (1.2), then (λ∗, (1 + λ∗)x∗ −Ax∗) is a root
of (3.7). The equation tr(z) = 1 in (3.7) is used to guarantee that z+ is a nonzero
vector. The system (3.7) has an advantage over (3.6) that its dimension is same as
that of the original problem.

Proposition 3.3. Let Ψ: Rn×R → Rn×R be defined by (3.7). Then Ψ is strongly
semismooth and its B-subdifferential at any point ω = (z, λ) satisfies

∂BΨ(ω) ⊆
{[

(I − V ) + (A− λI)V −z+
2eTn 0

]
: V ∈ ∂BΠK(z)

}
.

Also, Ψ is Lipschitz continuous in S× J if S ⊆ Rn and J ⊆ R are bounded.

Proof. Note that Az+− (1+λ)z+ is strongly semismooth by [13, Theorem 19] since
it is a composition of the twice continuously differentiable function Ax − (1 + λ)x
and the strongly semismooth function ΠK(z). The first part then follows by [13,
Theorem 19]. The second part is direct by the expression of Ψ and [6, Prop. 2.6.2(e)],
and the last part can be easily verified by using the global Lipschitz continuity of
ΠK(z). □
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It is not difficult to verify that the system (3.7) has a compact solution set. Hence,
from Prop. 3.3, Ψ is always Lipschitz continuous on the set of its roots.

In view of Props. 3.1 and 3.3, we may apply the nonsmooth Newton method
[30, 31, 32] for the strongly semismooth systems (3.6) and (3.7), which have the
following iterations:

(3.8) wk+1 := wk −W−1
k Φ(wk), Wk ∈ ∂BΦ(w

k), k = 0, 1, 2, . . . ,

and

(3.9) ωk+1 := ωk −M−1
k Ψ(ωk), Mk ∈ ∂BΨ(ωk), k = 0, 1, 2, . . . .

In the next section, we show that the two methods are quadratically convergent
under suitable conditions if the starting points w0 and ω0 are chosen to be suffi-
ciently close to (x∗, y∗, λ∗) and ((1 + λ∗)x∗ − Ax∗, λ∗), respectively, where (λ∗, x∗)
is a solution of (1.2).

4. Convergence results

To obtain the local convergence results of the methods (3.8)-(3.9), the key is to
establish the nonsingularity of the B-subdifferential of Φ and Ψ at their respective
zeros. In general, there are two ways to achieve this goal. One is to exploit the
algebraic technique such as in [21], and the other is to use the perturbation analysis
technique such as in [3, 34]. In this section, we make use of the algebraic technique
as in [21] to prove the nonsingularity of ∂BΦ(w

∗) and ∂BΨ(ω∗) under suitable
conditions, where w∗ and ω∗ are the solution of (3.6) and (3.7), respectively. Since
the nonsmooth systems (3.6) and (3.7) are different from the one studied in [21],
the results of this section cannot be obtained directly from [21].

Let (λ∗, x∗) ∈ R × Rn be an arbitrary solution of (1.2) and y∗ ≡ Ax∗ − λ∗x∗.
Write x∗ = (x∗1, . . . , x

∗
r) and y∗ = (y∗1, . . . , y

∗
r ) with x∗i , y

∗
i ∈ Rni . We first study the

nonsingularity of the B-subdifferential ∂BΦ(w
∗) with w∗ = (x∗, y∗, λ∗). For this

purpose, we partition the index set {1, 2, . . . , r} into JI ∪ JB ∪ J0 ∪ JB0 ∪ J0B ∪ J00
with

JI := {i ∈ {1, . . . , r} | x∗i ∈ intKni , y∗i = 0} ,
JB := {i ∈ {1, . . . , r} | x∗i ∈ bdKni , y∗i ∈ bdKni} ,
J0 := {i ∈ {1, . . . , r} | x∗i = 0, y∗i ∈ intKni} ,(4.1)

JB0 :=
{
i ∈ {1, . . . , r} | x∗i ∈ bd+Kni , y∗i = 0

}
,

J0B :=
{
i ∈ {1, . . . , r} | x∗i = 0, y∗i ∈ bd+Kni

}
,

J00 := {i ∈ {1, . . . , r} | x∗i = 0, y∗i = 0} ,
where intKni and bdKni denote the interior and the boundary of Kni , respec-
tively, and bd+Kni = bdKni\{0}. From Lemma 2.2 and [21], we readily have
the following result, where “⋆” denotes a real number from the interval (0, 1),

Qi = (qi, Q̂i, q
′
i) ∈ Rni×ni is an orthogonal matrix, Q̄i = (Q̂i, q

′
i) ∈ Rni×(ni−1)

and Q̃i = (qi, Q̂i) ∈ Rni×(ni−1).
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Lemma 4.1. Let Ui ∈ ∂BΠKni (x∗i − y∗i ) for i = 1, . . . , r. Then the following results
hold.

(a): If i ∈ JI , then Ui = I; if i ∈ J0, then Ui = 0;
(b): If i ∈ JB, then Ui = QiDiQ

T
i with Di = diag(0, ⋆, . . . , ⋆, 1) and Qi =

(qi, Q̂i, q
′
i);

(c): If i ∈JB0, then Ui = I, or Ui= QiDiQ
T
i with Di = diag(0, 1, . . . , 1) and

Qi = (qi, Q̄i);
(d): If i ∈J0B, then Ui = 0, or Ui= QiDiQ

T
i with Di = diag(0, . . . , 0, 1) and

Qi = (Q̃i, q
′
i);

(e): If i ∈ J00, then Ui = I, or Ui = 0, or Ui = QiDiQ
T
i with Di and Qi given

by Di = diag(0, ⋆, . . . , ⋆, 1) and Qi = (qi, Q̂i, q
′
i), or by Di = diag(0, 1, . . . , 1)

and Qi = (qi, Q̄i), or by Di = diag(0, . . . , 0, 1) and Qi = (Q̃i, q
′
i).

Based on Lemma 4.1(c)–(e), we further partition the index sets JB0, J0B, J00
into JB0 = J1

B0 ∪ J2
B0, J0B = J1

0B ∪ J2
0B, and J00 = J1

00 ∪ J2
00 ∪ J3

00 ∪ J4
00 ∪ J5

00,
respectively, with

J1
B0 := {i | Ui = I}, J2

B0 = JB0\J1
B0; J1

0B := {i | Ui = 0}, J2
0B = J0B\J1

0B;

J1
00 := {i | Ui = I}, J2

00 := {i | Ui = 0},

J3
00 :=

{
i | Ui = QiDiQ

T
i with Di = diag(0, ⋆, . . . , ⋆, 1) and Qi = (qi, Q̂i, q

′
i)
}
,

J4
00 :=

{
i | Ui = QiDiQ

T
i with Di = diag(0, 1, . . . , 1) and Qi = (qi, Q̄i)

}
,(4.2)

J5
00 :=

{
i | Ui = QiDiQ

T
i with Di = diag(0, . . . , 0, 1) and Qi = (Q̃i, q

′
i)
}
.

Proposition 4.2. Let B ∈ Rn×n and u, v ∈ Rn. Suppose that Ua, U b ∈ Rn×n are
two symmetric positive semidefinite matrices such that their sum Ua+U b is positive
definite and Ua, U b have a common basis of eigenvectors, so that there exist an
orthogonal matrix Q ∈ Rn×n and diagonal matrices Da = diag(a1, . . . , an), D

b =
diag(b1, . . . , bn) satisfying Ua = QDaQT , U b = QDbQT and aj ≥ 0, bj ≥ 0, aj +
bj > 0 for all j = 1, 2, . . . , n. Let the index set {1, 2, . . . , n} be partitioned as
{1, 2, . . . , n} = α ∪ β ∪ γ with

α := {j | aj > 0, bj = 0} , β := {j | aj > 0, bj > 0} , γ := {j | aj = 0, bj > 0} ,

and let Qα, Qβ and Qγ denote the submatrices of Q consisting of the columns from
Q corresponding to the index sets α, β and γ, respectively. Denote

B̃ββ = QT
βBQβ, B̃βγ = QT

βBQγ , B̃γγ = QT
γBQγ , B̃γβ = QT

γBQβ,

and

ũβ = QT
βu, ũγ = QT

γ u, ṽβ = QT
β v, ṽγ = QT

γ v.

Assume that the following two conditions hold:

(a): The matrix B̃γγ is nonsingular and B̃ββ − B̃βγB̃
−1
γγ B̃γβ is positive semi-

definite;

(b): ũTγ B̃
−1
γγ ṽγ ̸= 0 and the matrix

[B̃βγB̃
−1
γγ ṽγ−ṽβ][ũT

γ B̃−1
γγ B̃γβ−ũT

β ]
ũT
γ B̃−1

γγ ṽγ
is positive

semidefinite.
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Then the matrix W =

 Ua U b 0
B −I −v
2uT 0 0

 is nonsingular.

Proof. By the expression of W , it is easy to verify that W is nonsingular if and only
if

W̃ =

 Da Db 0
QTBQ −I −QT v
2uTQ 0 0


is nonsingular. Let △w = (△x,△y,△λ) ∈ Rn × Rn × R satisfy W̃△w = 0. Then,

Da△x+Db△y = 0,(4.3)

(QTBQ)△x−△y − (QT v)△λ = 0,(4.4)

(uTQ)△x = 0.(4.5)

From equation (4.3) and the definitions of Da and Db, it is not hard to obtain

(4.6) △xα = 0, △yγ = 0, Da
β△xβ +Db

β△yβ = 0,

where △x = (△xα,△xβ,△xγ) and △y = (△yα,△yβ,△yγ). We next argue that
the given assumptions (a) and (b) imply △xβ = 0, and △yβ = 0 then follows from
the third equality of (4.6). Assume that △xβ ̸= 0. Then, on the one hand, since

Da
β and Db

β are diagonal and positive definite, the third equality of (4.6) implies

(4.7) ⟨△xβ,△yβ⟩ = −△xTβ (D
b
β)

−1Da
β△xβ < 0.

On the other hand, by △xα = 0 and △yγ = 0, equation (4.4) can be written as

QT
αBQβ△xβ +QT

αBQγ△xγ −△yα − (QT
αv)△λ = 0,

QT
βBQβ△xβ +QT

βBQγ△xγ −△yβ − (QT
β v)△λ = 0,(4.8)

QT
γBQβ△xβ +QT

γBQγ△xγ − (QT
γ v)△λ = 0.

From the second equality in (4.8) and the notations in the proposition, it follows
that

⟨△xβ,△yβ⟩ = △xTβ B̃ββ△xβ +△xTβ B̃βγ△xγ −△xTβ ṽβ△λ.

Since B̃γγ = QT
γBQγ is nonsingular, from the third equation of (4.8), we have

(4.9) B̃−1
γγ B̃γβ△xβ +△xγ − B̃−1

γγ ṽγ△λ = 0.

Combining the last two equations gives

⟨△xβ,△yβ⟩ = △xTβ

[
B̃ββ − B̃βγB̃

−1
γγ B̃γβ

]
△xβ

+△xTβ

[
B̃βγB̃

−1
γγ ṽγ − ṽβ

]
△λ.(4.10)

In addition, from equation (4.9) and (uTQ)△x = ũTβ△xβ + ũTγ△xγ = 0, we obtain

ũTγ B̃
−1
γγ ṽγ△λ = ũTγ B̃

−1
γγ B̃γβ△xβ − ũTβ△xβ,

which together with ũTγ B̃
−1
γγ ṽγ ̸= 0 yields

(4.11) △λ =
(
ũTγ B̃

−1
γγ ṽγ

)−1 [
ũTγ B̃

−1
γγ B̃γβ − ũTβ

]
△xβ.
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Substituting this into equation (4.10) and using assumptions (a) and (b) lead to

⟨△xβ,△yβ⟩ = △xTβ

[
B̃ββ − B̃βγB̃

−1
γγ B̃γβ

]
△xβ

+
(
ũTγ B̃

−1
γγ ṽγ

)−1
△xTβ

[
B̃βγB̃

−1
γγ ṽγ − ṽβ

] [
ũTγ B̃

−1
γγ B̃γβ − ũTβ

]
△xβ

≥ 0.

This clearly contradicts inequality (4.7). Thus, we prove △xβ = 0 and △yβ = 0,
and △λ = 0 then follows from (4.11). Together with (4.8), we readily get △xγ = 0
and △yα = 0. Consequently, △w = (△x,△y,△λ) = 0. The proof is complete. □

Remark 4.3. When the vectors u and v satisfy (ũTγ B̃
−1
γγ B̃γβ−ũTβ )(B̃βγB̃

−1
γγ ṽγ−ṽβ) =

0, the assumptions (a) and (b) in Prop. 4.2 can be replaced by (a) and ũTγ B̃
−1
γγ ṽγ ̸= 0.

When B is symmetric, by [16, Corollary 6.3.4], the assumptions (a) and (b) can be
replaced by

(c): The matrix B̃γγ is nonsingular, ũTγ B̃
−1
γγ ṽγ ̸= 0 and

λmin

(
B̃ββ − B̃βγB̃

−1
γγ B̃γβ

)
≥

∥B̃βγB̃
−1
γγ ṽγ − ṽβ∥∥ũTγ B̃−1

γγ B̃γβ − ũTβ ∥
|ũTγ B̃−1

γγ ṽγ |
.

In fact, if B is symmetric positive definite, the assumption (a) automatically holds.

Now applying Lemma 4.1 and Prop. 4.2, we establish the nonsingularity of
∂BΦ(w

∗).

Theorem 4.4. Let (λ∗, x∗) be a solution of (1.2), B = A−λ∗I and e = (e1, . . . , er).
Let the (block) index sets JI , JB, J0, JB0, J0B, J00 be given by (4.1). Suppose that for
any partitioning JB0 = J1

B0∪J2
B0, J0B = J1

0B∪J2
0B, and J00 = J1

00∪J2
00∪J3

00∪J4
00∪J5

00

given as in (4.2), the two conditions in Proposition 4.2 hold with

B̃ββ = QT
βBQβ, B̃βγ = QT

βBQγ , B̃γγ = QT
γBQγ , B̃γβ = QT

γBQβ,

ũβ = QT
β e, ũγ = QT

γ e, ṽβ = QT
βx

∗, ṽγ = QT
γ x

∗,

where Qγ =
(
I(i ∈ JI ∪ J1

B0 ∪ J1
00) q′i(i ∈ JB ∪ J2

0B ∪ J3
00 ∪ J5

00) Q̄i(i ∈ J2
B0 ∪ J4

00)
)

and Qβ =
(
Q̂i(i ∈ JB ∪ J3

00)
)
. Then, all matrices W ∈ ∂BΦ(w

∗) are nonsingular.

Proof. Choose W ∈ ∂BΦ(w
∗) arbitrarily. Then, by Prop. 3.1 and the expression of

ϕNR ,

W =

 I − U U 0
B −I −x∗

2eT 0 0


for a suitable block diagonal matrix U = diag(U1, . . . , Ur) with Ui ∈ ∂BΠKni (x∗i −
y∗i ). By Lemma 4.1, clearly, I − U and U are symmetric positive semidefinite and
their sum equals I. Thus, to apply Prop. 4.2, it suffices to identity the index sets
β and γ. From Lemma 4.1 and the partitions of JB0, J0B and J00, we see that the
following indices j belong to the index set β in Prop. 4.2:

• All middle indices belonging to a block index i ∈ JB∪J3
00, with Q̂i consisting

of the middle ni − 2 columns of the corresponding orthogonal matrix Qi;
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and the following indices j belong to the index set γ in Prop. 4.2:

• All indices j belonging to one of the block indices i ∈ JI ∪ J1
B0 ∪ J1

00. The
corresponding orthogonal matrix is Qi = I.

• The last index of each block index i ∈ JB ∪ J2
0B ∪ J3

00 ∪ J5
00, with q′i being

the last column of the corresponding orthogonal matrix Qi;
• The last ni − 1 indices j belonging to a block index i ∈ J2

B0 ∪ J4
00, with Q̄i

consisting of the last ni−1 columns of the corresponding orthogonal matrix
Qi.

Using these identifications and Prop. 4.2, the desired result readily follows. □

Next, we study the nonsingularity of B-subdifferential ∂BΨ(ω∗) with ω∗ = (z∗, λ∗),
where z∗ = (1 + λ∗)x∗ − Ax∗ and (λ∗, x∗) be an arbitrary solution of (1.2). Let
y∗ ≡ Ax∗ − λ∗x∗. Then, by noting that z∗ = (z∗1 , . . . , z

∗
r ) with z∗i ∈ Rni ,

z∗ = x∗ − (Ax∗ − λ∗x∗) = x∗ − y∗ and (z∗)+ = x∗ = [x∗ − (Ax∗ − λ∗x∗)]+,

it is not difficult to deduce from the definition of index sets in (4.1) that

JI = {i | z∗i ∈ intKni} ,
J0 = {i | z∗i ∈ int(−Kni)} ,
JB = {i | z∗i ̸∈ Kni ∪ (−Kni)} ,(4.12)

JB0 =
{
i | z∗i ∈ bd+Kni

}
,

J0B =
{
i | z∗i ∈ bd+(−Kni)

}
,

J00 = {i | z∗i = 0} .
The following proposition plays a key role in establishing the nonsingularity of
∂BΨ(ω∗).

Proposition 4.5. Let B ∈ Rn×n and u, v ∈ Rn. Suppose that V a, V b ∈ Rn×n are
two symmetric positive semidefinite matrices such that their sum V a+V b is positive
definite and V a, V b have a common basis of eigenvectors, so that there exist an
orthogonal matrix Q ∈ Rn×n and diagonal matrices Da = diag(a1, . . . , an), D

b =
diag(b1, . . . , bn) satisfying V a = QDaQT , V b = QDbQT and aj ≥ 0, bj ≥ 0, aj +
bj > 0 for all j = 1, 2, . . . , n. Let the index set {1, 2, . . . , n} be partitioned as
{1, 2, . . . , n} = α ∪ β ∪ γ with

α := {j | aj > 0, bj = 0} , β := {j | aj > 0, bj > 0} , γ := {j | aj = 0, bj > 0} ,
and let Qα, Qβ and Qγ denote the submatrices of Q consisting of the columns from
Q corresponding to the index sets α, β and γ, respectively. Then, the matrix

M =

[
V a +BV b −v

2uT 0

]
is nonsingular under the following conditions (a) and (b), or the conditions (a’) and
(b).

(a): The matrices (Da
β +B̃ββD

b
β) and

[
B̃γγ− B̃γβD

b
β(D

a
β+ B̃ββD

b
β)

−1B̃βγ

]
are

nonsingular.

(a’): The matrices B̃γγ and
[
Da

β + (B̃ββ − B̃βγB̃
−1
γγ B̃γβ)D

b
β

]
are nonsingular.
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(b): ũT (Da +QTBQDb)−1ṽ ̸= 0.

Here, B̃βγ , B̃γβ , B̃ββ , B̃γγ are defined as in Proposition 4.2, and ũ = QTu, ṽ =

QT v. When B is symmetric, M is nonsingular under (b) and one of the following
conditions:

(c): B̃ββ is positive semidefinite and
[
B̃γγ − B̃γβD

b
β(D

a
β + B̃ββD

b
β)

−1B̃βγ

]
is

nonsingular.

(c’): The matrix B̃γγ is nonsingular and
[
B̃ββ − B̃βγB̃

−1
γγ B̃γβ

]
is positive semi-

definite.

Proof. By the expression of M , it is easy to verify that M is nonsingular if and only
if

M̃ =

[
Da +QTBQDb −QT v

2uTQ 0

]
is nonsingular. Let △ω = (△z,△λ) ∈ Rn × R be such that M̃△ω = 0. Then,(

Da +QTBQDb
)
△z − (QT v)△λ = 0,(4.13)

(uTQ)△z = 0.(4.14)

We first argue that under assumption (a) or (a’), the matrix (Da + QTBQDb) is
nonsingular. Indeed, let (Da+QTBQDb)ξ = 0 and write ξ = (ξα, ξβ, ξγ). Then, by

the definitions of Da and Db, the equation (Da +QTBQDb)ξ = 0 can be rewritten
as

Da
α△ξα +QT

αBQβD
b
β△ξβ +QT

αBQγD
b
γ△ξγ = 0,

Da
β△ξβ +QT

βBQβD
b
β△ξβ +QT

βBQγD
b
γ△ξγ = 0,(4.15)

QT
γBQβD

b
β△ξβ +QT

γBQγD
b
γ△ξγ = 0.

If assumption (a) holds, then from the nonsingularity of Da
β+B̃ββD

b
β and the second

equation of (4.14), it follows that

△ξβ = −
[
Da

β + B̃ββD
b
β

]−1
B̃βγD

b
γ△ξγ .(4.16)

Substituting it into the third equation of (4.14) yields that[
B̃γγ − B̃γβD

b
β(D

a
β + B̃ββD

b
β)

−1B̃βγ

]
Db

γ△ξγ = 0.

By assumption (a) and the nonsingularity of Db
γ , we then get △ξγ = 0, and △ξβ = 0

then follows from (4.15). Since Da
α is symmetric positive definite, we have △ξα = 0

from the first equation of (4.14). Thus, we prove that (Da+QTBQDb) is nonsingular
under assumption (a). If assumption (a’) holds, then from the third equation of
(4.14),

△ξγ = −(Db
γ)

−1B−1
γγ B̃γβD

b
β△ξβ.(4.17)

Substituting into the second equation of (4.14) and using assumption (a’) yields that
△ξβ = 0, and then △ξγ = 0 follows from (4.16), and △ξα = 0 follows from the first

equality of (4.14). Thus, (Da + QTBQDb) is also nonsingular under assumption
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(a’). Now, from equation (4.12) it follows that △z = (Da + QTBQDb)−1ṽ△λ.
Together with (4.13) and assumption (b), we get △λ = 0, and so △z = 0 follows.

Consequently, M̃ is nonsingular.

When B is symmetric, clearly, B̃ββ and (B̃ββ − B̃βγB̃
−1
γγ B̃γβ) are symmetric. If

B̃ββ is positive semidefinite, then by using [16, Theorem 7.6.3] and noting that Da
β

and Db
β are positive definite diagonals, we have that I + B̃ββD

b
β(D

a
β)

−1 is nonsin-

gular, and so is (Da
β + B̃ββD

b
β). This shows that under this case, condition (c)

implies condition (a). Similarly, if (B̃ββ − B̃βγB̃
−1
γγ B̃γβ) is positive semidefinite,

then (Da
β + (B̃ββ − B̃βγB̃

−1
γγ B̃γβ)D

b
β) is nonsingular, that is, condition (c’) implies

condition (a’). The proof is completed. □
Theorem 4.6. Let (λ∗, x∗) be a solution of (1.2), B = A − λ∗I, z∗ = (I − B)x∗

and e = (e1, . . . , er). Let the (block) index sets JI , J0, JB, JB0, J0B, J00 be given by
(4.12). Suppose that for any partitioning JB0 = J1

B0 ∪ J2
B0, J0B = J1

0B ∪ J2
0B, and

J00 = J1
00 ∪ J2

00 ∪ J3
00 ∪ J4

00 ∪ J5
00 given as in (4.2), the conditions (a)-(b) or (a’)-(b)

in Prop. 4.5 hold with

B̃ββ = QT
βBQβ, B̃βγ = QT

βBQγ , B̃γγ = QT
γBQγ , B̃γβ = QT

γBQβ, u = e, v = x∗,

where Qγ =
(
I(i ∈ JI ∪ J1

B0 ∪ J1
00) q′i(i ∈ JB ∪ J2

0B ∪ J3
00 ∪ J5

00) Q̄i(i ∈ J2
B0 ∪ J4

00)
)

and Qβ =
(
Q̂i(i ∈ JB ∪ J3

00)
)
. Then, all matrices M ∈ ∂BΨ(ω∗) are nonsingular.

If A is symmetric, the conditions (a) and (a’) can be replaced by the conditions (c)
and (c’), respectively, of Prop. 4.5 with the above matrices and vectors.

Proof. Choose M ∈ ∂BΨ(ω∗) arbitrarily. From Prop. 3.3, it follows that

M =

[
(I − V ) +BV −(z∗)+

2eT 0

]
for a suitable block diagonal matrix V = diag(V1, . . . , Vr) with Vi ∈ ∂BΠKni (z∗i ) =
∂BΠKni (x∗i − y∗i ). By Lemma 4.1, clearly, I − V and V are symmetric positive
semidefinite and their sum equals I. To apply Prop. 4.5 with u = e and v =
(z∗)+ = x∗, it suffices to identity the index sets β and γ. This is same as the proof
of Theorem 4.4. □
Remark 4.7. Comparing Prop. 4.5 with Prop. 4.2, we see that when A is symmet-
ric, the condition (c’) of Prop. 4.5 is same as the condition (a) of Prop. 4.2. This
means that the nonsingularity of ∂BΨ(ω∗) requires a stronger condition than that
of ∂BΦ(w

∗). Furthermore, the asymmetry of A has a remarkable influence on the
nonsingularity of ∂BΨ(ω∗), and so the successful convergence of the method (3.9),
but it does not give an influence on the nonsingularity of ∂BΦ(w

∗).

Now applying Theorems 4.4-4.6 and [31], we immediately obtain the following
result.

Theorem 4.8. Let (λ∗, x∗) be an arbitrary solution of (1.2). Let z∗ = (1+λ∗)x∗−
Ax∗ and y∗ = Ax∗ − λ∗x∗. If the conditions (a)-(b) in Theorem 4.4 hold for the
partitions in (4.2), then the method (3.8) applied to Φ(w) = 0 is locally quadrati-
cally convergent; if the conditions (a)-(b) or (a’)-(b) in Theorem 4.6 hold for the
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partitions in (4.2), then the method (3.9) applied to Ψ(ω) = 0 is locally quadratically
convergent.

5. Numerical experiments

In this section, we apply the semismooth Newton methods (3.8) and (3.9), ab-
breviated as the SNM1 and the SNM2, respectively, for solving Lorentz eigenvalue
problems. During the testing, we do not adopt any globalization strategy for the two
semismooth Newton methods, taking into account that Lorentz eigenvalue problems
generally have many solutions and the aim is to seek as many solutions as possible.
All numerical experiments were carried out on a PC with a Processor 2.80 GHz
Intel Pentium(R) 4 and 512(Mb) memory, and the codes were all written in Matlab
6.5. The two methods were stopped if

(5.1) ∥Φ(wk)∥ (∥Ψ(ωk)∥) ≤ 10−8 or k > kmax,

where kmax denotes the maximum number of iterations allowed for the methods. We
tested the Lorentz eigenvalue problems for three classes of linear transformations.

5.1. Testing on Z-transformations. The experiment tests the numerical perfor-
mance of the SNM1 and the SNM2 for solving the Lorentz eigenvalue problems of
Z-transformations, more specifically, the Lyapunov transformation La and the Stein
transformation Sa. During the tests, corresponding to the Cartesian structure of
K, we generated La and Sa in the following way:

La = diag (La1 ,La2 , · · · ,Lar) , Sa = diag (Sa1 ,Sa2 , · · · ,Sar) ,

where each ai ∈ Rni was generated randomly such that their elements are uniformly
distributed in the interval [−1, 1]. From Lemma 2.3(a), we have that

σ(Lai ,K
ni) = σ̂(Lai ,K

ni) and σ(Sai ,K
ni) = σ̂(Sai ,K

ni), i = 1, 2, . . . , r.

Suppose that ai ∈ Rni has the spectral decomposition ai = ai1ci1 + ai2ci2, where
{ci1, ci2} is the corresponding Jordan frame. From Lemma 2.1, it is easy to see that

σ̂ (Lai ,K
ni) = {ai1, ai2} and σ̂(Sai ,K

ni) =
{
1− a2i1, 1− a2i2

}
.

This means that the spectrums σ(La,K) and σ(Sa,K) have at most 2r eigenvalues.

Given the transformation La or Sa, we applied the SNM1 for solving system
(3.6) with a starting point w0 = (x0, y0, λ0), where x0 = (x01, . . . , x

0
r) was generated

randomly such that the entries of each subvector x0i are uniformly distributed in
the interval [−1, 1], and

(5.2) λ0 =
⟨Ax0, x0⟩
⟨x0, x0⟩

, y0 = Ax0 − λ0x0;

while we used the SNM2 to solve system (3.7) with a starting point (z0, λ0), where
z0 = (z01 , . . . , z

0
r ) was generated randomly so that the entries of each subvector z0i

are uniformly distributed in the interval [−1, 1], and λ0 was given by the following
formula

(5.3) λ0 =
⟨A(z0)+, (z0)+⟩
⟨(z0)+, (z0)+⟩

.
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The maximum number of iterations kmax in (5.1) was chosen as 100 for this exper-
iment.

Table 1. The percentage of convergence for Lorentz eigenvalue
problems of La

Dimension SNM1 SNM2 Dimension SNM1 SNM2

r nr % Aiter % Aiter r nr % Aiter % Aiter

1 100 97.4 7.4 100 10.4 5 40 100 9.1 100 10.6

1 200 97.5 7.5 100 11.8 10 30 100 9.6 100 10.7

1 300 97.1 7.5 99.9 12.7 10 10 100 9.1 100 8.2

1 500 97.4 7.6 100 14.2 50 6 100 8.7 100 8.7

5 80 100 9.5 100 11.3 100 3 100 6.7 100 6.5

Table 1 reports the percentage of convergence of the SNM1 and the SNM2 es-
timated by using a sample of 103 random pairs (La, x

0) and (La, z
0), respectively;

and Table 2 reports the percentage of convergence of the two methods estimated
by using a sample of 103 random pairs (Sa, x

0) and (Sa, z
0), respectively. In these

tables, r and nr denotes the number of Lorentz cones and the dimension of each
Lorentz cone, respectively, % column gives the percentage of convergence for 103

randomly generated pairs, and Aiter column lists the average iteration required by
those problems with successful convergence.

Table 2. The percentage of convergence for Lorentz eigenvalue
problems of Sa

Dimension SNM1 SNM2 Dimension SNM1 SNM2

r nr % Aiter % Aiter r nr % Aiter % Aiter

1 100 71.9 8.5 100 7.8 5 40 99.9 10.7 100 9.2

1 200 70.5 8.5 100 8.0 10 30 100 11.3 100 9.8

1 300 68.1 8.5 100 8.1 10 10 100 9.7 100 8.2

1 500 74.7 8.7 100 8.3 50 6 99.7 8.9 100 8.2

5 80 100 11.2 100 9.2 100 3 100 5.8 100 6.6
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From Table 1, we see that for the Lorentz eigenvalue problems involving the Lya-
punov transformation, the SNM2 can solve almost all test problems, and the SNM1
has at least 97% successful convergence. From Table 2, for the Lorentz eigenvalue
problems involving the Stein transformation, the SNM2 solves all test problems
successfully, whereas the SNM1 can solve successfully those problems with nr ≤ 80,
and for the problems with nr ≥ 100, it has about 70% successful convergence. This
indicates that the SNM2 has much more desirable numerical performance than the
SNM1 for the Lorentz problems involving a Z-transformation, in terms of the per-
centage of successful convergence and the average number of iterations. Particularly,
from these two tables, it seems that the successful convergence of the two methods
for this class of Lorentz eigenvalue problems is not influenced by the dimension of
problems, and the average number of iterations does not have a remarkable increase
with the dimension of Lorentz cones.

5.2. Testing on general symmetric transformations. This subsection includes
two experiments where the first one tests whether the SNM1 and the SNM2 can seek
effectively the eigenvalues of a general linear symmetric transformation relative to
K = Kn with n ∈ {3, 4, 5, 6, 7, 8, 9}, and the second one tests the percentage of suc-
cessful convergence with the two methods solving the Lorentz eigenvalue problems
involving general linear symmetric transformations.

In the first experiment, corresponding to each Kn, we used a sample of 103

matrices A = (Ã + ÃT )/2, where each Ã was generated randomly such that its
elements are uniformly distributed in [−1, 1]. For each random A, we considered
100 random starting points (x0, y0, λ0) for the SNM1 and 100 random starting points
(z0, λ0) for the SNM2, respectively, where the entries of x0 and z0 are uniformly
distributed in [−100, 100], and λ0 and y0 for the SNM1 are given by (5.2), and λ0

for the SNM2 is given by

(5.4) λ0 = ⟨Az0, z0⟩/⟨z0, z0⟩.
Since (z0)+ may equal zero under this case, we do not employ (5.3) to determine
λ0 for the SNM2. The two methods were terminated once one of the conditions
in (5.1) was satisfied with kmax = 100. The numerical results are summarized in
Table 3, whereNsol column denotes the number of eigenvalues, the numbers in each
column give the number of problems which were tested to have the corresponding
number of eigenvalues from 100 initial points, the numbers in the bracket of each
column represent the results for SNM2, % row gives the percentage of successful
convergence for 103 randomly generated pairs, ANe row gives the average number
of eigenvalues found relative to Kn, calculated by (taking n = 3 for example)
0.399+2× 0.002+3× 0.453+4× 0.001+5× 0.145, and ANs row lists the average
number of eigenvalues for which the eigenvectors found belong to the boundary of
Kn. Specifically, a eigenvector x∗ = (x∗1, x

∗
2) ∈ R×Rn−1 corresponding to λ∗ is said

to be on the boundary of Kn if |λ1(x
∗)| = |x∗1 − ∥x∗2∥| ≤ 10−8.

From Table 3, it is easy to see that the SNM1 finds successfully at least one
eigenvalue for all test problems corresponding to each Kn from 100 initial points,
whereas the SNM2 fails to find a eigenvalue for some test problems when n ≥ 5
from 100 initial points. The numbers in ANe row show that the average number
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Table 3. The number of eigenvalues involving general linear symmetric
transformations

Note: the notation “−” means that solving 103 problems from 100 initial points can not

yield such amount of eigenvalues.

of eigenvalues found by the two methods decreases when n becomes large, which
means that the gap between the number of Lorentz eigenvalues found in practice
and the estimated upper bound 3n−2 becomes larger and larger with n increasing.
The numbers in ANs row indicate that the average number of eigenvectors on the
boundary of Kn increases with n becoming large, and the SNM2 can find more
eigenvectors on the boundary of Kn than the SNM1.

In the second experiment, we generated the symmetric matrix A in the following
way

A = diag (A1, A2, · · · , Ar) with Ai =
1

2
(Hi +HT

i ),

where each Hi ∈ Rni×ni was generated randomly such that its elements are uni-
formly distributed in [−1, 1]. By Lemma 2.3(b), σ(A,K) has at most

∑r
i=1(3ni−2)

elements. Given a transformation A(x) = Ax with A generated as above, we ap-
plied the SNM1 for solving (3.6) with a starting point w0 = (x0, y0, λ0), where
x0 = (x01, . . . , x

0
r) was generated randomly in the same way as in Subsection 5.1,
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Table 4. The percentage of convergence for general linear symmet-
ric transformations

Dimension SNM1 SNM2 Dimension SNM1 SNM2

r nr % Aiter % Aiter r nr % Aiter % Aiter

1 50 93 81.2 – – 5 40 91.4 76.6 1.2 25

1 100 75 116.7 – – 10 30 91.8 70.3 5.0 23.7

1 150 57.8 124.6 – – 10 10 84.2 33.6 74.4 20.1

1 200 42.2 134.8 – – 50 6 88.8 24.9 83.6 18.1

5 80 80.6 109.4 – – 100 4 91.6 15.3 92.8 13.1

Note: the notation “−” means that the corresponding method fails for all test problems.

and λ0 and y0 were given by (5.2); and we used the SNM2 to solve (3.7) with a
starting point (z0, λ0), where z0 = (z01 , . . . , z

0
r ) was generated in the same way as

in Subsection 5.1, and λ0 was given by (5.3). During the tests, we chose kmax as
300. Table 4 reports the percentage of convergence estimated with a sample of 500
random (A, x0) and (A, z0) for the SNM1 and the SNM2, respectively.

Figure 1. The percentage of convergence and the average iteration v.s.
kmax for SNM1.

From Table 4, we see that the SNM1 has 75% successful convergence for those
test problems with nr ≤ 100, whereas the SNM2 has an acceptable successful con-
vergence only for those problems with nr ≤ 10. In addition, the average iterations
required by the SNM1 and the SNM2 increase with the value of nr. This means
that their percentage of successful convergence may be improved by setting kmax to
be a larger value. Figure 1 depicts the relation between the percentage of successful
convergence of the SNM1 and kmax, as well as the relation between the average
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number of iterations and kmax, for the Lorentz eigenvalue problems relative to K100

with A generated as above. From Figure 1, we see that the percentage of successful
convergence is indeed improved by increasing the value of kmax, but the improving
ratio is lower than the increasing speed of the average number of iterations. This
implies that the performance of the SNM1 for the Lorentz eigenvalue problems of
general linear symmetric transformations, in terms of the percentage of successful
convergence and the number of iterations, becomes worse when the dimension of
problems increases. This phenomenon also appears in the spectral gradient method
and the power iteration method for the Pareto eigenvalue problems [4].

5.3. Testing on asymmetric transformations. Similar to Subsection 5.2, this
subsection includes two experiments where the first one tests whether the SNM1
and the SNM2 can seek effectively the eigenvalues of a general linear asymmetric
transformation relative to K = Kn with n ∈ {3, 4, 5, 6, 7, 8, 9}, and the second one
tests the percentage of successful convergence with the two methods solving the
Lorentz eigenvalue problems involving a general linear asymmetric transformation.

Table 5. The number of eigenvalues involving linear asymmetric transformations

Note: the notation “−” has the same meaning as in Table 3.

In the first experiment, corresponding to each Kn, we used a sample of 103 ma-
trices A with each A being generated randomly so that its elements are uniformly
distributed in [−1, 1]. For each random A, we considered 100 random initial points
(x0, y0, λ0) for the SNM1, with the entries of x0 being uniformly distributed in
[−100, 100] and the corresponding (λ0, y0) being given by (5.2); while we considered
100 random initial points (z0, λ0) for the SNM2, with the entries of z0 being uni-
formly distributed in [−100, 100] and the corresponding λ0 being given by (5.4). In
this experiment, the maximum number of iterations kmax was chosen as 100. The



SEMISMOOTH METHODS FOR LORENTZ CONE SPECTRUM PROBLEM 33

numerical results are reported in Table 5.

From the % row of Table 5, we see that the SNM1 finds successfully at least
one eigenvalue for all test problems from 100 initial points, but the SNM2 always
fails to finding an eigenvalue for some problems from 100 initial points. The ANe

row and ANs row show that the average number of eigenvalues found by the two
methods decreases when nr becomes large, whereas the number of corresponding
eigenvectors on the boundary of Kn increases. Comparing Table 5 with Table 3,
we conclude that the two methods find fewer solutions for the Lorentz eigenvalue
problems of a general linear asymmetric transformation, although the estimated
upper bound for them is larger than that of the former.

In the second experiment, we consider the test problems withA = diag (A1, ..., Ar),
where each Ai ∈ Rni×ni was randomly generated such that its elements are uni-
formly distributed in the interval [−1, 1]. By Lemma 2.3(c), if the cone spectrum
σ(Ai,K

ni) is finite, then the maximal cardinality of σ(A,K) is
∑r

i=1(6ni−5). Given
a transformation A(x) = Ax with A generated as above, we applied the SNM1 for
solving (3.6) with a starting point w0 = (x0, y0, λ0), where x0 = (x01, . . . , x

0
r) was

generated randomly in the same way as in Subsection 5.1, and λ0 and y0 were de-
termined by (5.2); and we applied the SNM2 for solving (3.7) with a starting point
(z0, λ0), where z0 = (z01 , . . . , z

0
r ) was generated in the same way as in Subsection

5.1, and λ0 was given by (5.3). In this experiment, we chose kmax as 300. Table 6
reports the percentage of convergence estimated by using a sample of 500 random
pairs (A, x0) and (A, z0) for the SNM1 and the SNM2, respectively.

Table 6. The percentage of convergence for general linear asym-
metric transformations

Dimension SNM1 SNM2 Dimension SNM1 SNM2

r nr % Aiter % Aiter r nr % Aiter % Aiter

1 50 98.2 37.0 – – 5 40 98.2 34.8 – –

1 100 97 51.0 – – 10 50 98.0 38.9 – –

1 150 94.2 68.3 – – 10 10 93.2 20.8 – –

1 200 89.4 76.7 – – 50 8 95.2 19.9 – –

5 80 97.8 45.5 – – 100 4 96.4 12.5 – –

The notation “−” means that the corresponding method fails for all test problems.

From Table 6, the SNM1 has about 90% successful convergence for all test prob-
lems with nr ≤ 200, whereas the SNM2 fails for all these problems. Also, the
performance of the SNM2 can not be improved even if we increase kmax to 500.
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Comparing with Table 4, we conclude that the SNM1 has better numerical perfor-
mance for the Lorentz eigenvalue problems of a general linear asymmetric trans-
formation than those involving a general linear symmetric transformation, though
the percentage of successful convergence also decreases and the average iteration
increases when nr becomes large.

To sum up the numerical experience of last three subsections, we have the con-
clusions:

• For the Lorentz eigenvalue problems of Lyapunov transformations and Stein
transformations, the SNM2 has better numerical performance than the SNM1
by the percentage of successful convergence and the average number of it-
erations.

• For the Lorentz eigenvalue problems of general linear symmetric transfor-
mations, the SNM1 has much better performance than the SNM2 in terms
of the percentage of successful convergence, though their successful conver-
gence depends on the maximum number of iterations allowed. Since the
improving ratio of the percentage of successful convergence is lower than
the increasing speed of the average number of iterations, the two methods
are only suitable for this class of small-scaled problems

• For the Lorentz eigenvalue problems of general linear asymmetric transfor-
mations, the SNM1 has much better performance than the SNM2 in terms
of the percentage of successful convergence and the average number of iter-
ations. Also, it seems a little strange that the SNM1 has better percentage
of successful convergence for the Lorentz eigenvalue problems of general
linear asymmetric transformations than those of general linear symmetric
transformations.

6. Conclusions

We proposed two semismooth Newton methods for seeking the cone spectrum of
a linear transformation relative to Lorentz cones, via the natural equation refor-
mulation and the normal equation reformulation of (1.2), respectively. The local
quadratic convergence results were established under suitable conditions. Although
the local convergence conditions are not easy to verify, the computational experi-
ence shows that the two local semismooth methods are very effective for the Lorentz
problems of Z-transformations, if we do not aim at identifying all Lorentz eigen-
values, and particularly the method based on the normal equation reformulation
successfully solves almost all test problems. For the Lorentz eigenvalue problems
with a general linear asymmetric transformation (or symmetric transformation), the
method based on the natural equation reformulation is promising if the dimension
of test problems is within 200 (or 100).

From the numerical results in Tables 3 and 5, we see that there is a big gap
between the existing theoretical estimation for the number of Lorentz eigenvalues of
a linear symmetric or asymmetric transformations and that obtained from numerical
computations. Therefore, the improved theoretical estimation for the number of
Lorentz eigenvalues and more effective numerical algorithms are still worthwhile to
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explore in the future.

Finally, we want to point out that the two semismooth Newton methods can
be easily extended to seek the eigenvalues of a linear transformation relative to
a symmetric cone associated with a general Euclidean Jordan algebra, and it is
also interesting to study the corresponding semismooth methods for seeking the
eigenvalues of a linear transformation relative to positive semidefinite cones.
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