STRONG CONVEGENCE THEOREMS BY HYBRID METHODS FOR THE SPLIT FEASIBILITY PROBLEM IN BANACH SPACES

SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

Abstract

In this paper, we consider the split feasibility problem in Banach spaces. Then using the hybrid method and the shrinking projection method in mathematical programming, we prove strong convergence theorems for finding a solution of the split feasibility problem in Banach spaces. It seems that such theorems are first in Banach spaces.

1. Introduction

Let H_{1} and H_{2} be two real Hilbert spaces. Let D and Q be nonempty, closed and convex subsets of H_{1} and H_{2}, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Then the split feasibility problem [4] is to find $z \in H_{1}$ such that $z \in D \cap A^{-1} Q$. Recently, Byrne, Censor, Gibali and Reich [3] also considered the following problem: Given set-valued mappings $A_{i}: H_{1} \rightarrow 2^{H_{1}}, 1 \leq i \leq m$, and $B_{j}: H_{2} \rightarrow 2^{H_{2}}, 1 \leq j \leq n$, respectively, and bounded linear operators $T_{j}: H_{1} \rightarrow$ $H_{2}, 1 \leq j \leq n$, the split common null point problem [3] is to find a point $z \in H_{1}$ such that

$$
z \in\left(\bigcap_{i=1}^{m} A_{i}^{-1} 0\right) \cap\left(\bigcap_{j=1}^{n} T_{j}^{-1}\left(B_{j}^{-1} 0\right)\right)
$$

where $A_{i}^{-1} 0$ and $B_{j}^{-1} 0$ are null point sets of A_{i} and B_{j}, respectively. Defining $U=A^{*}\left(I-P_{Q}\right) A$ in the split feasibility problem, we have that $U: H_{1} \rightarrow H_{1}$ is an inverse strongly monotone operator [1], where A^{*} is the adjoint operator of A and P_{Q} is the metric projection of H_{2} onto Q. Furthermore, if $D \cap A^{-1} Q$ is nonempty, then $z \in D \cap A^{-1} Q$ is equivalent to

$$
\begin{equation*}
z=P_{D}\left(I-\lambda A^{*}\left(I-P_{Q}\right) A\right) z \tag{1.1}
\end{equation*}
$$

where $\lambda>0$ and P_{D} is the metric projection of H_{1} onto D. Using such results regarding nonlinear operators and fixed points, many authors have studied the split feasibility problem and the split common null point problem in Hilbert spaces; see, for instance, $[1,3,5,7,17]$.

2010 Mathematics Subject Classification. 47H05, 47H09.
Key words and phrases. Split feasibility problem, fixed point, metric projection, hybrid method, shrinking projection method, duality mappinng.

On the other hand, in 2003, Nakajo and Takahashi [8] proved the following strong convergence theorem by using the hybrid method in mathematical programming. Let C be a nonempty, closed and convex subset of H. For a mapping $T: C \rightarrow C$, we denote by $F(T)$ the set of fixed points of T. A mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$.
Theorem 1.1. Let C be a nonempty, closed and convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Suppose $x_{1}=x \in C$ and $\left\{x_{n}\right\}$ is given by

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $P_{C_{n} \cap Q_{n}}$ is the metric projection from C onto $C_{n} \cap Q_{n}$ and $\left\{\alpha_{n}\right\} \subset[0,1]$ is chosen so that $0 \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$, where $P_{F(T)}$ is the metric projection from H onto $F(T)$.

Takahashi, Takeuchi and Kubota [16] also obtained the following result by using the shrinking projection method:
Theorem 1.2. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$ and let $x \in H$. For $C_{1}=C$ and $x_{1} \in C$, define a sequence $\left\{x_{n}\right\}$ of C as follows:

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $0 \leq \limsup \operatorname{sum}_{n \rightarrow \infty} \alpha_{n}<1$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$.

In this paper, motivated by these problems and results, we consider the split feasibility problem in Banach spaces. Then using the hybrid method and the shrinking projection method in mathematical programming, we prove two strong convergence theorems for finding a solution of the split feasibility problem in Banach spaces. It seems that such theorems are first in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space with inner product $\langle\cdot\rangle$ and norm $\|\cdot\|$, respectively. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have from [13] that

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.1}
\end{equation*}
$$

Furthermore we have that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} \tag{2.3}
\end{equation*}
$$

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by P_{C}, that is, $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in C$. Such P_{C} is called the metric projection of H onto C. We know that the metric projection P_{C} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle \tag{2.4}
\end{equation*}
$$

for all $x, y \in H$. Furthermore $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in C$; see [11].

Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be the dual space of E. We denote the value of $y^{*} \in E^{*}$ at $x \in E$ by $\left\langle x, y^{*}\right\rangle$. When $\left\{x_{n}\right\}$ is a sequence in E, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in E$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. The modulus δ of convexity of E is defined by

$$
\delta(\epsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\}
$$

for every ϵ with $0 \leq \epsilon \leq 2$. A Banach space E is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$. It is known that a Banach space E is uniformly convex if and only if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=1 \text { and } \lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2
$$

$\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ holds. A uniformly convex Banach space is strictly convex and reflexive. We also know that a uniformly convex Banach space has the KadecKlee property, i.e., $x_{n} \rightharpoonup u$ and $\left\|x_{n}\right\| \rightarrow\|u\|$ imply $x_{n} \rightarrow u$.

The duality mapping J from E into $2^{E^{*}}$ is defined by

$$
J x=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

for every $x \in E$. Let $U=\{x \in E:\|x\|=1\}$. The norm of E is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.5}
\end{equation*}
$$

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-valued mapping of E into E^{*}. We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection and in this case, the inverse mapping J^{-1} coincides with the duality mapping J_{*} on E^{*}. For more details, see [11] and [12]. We know the following result.

Lemma 2.1 ([11]). Let E be a smooth Banach space and let J be the duality mapping on E. Then, $\langle x-y, J x-J y\rangle \geq 0$ for all $x, y \in E$. Furthermore, if E is strictly convex and $\langle x-y, J x-J y\rangle=0$, then $x=y$.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach space E. Then we know that for any $x \in E$, there exists a unique element $z \in C$ such that $\|x-z\| \leq\|x-y\|$ for all $y \in C$. Putting $z=P_{C} x$, we call P_{C} the metric projection of E onto C.

Lemma 2.2 ([11]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be a nonempty, closed and convex subset of E and let $x_{1} \in E$ and $z \in C$. Then, the following conditions are equivalent
(1) $z=P_{C} x_{1}$;
(2) $\left\langle z-y, J\left(x_{1}-z\right)\right\rangle \geq 0, \quad \forall y \in C$.

For a sequence $\left\{C_{n}\right\}$ of nonempty, closed and convex subsets of a Banach space E, define $\mathrm{s}-\mathrm{Li}_{n} C_{n}$ and $\mathrm{w}-\mathrm{Ls}_{n} C_{n}$ as follows: $x \in \mathrm{~s}-\mathrm{Li}_{n} C_{n}$ if and only if there exists $\left\{x_{n}\right\} \subset E$ such that $\left\{x_{n}\right\}$ converges strongly to x and $x_{n} \in C_{n}$ for all $n \in \mathbb{N}$. Similarly, $y \in \mathrm{w}-\mathrm{Ls}_{n} C_{n}$ if and only if there exist a subsequence $\left\{C_{n_{i}}\right\}$ of $\left\{C_{n}\right\}$ and a sequence $\left\{y_{i}\right\} \subset E$ such that $\left\{y_{i}\right\}$ converges weakly to y and $y_{i} \in C_{n_{i}}$ for all $i \in \mathbb{N}$. If C_{0} satisfies

$$
\begin{equation*}
C_{0}=\underset{n}{\mathrm{~s}-\mathrm{Li}_{n} C_{n}=\mathrm{w}-\mathrm{Ls}_{n} C_{n}, ~} \tag{2.6}
\end{equation*}
$$

it is said that $\left\{C_{n}\right\}$ converges to C_{0} in the sense of Mosco [6] and we write $C_{0}=$ $\mathrm{M}-\lim _{n \rightarrow \infty} C_{n}$. It is easy to show that if $\left\{C_{n}\right\}$ is nonincreasing with respect to inclusion, then $\left\{C_{n}\right\}$ converges to $\bigcap_{n=1}^{\infty} C_{n}$ in the sense of Mosco. For more details, see [6]. The following lemma was proved by Tsukada [18].

Lemma 2.3 ([18]). Let E be a uniformly convex Banach space. Let $\left\{C_{n}\right\}$ be a sequence of nonempty, closed and convex subsets of E. If $C_{0}=M-\lim _{n \rightarrow \infty} C_{n}$ exists and nonempty, then for each $x \in E$, $\left\{P_{C_{n}} x\right\}$ converges strongly to $P_{C_{0}} x$, where $P_{C_{n}}$ and $P_{C_{0}}$ are the mertic projections of E onto C_{n} and C_{0}, respectively.

3. Main Results

In this section, using the hybrid method in mathematical programming, we first prove a strong convergence theorem for finding a solution of the split feasibility problem in Banach spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a strictly convex, reflexive and smooth Banach space. Let J_{F} be the duality mapping on F. Let C and D be nonempty, closed and convex subsets of H and F, respectively. Let P_{C} and P_{D} be the metric projections of H onto C and F onto D, respectively. Let $A: H \rightarrow F$ be a bounded linear operator such that $A \neq 0$ and let A^{*} be the adjoint operator of A. Suppose that $C \cap A^{-1} D \neq \emptyset$. Let $x_{1} \in H$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=P_{C}\left(x_{n}-r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right) \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n} \\
C_{n}=\left\{z \in H:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in H:\left\langle x_{n}-z, x_{1}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $0 \leq \alpha_{n} \leq a<1$ for some $a \in \mathbb{R}$ and $0<r\|A\|^{2}<2$. Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{1} \in C \cap A^{-1} D$, where $z_{1}=P_{C \cap A^{-1} D} x_{1}$.
Proof. Since

$$
\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}
$$

$$
\Longleftrightarrow\left\|y_{n}\right\|^{2}-\left\|x_{n}\right\|^{2}-2\left\langle y_{n}-x_{n}, z\right\rangle \leq 0
$$

it follows that C_{n} is closed and convex for all $n \in \mathbb{N}$. It is obvious that Q_{n} is closed and convex. Then $C_{n} \cap Q_{n}$ is closed and convex for all $n \in \mathbb{N}$. Let us show that $C \cap A^{-1} D \subset C_{n}$ for all $n \in \mathbb{N}$. Let $z \in C \cap A^{-1} D$. Then $z=P_{C} z$ and $A z=P_{D} A z$. Since P_{C} is nonexpansive, we have that for $z \in C \cap A^{-1} D$,

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2}= & \left\|P_{C}\left(x_{n}-r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right)-P_{C} z\right\|^{2} \\
\leq & \left\|x_{n}-r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)-z\right\|^{2} \\
= & \left\|x_{n}-z-r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\|^{2} \\
= & \left\|x_{n}-z\right\|^{2}-2\left\langle x_{n}-z, r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\rangle \\
& \quad+\left\|r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}-2 r\left\langle A x_{n}-A z, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\rangle \\
& \quad+r^{2}\|A\|^{2}\left\|J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\|^{2} \\
= & \left\|x_{n}-z\right\|^{2}-2 r\left\langle A x_{n}-P_{D} A x_{n}+P_{D} A x_{n}-A z, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\rangle \\
& \quad+r^{2}\|A\|^{2}\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
= & \left\|x_{n}-z\right\|^{2}-2 r\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
& \quad-2 r\left\langle P_{D} A x_{n}-A z, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\rangle+r^{2}\|A\|^{2}\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}-2 r\left\|A x_{n}-P_{D} A x_{n}\right\|^{2}+r^{2}\|A\|^{2}\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
= & \left\|x_{n}-z\right\|^{2}+r\left(r\|A\|^{2}-2\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\|y_{n}-z\right\| & =\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n}-z\right\| \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\| \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq\left\|x_{n}-z\right\| .
\end{aligned}
$$

Therefore, $C \cap A^{-1} D \subset C_{n}$ for all $n \in \mathbb{N}$. Let us show that $C \cap A^{-1} D \subset Q_{n}$ for all $n \in \mathbb{N}$. It is obvious that $C \cap A^{-1} D \subset Q_{1}$. Suppose that $C \cap A^{-1} D \subset Q_{k}$ for some $k \in \mathbb{N}$. Then $C \cap A^{-1} D \subset C_{k} \cap Q_{k}$. From $x_{k+1}=P_{C_{k} \cap Q_{k}} x_{1}$, we have that

$$
\left\langle x_{k+1}-z, x_{1}-x_{k+1}\right\rangle \geq 0, \quad \forall z \in C_{k} \cap Q_{k}
$$

and hence

$$
\left\langle x_{k+1}-z, x_{1}-x_{k+1}\right\rangle \geq 0, \quad \forall z \in C \cap A^{-1} D
$$

Then $C \cap A^{-1} D \subset Q_{k+1}$. We have by mathematical induction that $C \cap A^{-1} D \subset Q_{n}$ for all $n \in \mathbb{N}$. Thus, we have that $C \cap A^{-1} D \subset C_{n} \cap Q_{n}$ for all $n \in \mathbb{N}$. This implies that $\left\{x_{n}\right\}$ is well defined.

Since $C \cap A^{-1} D$ is nonempty, closed and convex, there exists $z_{1} \in C \cap A^{-1} D$ such that $z_{1}=P_{C \cap A^{-1} D} x_{1}$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{1}$, we have that

$$
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-y\right\|
$$

for all $y \in C_{n} \cap Q_{n}$. Since $z_{1} \in C \cap A^{-1} D \subset C_{n} \cap Q_{n}$, we have that

$$
\begin{equation*}
\left\|x_{1}-x_{n+1}\right\| \leq\left\|x_{1}-z_{1}\right\| . \tag{3.2}
\end{equation*}
$$

This means that $\left\{x_{n}\right\}$ is bounded.
Next we show that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$. From the definition of Q_{n}, we have that $x_{n}=P_{Q_{n}} x_{1}$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{1}$ we have $x_{n+1} \in Q_{n}$. Thus

$$
\left\|x_{n}-x_{1}\right\| \leq\left\|x_{n+1}-x_{1}\right\|
$$

for all $n \in \mathbb{N}$. This implies that $\left\{\left\|x_{1}-x_{n}\right\|\right\}$ is bounded and nondecreasing. Then there exists the limit of $\left\{\left\|x_{1}-x_{n}\right\|\right\}$. From $x_{n+1} \in Q_{n}$ we have that

$$
\left\langle x_{n}-x_{n+1}, x_{1}-x_{n}\right\rangle \geq 0 .
$$

This implies from (2.3) that

$$
0 \leq\left\|x_{n+1}-x_{1}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2}-\left\|x_{n+1}-x_{n}\right\|^{2}
$$

and hence

$$
\left\|x_{n+1}-x_{n}\right\|^{2} \leq\left\|x_{n+1}-x_{1}\right\|^{2}-\left\|x_{n}-x_{1}\right\|^{2} .
$$

Since there exists the limit of $\left\{\left\|x_{1}-x_{n}\right\|\right\}$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0 \tag{3.3}
\end{equation*}
$$

From $x_{n+1} \in C_{n}$, we also have that $\left\|y_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$. Then we get from (3.3) that $\left\|y_{n}-x_{n+1}\right\| \rightarrow 0$. Using this, we have that

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 . \tag{3.4}
\end{equation*}
$$

We have from (3.1) that for any $z \in C \cap A^{-1} D$,

$$
\begin{aligned}
\left\|y_{n}-z\right\|^{2}= & \left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-z\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2} \\
& \quad+\left(1-\alpha_{n}\right) r\left(r\|A\|^{2}-2\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right) r\left(r\|A\|^{2}-2\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} .
\end{aligned}
$$

Thus we have that

$$
\begin{gathered}
\left(1-\alpha_{n}\right) r\left(2-r\|A\|^{2}\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left\|y_{n}-z\right\|^{2} \\
=\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left(\left\|x_{n}-z\right\|-\left\|y_{n}-z\right\|\right) \\
\leq\left(\left\|x_{n}-z\right\|+\left\|y_{n}-z\right\|\right)\left\|x_{n}-y_{n}\right\| .
\end{gathered}
$$

From $\left\|y_{n}-x_{n}\right\| \rightarrow 0$ and $0 \leq \alpha_{n} \leq a<1$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-P_{D} A x_{n}\right\|^{2}=0 \tag{3.5}
\end{equation*}
$$

We also have that $\left\|y_{n}-x_{n}\right\|=\left\|\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n}-x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|z_{n}-x_{n}\right\|$. From $\left\|y_{n}-x_{n}\right\| \rightarrow 0$ and $0 \leq \alpha_{n} \leq a<1$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ converging weakly to w. From (3.4) $\left\{y_{n_{i}}\right\}$ converges weakly to w. Furthermore, from (3.6)
$\left\{z_{n_{i}}\right\}$ converges weakly to w. We have from $z_{n_{i}} \in C$ and $x_{n_{i}} \rightharpoonup w$ that $w \in C$. Since A is bounded and linear, we also have that $\left\{A x_{n_{i}}\right\}$ converges weakly to $A w$. Using this and $\lim _{n \rightarrow \infty}\left\|A x_{n}-P_{D} A x_{n}\right\|=0$, we have that $P_{D} A x_{n_{i}} \rightharpoonup A w$. Since P_{D} is the metric projection of F onto D, we have from [2] and [13] that $\left\langle P_{D} A x_{n}-P_{D} A w, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\rangle \geq 0$ and

$$
\left\langle P_{D} A w-P_{D} A x_{n}, J_{F}\left(A w-P_{D} A w\right)\right\rangle \geq 0
$$

and hence

$$
\left\langle P_{D} A x_{n}-P_{D} A w, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)-J_{F}\left(A w-P_{D} A w\right)\right\rangle \geq 0
$$

Since $P_{D} A x_{n_{i}} \rightharpoonup A w$ and $\left\|J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\| \rightarrow 0$, we have that

$$
-\left\|A w-P_{D} A w\right\|^{2}=\left\langle A w-P_{D} A w,-J_{F}\left(A w-P_{D} A w\right)\right\rangle \geq 0
$$

and hence $A w=P_{D} A w$. This implies that $w \in C \cap A^{-1} D$.
From $z_{1}=P_{C \cap A^{-1} D} x_{1}, w \in C \cap A^{-1} D$ and (3), we have that

$$
\begin{aligned}
\left\|x_{1}-z_{1}\right\| \leq\left\|x_{1}-w\right\| & \leq \liminf _{i \rightarrow \infty}\left\|x_{1}-x_{n_{i}}\right\| \\
& \leq \limsup _{i \rightarrow \infty}\left\|x_{1}-x_{n_{i}}\right\| \leq\left\|x_{1}-z_{1}\right\|
\end{aligned}
$$

Then we get that

$$
\lim _{i \rightarrow \infty}\left\|x_{1}-x_{n_{i}}\right\|=\left\|x_{1}-w\right\|=\left\|x_{1}-z_{1}\right\|
$$

Since H satisfies the Kadec-Klee property, we have that $x_{1}-x_{n_{i}} \rightarrow x_{1}-w$ and hence

$$
x_{n_{i}} \rightarrow w=z_{1}
$$

Therefore, we have $x_{n} \rightarrow w=z_{1}$. This completes the proof.
Next, using the shrinking projection method introduced by Takahashi, Takeuchi and Kubota [16], we prove a strong convergence theorem for finding a solution of the split feasibility problem in Banach spaces.

Theorem 3.2. Let H be a Hilbert space and let F be a strictly convex, reflexive and smooth Banach space. Let J_{F} be the duality mapping on F. Let C and D be nonempty, closed and convex subsets of H and F, respectively. Let P_{C} and P_{D} be the metric projections of H onto C and F onto D, respectively. Let $A: H \rightarrow F$ be a bounded linear operator such that $A \neq 0$ and let A^{*} be the adjoint operator of A. Suppose that $C \cap A^{-1} D \neq \emptyset$. Let $\left\{u_{n}\right\}$ be a sequence in H such that $u_{n} \rightarrow u$. Let $x_{1} \in H$ and $C_{1}=H$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=P_{C}\left(x_{n}-r A^{*} J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right) \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n} \\
C_{n+1}=\left\{z \in H:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \cap C_{n} \\
x_{n+1}=P_{C_{n+1}} u_{n+1}, \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $0 \leq \alpha_{n} \leq a<1$ for some $a \in \mathbb{R}$ and $0<r\|A\|^{2}<2$. Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in C \cap A^{-1} D$, where $z_{0}=P_{C \cap A^{-1} D} u$.

Proof. It is obvious that $C \cap A^{-1} D \subset C_{1}=H$ and C_{1} is closed and convex. Suppose that $C \cap A^{-1} D \subset C_{k}$ and C_{k} is closed and convex for some $k \in \mathbb{N}$. Since $z_{k}=$ $P_{C}\left(x_{k}-r A^{*} J_{F}\left(A x_{k}-P_{D} A x_{k}\right)\right)$ with $0<r\|A\|^{2}<2$, as in the proof of Theorem 3.1, we have that for $z \in C \cap A^{-1} D$,

$$
\begin{aligned}
\left\|z_{k}-z\right\|^{2}= & \left\|P_{C}\left(x_{k}-r A^{*} J_{F}\left(A x_{k}-P_{D} A x_{k}\right)\right)-P_{C} z\right\|^{2} \\
\leq & \left\|x_{k}-r A^{*} J_{F}\left(A x_{k}-P_{D} A x_{k}\right)-z\right\|^{2} \\
\leq & \left\|x_{k}-z\right\|^{2}-2 r\left\|A x_{k}-P_{D} A x_{k}\right\|^{2} \\
& \quad-2 r\left\langle P_{D} A x_{k}-A z, J_{F}\left(A x_{k}-P_{D} A x_{k}\right)\right\rangle+r^{2}\|A\|^{2}\left\|A x_{k}-P_{D} A x_{k}\right\|^{2} \\
\leq & \left\|x_{k}-z\right\|^{2}-2 r\left\|A x_{k}-P_{D} A x_{k}\right\|^{2}+r^{2}\|A\|^{2}\left\|A x_{k}-P_{D} A x_{k}\right\|^{2} \\
= & \left\|x_{k}-z\right\|^{2}+r\left(r\|A\|^{2}-2\right)\left\|A x_{k}-P_{D} A x_{k}\right\|^{2} \\
\leq & \left\|x_{k}-z\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\|y_{k}-z\right\|^{2} & =\left\|\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) z_{k}-z\right\|^{2} \\
& \leq\left\|x_{k}-z\right\|^{2}
\end{aligned}
$$

Therefore, $C \cap A^{-1} D \subset C_{k+1}$. Moreover, since

$$
\begin{aligned}
\left\{z \in H:\left\|y_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\} & =\left\{z \in H:\left\|y_{k}-z\right\|^{2} \leq\left\|x_{k}-z\right\|^{2}\right\} \\
& =\left\{z \in H:\left\|y_{k}\right\|^{2}-\left\|x_{k}\right\|^{2} \leq 2\left\langle y_{k}-x_{k}, z\right\rangle\right\}
\end{aligned}
$$

$C_{k+1}=\left\{z \in H:\left\|y_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\} \cap C_{k}$ is closed and convex. So $x_{k+1}=$ $P_{C_{k+1}} u_{k+1}$ is well defined. Applying these facts inductively, we obtain that C_{n} is nonempty, closed and convex and $C \cap A^{-1} D \subset C_{n}$ for every $n \in \mathbb{N}$. Hence $\left\{x_{n}\right\}$ is well defined.

Let $C_{0}=\bigcap_{n=1}^{\infty} C_{n}$. Then since $C_{0} \supset C \cap A^{-1} D \neq \emptyset, C_{0}$ is also nonempty. Let $w_{n}=P_{C_{n}} u$ for every $n \in \mathbb{N}$. Then, by Lemma 2.3 , we have $w_{n} \rightarrow w_{0}=P_{C_{0}} u$. Since a metric projection on H is nonexpansive, it follows that

$$
\begin{aligned}
\left\|x_{n}-w_{0}\right\| & \leq\left\|x_{n}-w_{n}\right\|+\left\|w_{n}-w_{0}\right\| \\
& =\left\|P_{C_{n}} u_{n}-P_{C_{n}} u\right\|+\left\|w_{n}-w_{0}\right\| \\
& \leq\left\|u_{n}-u\right\|+\left\|w_{n}-w_{0}\right\|
\end{aligned}
$$

and hence $x_{n} \rightarrow w_{0}$.
Since $w_{0} \in C_{0} \subset C_{n+1}$, we have $\left\|y_{n}-w_{0}\right\| \leq\left\|x_{n}-w_{0}\right\|$ for all $n \in \mathbb{N}$. Tending $n \rightarrow \infty$, we get that $y_{n} \rightarrow w_{0}$. Then we have that

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-w_{0}\right\|+\left\|w_{0}-y_{n}\right\| \rightarrow 0 \tag{3.8}
\end{equation*}
$$

From $y_{n}-x_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n}-x_{n}=\left(1-\alpha_{n}\right)\left(z_{n}-x_{n}\right)$, we also have that

$$
\left\|y_{n}-x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|z_{n}-x_{n}\right\| \geq(1-a)\left\|z_{n}-x_{n}\right\|
$$

and hence

$$
\begin{equation*}
\left\|z_{n}-x_{n}\right\| \rightarrow 0 \tag{3.9}
\end{equation*}
$$

On the other hand, from (3.7) we know that $z \in C \cap A^{-1} D$,

$$
\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+r\left(r\|A\|^{2}-2\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2}
$$

Then we get that

$$
\begin{aligned}
r\left(2-r\|A\|^{2}\right)\left\|A x_{n}-P_{D} A x_{n}\right\|^{2} & \leq\left\|x_{n}-z\right\|^{2}-\left\|z_{n}-z\right\|^{2} \\
& =\left(\left\|x_{n}-z\right\|-\left\|z_{n}-z\right\|\right)\left(\left\|x_{n}-z\right\|+\left\|z_{n}-z\right\|\right) \\
& \leq\left\|x_{n}-z_{n}\right\|\left(\left\|x_{n}-z\right\|+\left\|z_{n}-z\right\|\right) .
\end{aligned}
$$

Since $0<r\|A\|^{2}<2$ and $\left\|x_{n}-z_{n}\right\| \rightarrow 0$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-P_{D} A x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ converges atrongly to w_{0}, from (3.9) $\left\{z_{n}\right\}$ converges strongly to w_{0}. Since $z_{n} \in C$, we have that $w_{0} \in C$. Since A is bounded and linear, we also have that $\left\{A x_{n}\right\}$ converges strongly to $A w_{0}$. Using this and $\lim _{n \rightarrow \infty}\left\|A x_{n}-P_{D} A x_{n}\right\|=0$, we have that $P_{D} A x_{n_{i}} \rightarrow A w_{0}$. Since P_{D} is the metric projection of F onto D, as in the proof of Theorem 3.1, we have that

$$
\left\langle P_{D} A x_{n}-P_{D} A w_{0}, J_{F}\left(A x_{n}-P_{D} A x_{n}\right)-J_{F}\left(A w_{0}-P_{D} A w_{0}\right)\right\rangle \geq 0
$$

Since $P_{D} A x_{n} \rightarrow A w_{0}$ and $\left\|J_{F}\left(A x_{n}-P_{D} A x_{n}\right)\right\| \rightarrow 0$, we have that

$$
-\left\|A w_{0}-P_{D} A w_{0}\right\|^{2}=\left\langle A w_{0}-P_{D} A w_{0},-J_{F}\left(A w_{0}-P_{D} A w_{0}\right)\right\rangle \geq 0
$$

and hence $A w=P_{D} A w$. Then $w_{0} \in A^{-1} D$. This implies that $w_{0} \in C \cap A^{-1} D$.
Since $C \cap A^{-1} D$ is nonempty, closed and convex, there exists $z_{0} \in C \cap A^{-1} D$ such that $z_{0}=P_{C \cap A^{-1} D} u$. From $x_{n+1}=P_{C_{n+1}} u$, we have that

$$
\left\|u-x_{n+1}\right\| \leq\|u-y\|
$$

for all $y \in C_{n+1}$. Since $z_{0} \in C \cap A^{-1} D \subset C_{n+1}$, we have that

$$
\left\|u-x_{n+1}\right\| \leq\left\|u-z_{0}\right\| .
$$

From $x_{n} \rightarrow w_{0}$ we have that

$$
\begin{equation*}
\left\|u-w_{0}\right\| \leq\left\|u-z_{0}\right\| \tag{3.11}
\end{equation*}
$$

From $z_{0}=P_{C \cap A^{-1} D} u, w_{0} \in C \cap A^{-1} D$ and (30), we have $w_{0}=z_{0}$. Therefore, we have $x_{n} \rightarrow w_{0}=z_{0}$. This completes the proof.

We do not know whether a Hilbert space H in Theorems 3.1 and 3.2 is replaced by a Banach space E or not.

References

[1] S.M. Alsulami and W. Takahashi, The split common null point problem for maximal monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 15 (2014), 793-808.
[2] K. Aoyama, F. Kohsaka and W. Takahashi, Three generalizations of firmly nonexpansive mappings: Their relations and continuous properties, J. Nonlinear Convex Anal. 10 (2009), 131147.
[3] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775.
[4] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239.
[5] Y. Censor and A. Segal, The split common fixed-point problem for directed operators, J. Convex Anal. 16 (2009), 587-600.
[6] J. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585.
[7] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Problems 26 (2010), 055007, 6 pp..
[8] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[9] S. Ohsawa and W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. (Basel) 81 (2003), 439-445.
[10] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A. 87 (2000), 189-202.
[11] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[12] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
[13] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[14] W. Takahashi, The split feasibility problem in Banach spaces, J. Nonlinear Convex Anal. 15 (2014), 1349-1355.
[15] W. Takahashi, The split feasibility problem and the shrinking projection method in Banach spaces, to appear.
[16] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276-286.
[17] W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal. 23 (2015), 205-221.
[18] M. Tsukada, Convergence of best approximations in a smooth Banach, J. Approx. Theory 40 (1984), 301-309.

Saud M. Alsulami
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: saudalsulami@yahoo.com
Abdul Latif
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: alatif@kau.edu.sa
Wataru Takahashi
Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan; Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp; wataru@a00.itscom.net

