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The φ-mean inequality stated in [1, Theorem 1] also has such a property. We can
see that Chebyshev’s inequality for sequences of real numbers has a similar property.
In fact, this inequality may be stated as follows :

x1y1 + · · ·+ xnyn
n

≥ x1 + · · ·+ xn
n

· y1 + · · ·+ yn
n

holds whenever both {x1, . . . , xn} and {y1, . . . , yn} are simultaneously monotone
increasing or monotone decreasing. Note that Chebyshev’s inequality for n = 2 is
a rewrite of the special rearrangement inequality :

ax+ by ≥ ay + bx (a ≤ b, x ≤ y).

Since Chebyshev’s inequality for n ≥ 3 can be shown by applying repeatedly the
above rearrangement inequality, we see that Chebyshev’s inequality has the same
property as Jensen’s inequality.

Now Chebyshev’s inequality for n = 2 asserts that if a ≤ b and x ≤ y, then

ax+ by

2
≥ a+ b

2
· x+ y

2

holds. If we regard a and b in the above inequality as functions, the following lemma
is envisioned.

Lemma 2.1 (see [2, Lemma 1]). Let φ and ψ be two functions on a real interval I
such that ψ − φ is monotone increasing on I and ψ is convex on I. Then

((1− t)φ+ tψ)((1− t)x+ ty) ≤ (1− t)φ(x) + tψ(y)

holds for all t ∈ R with 0 < t < 1 and x, y ∈ I with x ≤ y.

The following theorem follows from Lemma 2.1, and it is the key for obtaining
our conclusion.

Theorem 2.2 (see [2, Theorem 1]). Let I and J be two interval of R. Let n ≥ 2 and
t1, . . . , tn > 0 with

∑n
i=1 ti = 1. Suppose that φ1, . . . , φn are real-valued functions

on I such that
∑k

i=1 ti(φk+1 − φi) is monotone increasing on I and φk+1 is convex
on I for each k = 1, . . . , n− 1, and that ψ1, . . . , ψn are functions from J to I such

that
∑k

i=1 ti(ψk+1 − ψi) ≥ 0 on J for each k = 1, . . . , n− 1. Then

n∑
i=1

ti(φi ◦ ψi) ≥
n∑

i=1

tiφi ◦
n∑

i=1

tiψi

holds on J , where ◦ denotes the composition of functions.

3. Conclusion

Let {x1, . . . , xn} and {yi, . . . , yn} be two monotone increasing or monotone de-
creasing sequences in R. In Theorem 2.2, put I = J= R, φi(x) = xix (resp.−xix)
and ψi(x) = yi (resp. − yi) (i = 1, . . . , n, x ∈R) for the increasing case (resp. the
decreasing case). Then we can easily see that all conditions in Theorem 2.2 are
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satisfied. Hence we obtain from Theorem 2.2 the following weighted Chebyshev’s
inequality :

n∑
i=1

tixiyi ≥

(
n∑

i=1

tixi

)(
n∑

i=1

tiyi

)
(t1, . . . , tn > 0 :

n∑
i=1

ti = 1).

We note that this is a restate of [2, Proof of Corollary 1].
Next let φ be convex function on a real interval I, x1, . . . , xn ∈ I with x1 ≤

· · · ≤ xn and t1, . . . , tn > 0 with
∑n

i=1 ti = 1. put J = I, φi = φ (i = 1, . . . , n)
and ψ(x) = xi(x ∈ I, i = 1, . . . , n) in Theorem 2.2. Then we can easily see that
conditions in Theorem 2.2 are satisfied, and hence the inequality in Theorem 2.2
holds. However since

n∑
i=1

ti(φi ◦ ψi)(x) =

n∑
i=1

tiφ(ψi(x)) =

n∑
i=1

tiφ(xi)

and (
n∑

i=1

tiφi ◦
n∑

i=1

tiψi

)
(x) = φ

(
n∑

i=1

tiψi(x)

)
= φ

(
n∑

i=1

tixi

)
hold for all x ∈ I, it follows that the inequality in Theorem 2.2 is just Jensen’s
inequality J(n).

Thus, we see that Theorem 2.2 is the common parent of Jensen’s inequality and
Chebyshev’s inequality.
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