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2. Preliminaries

Let X be a metric space with metric d such that, for each pair x, y ∈ X, there
exists z ∈ X that satisfies

(*) d (z, u) ≤ d (x, u) + d (y, u)

2
for all u ∈ X.

Let BC (X) be the family of all nonempty bounded closed subsets of X and K (X)
be the family of all nonempty compact subsets of X. The Hausdorff metric H for
BC (X) is defined by

H (A,B) = max

{
sup
x∈B

d (x,A) , sup
x∈A

d (x,B)

}
for A,B ∈ BC (X), where

d (x,A) = inf { d(x, y) : y ∈ A}

for x ∈ X and A ∈ BC (X). A mapping T : X ⊸ X is said to be nonexpansive if
T assigns each x ∈ X to an element Tx of BC (X) and satisfies that

H (Tx, Ty) ≤ d(x, y)

for every x, y ∈ X. We put Z+ = N ∪ {0}.

3. Main result

We need the following definition [1].

Definition 3.1. Let T be a multivalued nonexpansive mapping of X into BC (X),
and f be a nonexpansive mapping ofX into itself. f and T is said to be commutative
if f (Tx) ⊂ T (f (x)) for all x ∈ X.

Also, we have the following theorem that extends Theorem [3].

Theorem 3.2. Let X be a metric space with metric d satisfying (*) , T be a mul-
tivalued nonexpansive mapping of X into BC (X) and f be a nonexpansive mapping
of X into itself. T has a fixed point in X if and only if there exists a nonexpansive
mapping f of X into itself such that f and T are commutative and the range of f
is contained in some nonempty compact subset of X.

Proof. By Theorem 2 [5], we have a sequence {xn}∞n=1 that stisfies
lim
n→∞

d (xn, Txn) = lim
n→∞

inf
y∈Txn

d (xn, y) = 0.

Furthermore we have that

0 ≤ d (f (xn) , f (Txn)) = inf
y∈f(Txn)

d (f (xn) , y)

= inf
z∈Txn

d (f (xn) , f (z))

≤ inf
z∈Txn

d (xn, z)

= d (xn, Txn) → 0 (n → ∞)
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and hence

0 ≤ d (f (xn) , T (f (xn))) = inf
y∈T (f(xn))

d (f (xn) , y)

≤ inf
y∈f(T (xn))

d (f (xn) , y)

= d (f (xn) , f (Txn)) → 0 (n → ∞).

Therefore, we have
lim
n→∞

d (f (xn) , T (f (xn))) = 0.

On the other hand, since the range of f is contained in a nonempty compact subset
of X, there exists a subsequence {f (xni)}

∞
i=1 ⊂ {f (xn)}∞n=1 and y∗ ∈ X that satisfy

lim
n→∞

f (xni) = y∗.

Since

|d (x,A)− d (y,B)| ≤ |d (x,A)− d (y,A)|+ |d (y,A)− d (y,B)|
≤ d (x, y) +H (A,B)

for all x, y ∈ X and A,B ∈ BC (X), we have that

|d (y∗, T y∗)− d (f (xni) , T (f (xni)))| ≤ d (y∗, f (xni)) +H (Ty∗, T (f (xni)))

≤ d (y∗, f (xni)) + d (y∗, f (xni))

= 2d (y∗, f (xni)) → 0 (i → ∞)

and hence

0 ≤ d (y∗, T y∗)

≤ d (f (xni) , T (f (xni))) + |d (y∗, T y∗)− d (f (xni) , T (f (xni)))|
→ 0 (i → ∞).

So, we have d (y∗, T y∗) = 0. Therefore, we have y∗ ∈ Ty∗. So, we know F (T ) ̸= ϕ.
This completes the proof of this theorem. □
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