


2040 G. M. LEE AND J. H. LEE

where the uncertain objective functions and constraints are enforced for every pos-
sible value of the parameters within their prescribed uncertainty sets Ui, i = 1, . . . , p
and Vj , j = 1, . . . ,m. The problem (RMP) can be understood as the robust case
(the worst case) of (UMP). So, optimizing (UMP) with (RMP) can be regarded as
the robust approach (worst approach) for (UMP).

When p = 1, the problem (MP) involves one objective function and so it turns
to the following scalar optimization problem:

(P) min{f1(x) | gi(x) ≤ 0, i = 1, . . . ,m}.
When (P) is in the face of data uncertainty, it can be captured by the problem

(UP) min{f1(x, u1) | gi(x, vi) ≤ 0, i = 1, . . . ,m},
which has been intensively studied in [2]-[7], [15]-[18], [23, 24]. The robust counter-
part of (UP) is as follows [2, 4, 17]:

(RP) min
{

max
u1∈U1

f1(x, u1) | gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m
}
.

Recently, to find robust solutions which are less sensitive to small perturba-
tions in variables, Deb and Gupta [13, 14] defined two kinds of robust solutions for
multiobjective optimization problems; the emphasis of their robust multiobjective
approaches is to find a robust frontier, instead of the Pareto frontier in the problems.

In this paper, using (RMP), we define three kind robust solutions for the prob-
lems, which are different from the ones of Deb and Gupta [13, 14], as follows: let
us define the set of robust feasible solutions as follows:

C := {x ∈ X | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m}.
x̄ ∈ C is said to be a robust efficient solution of (UMP) if there does not exist a

robust feasible solution x of (UMP) such that

max
ui∈Ui

fi(x, ui) ≦ max
ui∈Ui

fi(x̄, ui), i = 1, . . . , p,

max
uk∈Uk

fk(x, uk) < max
uk∈Uk

fk(x̄, uk), for some k.

x̄ ∈ C is called a weakly robust efficient solution of (UMP) if there does not exist
a robust feasible solution x of (UMP) such that

max
ui∈Ui

fi(x, ui) < max
ui∈Ui

fi(x̄, ui), i = 1, . . . , p.

x̄ ∈ C is said to be a properly robust efficient solution of (UMP) if it is an
efficient robust solution of (UMP) and there is a numberM > 0 such that for all i ∈
{1, . . . , p} and x ∈ C satisfying maxui∈Ui fi(x, ui) < maxui∈Ui fi(x̄, ui), there exists
an index k ∈ {1, . . . , p} such that max

uk∈Uk

fk(x̄, uk) < max
uk∈Uk

fi(x, uk) and moreover

maxui∈Ui fi(x̄, ui)−maxui∈Ui fi(x, ui)

maxuk∈Uk
fk(x, uk)−maxuk∈Uk

fk(x̄, uk)
≦M.

Jeyakumar, Li and Lee [18] proved a KKT optimality theorem for (UP) when
involved functions in (RP) are continuously differentiable. Kuroiwa and Lee [19, 20]
studied scalarizations and optimality theorems for (UMP) when involved functions
are convex. Lee and Son [23] obtained a KKT optimality theorem for (RP) when
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involved functions in (UP) are locally Lipschitz. The aim of this paper is to ex-
tend the KKT optimality theorem in [23] to a robust multiobjective optimization
problem. We prove nonsmooth optimality theorems for weakly robust efficient so-
lutions and properly robust efficient solutions for (UMP) when involved functions
are locally Lipschitz.

2. Preliminaries

In this section, we fix notation and give preliminary results for next sections. Let
a function f : X → R be given. We shall suppose that f is locally Lipschitz, that
is, for each x ∈ X, there exist an open neighborhood U and a constant L > 0 such
that for all y and z in U,

|f(y)− f(z)| ≤ L∥y − z∥.

Definition 2.1. For each d ∈ X, the generalized directional derivative of f at x in
the direction d, denoted f◦(x; d), is given by

f◦(x; d) = lim sup
h→0, t→0+

f(x+ h+ td)− f(x+ h)

t
.

We also denote the usual one-sided directional derivative of f at x by f ′(x; d).
Thus

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
,

whenever this limit exists.
In the sequel, X∗ denotes the (continuous) dual space of X and ⟨·, ·⟩ is the duality

pairing between X and X∗. The norm of an element ξ of X∗, denoted ∥ξ∥∗, is given
by

∥ξ∥∗ := sup{⟨ξ, d⟩ | d ∈ X, ∥d∥ ≤ 1}.
However, all statements involving a topology on X∗ are with respect to the weak∗

topology, unless otherwise stated.

Definition 2.2. The generalized gradient of f at x, denoted by ∂f(x), is the
(nonempty) set of all ξ in X∗ satisfying the following condition:

f◦(x; d) ≥ ⟨ξ, d⟩ for all d ∈ X.

We summarize some fundamental results in the calculus of generalized gradients
(for more details, see [8]-[11], [21]):

(1) ∂f(x) is a nonempty, convex, weak∗ compact subset of X∗

(2) The function d 7→ f◦(x; d) is convex.
(3) For every d in X, one has

f◦(x; d) = max{⟨ξ, d⟩ | ξ ∈ ∂f(x)}.

Let V be a sequentially compact topological space and let g : X × V → R be a
given function. Now, we will assume that the following conditions hold:

(C1) g(x, v) is upper semicontinuous in (x, v).
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(C2) g is locally Lipschitz in x, uniformly for v in V, that is, for each x ∈ X, there
exist an open neighborhood U of x and a constant L > 0 such that for all y
and z in U, and v ∈ V,

|g(y, v)− g(z, v)| ≤ L∥y − z∥.

(C3) g◦x(x, v; ·) = g′x(x, v; ·), the derivatives being with respect to x.
(C4) the generalized gradient ∂xg(x, v) with respect to x is weak∗ upper semicon-

tinuous in (x, v).

Remark 2.3. In a suitable setting, conditions (C2), (C3), and (C4) will follow if
the function g is convex in x and continuous in v. These conditions on the function
g also hold when the derivative ∇xg(x, v) with respect to x exists and is continuous
in (x, v).

We define a function ψ : X → R via

ψ(x) := max{g(x, v) | v ∈ V},

and we observe that our conditions (C1)-(C2) imply that ψ is defined and finite
(with the maximum defining ψ attained) on X.

V(x) := {v ∈ V | g(x, v) = ψ(x)}.

It is easy to see that V(x) is nonempty and closed for each x in X.
The following lemma, which is a nonsmooth version of Danskin’s theorem [12]

for max-functions, makes connection between the functions ψ′(x; d) and g◦x(x, v; d).

Lemma 2.4. Under the conditions (C1)-(C4), the usual one-sided directional de-
rivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ◦(x; d) = max{g◦x(x, v; d) | v ∈ V(x)}
= max{⟨ξ, d⟩ | ξ ∈ ∂xg(x, v), v ∈ V(x)}.

Proof. See [10, Theorem 2] (see also [8, Theorem 2.1], [12]). □

The following result will be useful in our later analysis.

Lemma 2.5 ([23]). In addition to the basic conditions (C1)-(C4), suppose that V
is convex, and that g(x, ·) is concave on V, for each x ∈ U. Then the following
statements hold:

(i) The set V(x) is convex and sequentially compact.
(ii) The set

∂xg(x,V(x)) := {ξ | ∃v ∈ V(x) such that ξ ∈ ∂xg(x, v)}

is convex and weak∗ compact.
(iii) ∂ψ(x) = {ξ | ∃v ∈ V(x) such that ξ ∈ ∂xg(x, v)}.
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3. Necessary optimality theorems

Let X be a Banach space. Recall the robust counterpart (RMP) of (UMP):

(RMP) Minimize
(
max
u1∈U1

f1(x, u1), . . . , max
up∈Up

fp(x, up)
)

subject to gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m.

We assume that fi : X × Ui → R, i = 1, . . . , p are locally Lipschitz functions,
and gj : X × Vj → R, j = 1, . . . ,m are locally Lipschitz functions, and that Ui,
i = 1, . . . , p and Vj , j = 1, . . . ,m are sequentially compact topological spaces.

We recall the set of robust feasible solutions of (UMP):

C := {x ∈ X | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m}.
Define ϕi(x) := maxui∈Ui fi(x, ui) for each i = 1, . . . , p and ψj(x) :=

maxvj∈Vj gj(x, vj) for each j = 1, . . . ,m. Then if fi and gj satisfy the conditions
(C1) and (C2), ϕi, ψj : X → R, i = 1, . . . , p and j = 1, . . . ,m, are locally Lipschitz
functions.

Let x ∈ C and let us decompose J := {1, . . . ,m} into two index sets J = J1(x) ∪
J2(x), where J1(x) = {j ∈ J | ψj(x) = 0} and J2(x) = J \ J1(x). We put for each
i = 1, . . . , p,

Ui(x) := {ui ∈ Ui | fi(x, ui) = ϕi(x)},
and for each j ∈ J1(x),

Vj(x) := {vj ∈ Vj | gj(x, vj) = ψi(x)}.

Now we give a necessary optimality theorem for weakly robust efficient solutions
for (UMP):

Theorem 3.1. Assume that fi, i = 1, . . . , p and gj, j = 1, . . . ,m satisfy the condi-
tions (C1) and (C2). If x∗ ∈ C is a weakly robust efficient solution of (UMP), then
there exist µi ≧ 0, i = 1, . . . , p, λj ≧ 0, j ∈ J1(x

∗), not all zero, such that

p∑
i=1

µiϕ
◦
i (x

∗; d) +
∑

j∈J1(x∗)

λjψ
◦
j (x

∗; d) ≧ 0 for all d ∈ X.

Proof. Suppose that there exists d ∈ X such that{ ϕ◦i (x
∗; d) < 0, i = 1, . . . , p,

ψ◦
j (x

∗; d) < 0, j ∈ J1(x
∗).

Then we have for all i = 1, . . . , p,

lim sup
t→0+

ϕi(x
∗ + td)− ϕi(x

∗)

t
= inf

δ̄i>0
sup

0<t<δ̄i

ϕi(x
∗ + td)− ϕi(x

∗)

t

≦ inf
ϵ>0
δ̄i>0

sup
∥h∥<ϵ
0<t<δ̄i

ϕi(x
∗ + h+ td)− ϕi(x

∗ + h)

t

= lim sup
h→0 t→0+

ϕi(x
∗ + h+ td)− ϕi(x

∗ + h)

t
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= ϕ◦i (x
∗; d) < 0.

So, we have

lim sup
t→0+

ϕi(x
∗ + td)− ϕi(x

∗)

t
= inf

δ̄i>0
sup

0<t<δ̄i

ϕi(x
∗ + td)− ϕi(x

∗)

t
< 0.

Hence, there exist δ̄∗i > 0, i = 1, . . . , p such that for all t ∈ (0, δ̄∗i ), ϕi(x
∗ + td) <

ϕi(x
∗).

On the other hand, let j ∈ J1(x
∗) be any fixed. Then, we have

lim sup
t→0+

ψj(x
∗ + td)− ψj(x

∗)

t
= inf

δ̃j>0
sup

0<t<δ̃j

ψj(x
∗ + td)− ψj(x

∗ = h)

t

≦ inf
ϵ>0
δ̃j>0

sup
∥h∥<ϵ
0<t<δ̃j

ψj(x
∗ + h+ td)− ψj(x

∗ + h)

t

= lim sup
h→0 t→0+

ψj(x
∗ + h+ td)− ψj(x

∗)

t

= ψ◦
j (x

∗; d) < 0.

So, we have

lim sup
t→0+

ψj(x
∗ + td)− ψj(x

∗)

t
= inf

δ̃j>0
sup

0<t<δ̃j

ψj(x
∗ + td)− ψj(x

∗)

t
< 0.

Hence, there exist δ̃∗j > 0, j ∈ J1(x
∗) such that for all t ∈ (0, δ̃∗j ), ψj(x

∗ + td) <

ψj(x
∗) = 0.

Moreover, since ψj(x
∗) < 0, j ∈ J2(x

∗) and ψj is continuous at x∗, there exist

δ̂∗j > 0, j ∈ J2(x
∗) such that for all t ∈ (0, δ̂∗j ), ψj(x

∗ + td) < 0. Let δ∗ :=

min{δ̄∗, δ̃∗, δ̂∗}, where δ̄∗ := min
j∈{1,...,p}

δ̄∗i , δ̃
∗ := min

i∈J1(x∗)
δ̃∗j and δ̂∗ := min

i∈J2(x∗)
δ̂∗j . Then

for all t ∈ (0, δ∗), x∗ + td ∈ C and ϕi(x
∗ + td) < ϕi(x

∗), i = 1, . . . , p. This is a
contradiction since x∗ is a weakly robust efficient solution of (UMP). Hence{

ϕ◦i (x
∗; d) < 0, i = 1, . . . , p,

ψ◦
j (x

∗; d) < 0, ∀j ∈ J1(x
∗)

has no solution d ∈ X. Since the functions d 7→ ϕ◦i (x; d), i = 1, . . . , p and d 7→
ψ◦
j (x; d), j = 1, . . . ,m are convex, it follows from Gordan alternative theorem in

[25] that there exist µi ≧ 0, i = 1, . . . , p, λj ≧ 0, j ∈ J1(x
∗), not all zero, such that

p∑
i=1

µiϕ
◦
i (x

∗; d) +
∑

j∈J1(x∗)

λjψ
◦
j (x

∗; d) ≧ 0 for all d ∈ X.

□

Definition 3.2. We define an Extended Nonsmooth Mangasarian-Fromovitz con-
straint qualification (ENMFCQ) at x ∈ C as follows:

∃d ∈ X such that g◦jx(x, vj ; d) < 0, ∀vj ∈ Vj(x), ∀j ∈ J1(x),
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where g◦jx(x, vj ; d) denotes the generalized directional derivative of gj with respect
to x.

The following result is a robust KKT necessary optimality theorem for (UMP),
which is a multiobjective version of Theorem 3.3 in [23] and a multiobjective and
nondiffferentiable version of Theorem 3.1 in [18].

Theorem 3.3. Assume that fi, i = 1, . . . , p and gj, j = 1, . . . ,m satisfy the condi-
tions (C1)-(C4). Suppose that for each x ∈ X, fi(x, ·), i = 1, . . . , p, are concave on
Ui, i = 1, . . . , p and gj(x, ·) are concave on Vj, j = 1, . . . ,m. Let x∗ ∈ C be a weakly
robust efficient solution of (UMP). Then there exist µi ≧ 0, i = 1, . . . , p, λj ≧ 0,
j = 1, . . . ,m, not all zero, and u∗i ∈ Ui(x∗), i = 1, . . . , p, v∗j ∈ Vj(x∗), j = 1, . . . ,m
such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m,

where ∂xfi(x
∗, u∗i ) and ∂xgj(x

∗, v∗j ) are subdifferentials of the convex functions

fi(·, u∗i ) at x∗ and gj(·, v∗j ) at x∗. Moreover, if we further assume that the Extended

Nonsmooth Mangasarian-Fromovitz constraint qualification (ENMFCQ) holds, then
there exist µi ≧ 0, i = 1, . . . , p, not all zero, and u∗i ∈ Ui(x∗), i = 1, . . . , p, λj ≧ 0
and v∗j ∈ Vj(x∗), j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m.

Proof. Let x∗ ∈ C be a weakly robust efficient solution of (RMP). Then by Theorem
3.1, there exist µi ≧ 0, i = 1, . . . , p, λj ≧ 0, j ∈ J1(x

∗), not all zero, such that

p∑
i=1

µiϕ
◦
i (x

∗; d) +
∑

j∈J1(x∗)

λjψ
◦
j (x

∗; d) ≧ 0 for all d ∈ X.

Since ϕ◦i (x
∗; d) = max{⟨ξi, d⟩ : ξi ∈ ∂ϕi(x

∗)}, i = 1, . . . , p and ψ◦
j (x

∗; d) =

max{⟨ζj , d⟩ : ζj ∈ ∂ψj(x
∗)}, j = 1, . . . ,m, we have for all d ∈ Rn,

p∑
i=1

max{⟨ξi, d⟩ : ξi ∈ ∂ϕi(x
∗)}+

∑
j∈J1(x∗)

max{⟨ζj , d⟩ : ζj ∈ ∂ψj(x
∗)} ≧ 0.

Hence for all d ∈ Rn,

max
ξi∈∂ϕi(x∗)
ζj∈∂ψj(x

∗)

⟨ p∑
i=1

µiξi +
∑

j∈J1(x∗)

λjζj , d
⟩
≧ 0.
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This is equivalent to

inf
d∈Rn

max
ξi∈∂ϕi(x∗)
ζj∈∂ψj(x

∗)

⟨ p∑
i=1

µiξi +
∑

j∈J1(x∗)

λjζj , d
⟩
≧ 0.

Since the sets ∂ϕi(x
∗) and ∂ψj(x

∗) are convex and weak∗ compact, by “lop-sided”
minimax theorem [1],

max
ξi∈∂ϕi(x∗)
ζj∈∂ψj(x

∗)

inf
d∈Rn

⟨ p∑
i=1

µiξi +
∑

j∈J1(x∗)

λjζj , d
⟩
≧ 0.

So, there exist ξi ∈ ∂ϕi(x
∗), i = 1, . . . , p and ζj ∈ ∂ψj(x

∗), j ∈ J1(x
∗) such that for

all d ∈ Rn, ⟨ p∑
i=1

µiξi +
∑

j∈J1(x∗)

λjζj , d
⟩
≧ 0.

Hence

p∑
i=1

µiξi +
∑

j∈J1(x∗)

λjζj = 0, and we have

0 ∈
p∑
i=1

µi∂ϕi(x
∗) +

∑
j∈J1(x∗)

λj∂ψj(x
∗).

Thus, by letting λj = 0 for all j ∈ J2(x
∗), we have

0 ∈
p∑
i=1

µi∂ϕi(x
∗) +

m∑
j=1

λj∂ψj(x
∗),

0 = λjϕj(x
∗), j = 1, . . . ,m.

On the other hand, it follows from Lemma 2.5 (iii) that

∂ϕi(x
∗) = {ξi | ∃ui ∈ Ui(x∗) such that ξi ∈ ∂xfi(x

∗, ui)}, i = 1, . . . , p,

∂ψj(x
∗) = {ζj | ∃vj ∈ Vj(x∗) such that ζj ∈ ∂xgj(x

∗, vj)}, j = 1, . . . ,m.

Therefore there are u∗i ∈ Ui(x∗) and v∗j ∈ Vj(x∗) satisfying the following conditions

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m.

We now assume that the extended Nonsmooth Mangasarian-Fromovitz constraint
qualification (ENMFCQ) at x∗ holds. Then µ̄i, i = 1, . . . , p, are not all zero. In
fact, if it is not true, then λj ≧ 0, j ∈ J1(x

∗), not all zero, and

0 ∈
∑

j∈J1(x∗)

λj∂xgj(x
∗, v∗j ) = ∂x

( ∑
j∈J1(x∗)

λjgj(·, v∗j )
)
(x∗).
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(The equality is induced by (C3)) So,
∑

j∈J1(x∗) λjg
◦
jx(x

∗, v∗j ; d) ≧ 0 for all d ∈ Rn

which contradicts (ENMFCQ). Hence there exist µi ≧ 0, i = 1, . . . , p, not all zero,
and u∗i ∈ Ui, i = 1, . . . , p, λj ≧ 0 and v∗j ∈ Vj , j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m.

□

From the proof of Theorem 3.3, we can obtain the following theorem for a convex
multiobjective optimization problem:

Theorem 3.4. Assume that fi(·, ·), i = 1, . . . , p and gj(·, ·), j = 1, . . . ,m are
continuous, and fi(·, ui), i = 1, . . . , p and gj(·, vj), j = 1, . . . ,m are convex on X.
Suppose that for each x ∈ X, fi(x, ·), i = 1, . . . , p, are concave on Ui, i = 1, . . . , p
and gj(x, ·) are concave on Vj, j = 1, . . . ,m. Let x∗ ∈ C be a weakly robust efficient
solution of (UMP). If the robust Slater condition holds, that is, there exists x̂ ∈ X
such that gj(x̂, vj) < 0, for any vj ∈ Vj, j = 1, . . . ,m, then there exist µi ≧ 0,
i = 1, . . . , p, not all zero, and u∗i ∈ Ui(x∗), i = 1, . . . , p, λj ≧ 0 and v∗j ∈ Vj(x∗),
j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m,

where ∂xfi(x
∗, u∗i ) and ∂xgj(x

∗, v∗j ) are subdifferentials of the convex functions

fi(·, u∗i ) at x∗ and gj(·, v∗j ) at x∗.

By Theorem 2.6 in [22], we can get the following lemma for properly robust
efficient solutions of (UMP) :

Lemma 3.5. [22] Let X = Rn. x̄ ∈ C is a properly robust efficient solution of
(UMP) if and only if there exist M > 0 and µ̂i > 0, i = 1, . . . , p such that

min
x∈C

f̂(x) = f̂(x̄) = 0,

where f̂(x) =

p∑
i=1

µ̂i

[
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x̄, ui)
]

+M
( p∑
i=1

µ̂i

)
max

i∈{1,...,p}

[
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x̄, ui)
]
.

Using Lemma 3.5, we can obtain a necessary optimality theorem for a properly
robust efficient solution of (UMP):
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Theorem 3.6. Let X = Rn. Assume that fi, i = 1, . . . , p and gj, j = 1, . . . ,m sat-
isfy the conditions (C1)-(C4). Suppose that for each x ∈ X, fi(x, ·), i = 1, . . . , p, are
concave on Ui, i = 1, . . . , p and gj(x, ·) are concave on Vj, j = 1, . . . ,m. Let x∗ ∈ C
be a properly robust efficient solution of (UMP). Assume that the extended Non-
smooth Mangasarian-Fromovitz constraint qualification (ENMFCQ) holds. Then,
there exist µi > 0, u∗i ∈ Ui(x∗) i = 1, . . . , p, and λj ≧ 0, v∗j ∈ Vj(x∗), j = 1, . . . ,m
such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j )

and λjgj(x
∗, v∗j ) = 0, j = 1, . . . ,m.

Proof. Let x∗ ∈ C be a properly robust efficient solution of (UMP). Then by Theo-
rem 3.1, there exist M > 0 and µ̂i > 0, i = 1, . . . , p such that

min
x∈C

f̂(x) = f̂(x∗) = 0,

where f̂(x) =

p∑
i=1

µ̂i

[
max
µ̂i∈Ui

fi(x, ui)− max
ui∈Ui

fi(x
∗, ui)

]
+M

( p∑
i=1

µ̂i

)
max

i∈{1,...,p}

[
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x
∗, ui)

]
.

Here f̂ is a locally Lipchitz function. Let ψj(x) := maxvj∈Vj gj(x, vj). Then, by
Remark 6.1.2 in [11], there exist λ0 ≧ 0 and λj ≧ 0, j = 1, . . . ,m, not all zero, such
that

0 ∈ λ0∂f̂(x
∗) +

m∑
j=1

λj∂ψj(x
∗), λjψj(x

∗) = 0, j = 1, . . . ,m.

By Lemma 2.5 (iii), there exist λ0 ≧ 0, λj ≧ 0, not all zero, v∗j ∈ Vj(x∗), j = 1, . . . ,m
such that

0 ∈ λ0∂f̂(x
∗) +

m∑
j=1

λj∂xgj(x
∗, v∗j ), λjgj(x

∗, v∗j ) = 0, j = 1, . . . ,m.

Assume to the contrary that λ0 = 0. Then

0 ∈
m∑
j=1

λj∂xgj(x
∗, v∗j ).

So, there exist ζ̄j ∈ ∂xgj(x
∗, v∗j ), j = 1, . . . ,m such that

0 =

m∑
j=1

λj ζ̄j .

Since for any d ∈ X,, g◦j (x, v
∗
j ; d) = max{⟨ζj , d⟩ | ζj ∈ ∂xgj(x, v

∗
j )}, j = 1, . . . ,m,

then for any d ∈ X,

0 =

m∑
j=1

λj⟨ζ̄j , d⟩ ≦
m∑
j=1

λjg
◦
j (x

∗, v∗j ; d).
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which contradict (ENMFCQ). So, λ0 can not be 0. Hence we may assume without
loss of generality that λ0 = 1. Thus, there exist λj ≧ 0 and v∗j ∈ Vj(x∗), j = 1, . . . ,m
such that

0 ∈ ∂f̂(x∗) +

m∑
j=1

λj∂xgj(x
∗, v∗j ).

Let ϕi(x) := maxui∈Ui fi(x, ui)−maxui∈Ui fi(x
∗, ui), i = 1, . . . , p. Then ϕi(x

∗) = 0,
i = 1, . . . , p. So, we have

f̂(x) =

p∑
i=1

µ̂iϕi(x) +M
( p∑
i=1

µ̂i

)
max

i∈{1,...,p}
ϕi(x).

Hence, there exist λj ≧ 0, v∗j ∈ Vj(x∗), j = 1, . . . ,m such that

0 ∈∂f̂(x∗) +
m∑
j=1

λj∂xgj(x
∗, v∗j )

=∂
( p∑
i=1

µ̂iϕi(x) +M
( p∑
i=1

µ̂i

)
max

i∈{1,...,p}
ϕi(x)

)
+

m∑
j=1

λj∂xgj(x
∗, v∗j )

⊂
p∑
i=1

µ̂i∂ϕi(x) +M
( p∑
i=1

µ̂i

)
co{∂ϕi(x∗) | i = 1, . . . , p}+

m∑
j=1

λj∂xgj(x
∗, v∗j ).

Thus, there exist βi ≧ 0, i = 1, . . . , p, λj ≧ 0 and v∗j ∈ Vj(x∗), j = 1, . . . ,m such
that

0 ∈
p∑
i=1

µ̂i∂ϕi(x
∗) +M

( p∑
i=1

µi

) p∑
i=1

βi∂ϕi(x
∗) +

m∑
j=1

λj∂xgj(x
∗, v∗j ).

Since ∂ϕi(x
∗), i = 1, . . . , p are convex, there exist µi > 0, i = 1, . . . , p, and λj ≧ 0,

v∗j ∈ Vj(x∗), j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂ϕi(x
∗) +

m∑
j=1

λj∂xgj(x
∗, v∗j ).

By Lemma 2.5 (iii), there exist µi > 0, u∗i ∈ Ui(x∗), i = 1, . . . , p, λj ≧ 0 and
v∗j ∈ Vj(x∗), j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ).

Thus there exist µi > 0, u∗i ∈ Ui i = 1, . . . , p, λj ≧ 0 and v∗j ∈ Vj , j = 1, . . . ,m such
that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j )

and λjgj(x
∗, v∗j ) = 0, j = 1, . . . ,m. So the theorem holds. □

From the proof of Theorem 3.6, we can obtain the following theorem for a convex
multiobjective optimization problem:
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Theorem 3.7. Let X = Rn. Assume that fi(·, ·), i = 1, . . . , p and gj(·, ·), i =
1, . . . ,m are continuous, and fi(·, ui), i = 1, . . . , p and gj(·, vj), i = 1, . . . ,m are
convex on X. Suppose that for each x ∈ X, fi(x, ·), i = 1, . . . , p are concave on Ui,
i = 1, . . . , p and gj(x, ·) are concave on Vj, j = 1, . . . ,m. Let x∗ ∈ C be a properly
robust efficient solution of (UMP). If the robust Slater condition holds, that is, there
exists x̂ ∈ X such that gj(x̂, vj) < 0, for any vj ∈ Vj, j = 1, . . . ,m, then there exist
µi > 0, i = 1, . . . , p, not all zero, u∗i ∈ Ui(x∗), i = 1, . . . , p, λj ≧ 0 and v∗j ∈ Vj(x∗),
j = 1, . . . ,m such that

0 ∈
p∑
i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

0 = λjgj(x
∗, v∗j ), j = 1, . . . ,m,

where ∂xfi(x
∗, u∗i ) and ∂xgj(x

∗, v∗j ) are subdifferentials of the convex functions

fi(·, u∗i ) at x∗ and gj(·, v∗j ) at x∗.

Example 3.8. Let x := (x1, x2) ∈ R2, (u1, u2) ∈ U1 × U2 := [0, 1] × [0, 1] and
v := (v1, v2) ∈ V := {v ∈ R2 | v21 + v22 ≦ 1}. Consider the functions

(f1(x1, x2, u1, u2), f2(x1, x2, u1, u2)) := (u1x1, u2x2),

g(x1, x2, v1, v2) := x1v1 + x2v2 − 1.

Let
C := {(x1, x2) ∈ R2 | ψ(x1, x2) ≤ 0},

where

ψ(x) := max
(v1,v2)∈V

g(x1, x2, v1, v2) = max
(v1,v2)∈V

⟨(x1, x2), (v1, v2)⟩ − 1 =
√
x21 + x22 − 1.

Now, we consider the following multiobjective problem with uncertainty data:

(UMP) min (f1(x1, x2, u1, u2), f2(x1, x2, u1, u2))
s.t. g(x1, x2, v1, v2) ≤ 0, ∀(v1, v2) ∈ V ,

its robust counterpart:

(RMP) min
(

max
(u1,u2)∈U1×U2

f1(x1, x2, u1, u2), max
(u1,u2)∈U1×U2

f2(x1, x2, u1, u2)
)

s.t. g(x1, x2, v1, v2) ≤ 0, ∀(v1, v2) ∈ V.
Then the set of properly robust efficient solutions of (UMP) is {(x1, x2) | x21 +
x22 ≦ 1, x1 ≦ 0, x2 ≦ 0}. Moreover, the set of weakly robust efficient solutions
of the problem is {(x1, x2) | x21 + x22 ≦ 1, x1 ≦ 0 or x2 ≦ 0}. So, it is clear
that (x∗1, x

∗
2) = (1, 0) ∈ C is a weakly robust efficient solution of (UMP). We have

U1(x
∗
1, x

∗
2) × U2(x

∗
1, x

∗
2) = {(1, u∗2) | u∗2 ∈ U2} and V(x∗1, x∗2) = {(1, 0)}. Moreover, it

is easy to check that (ENMFCQ) holds at (x∗1, x
∗
2) and if we let µ1 = 0, µ2 = 1,

λ1 = 0, (u∗1, u
∗
2) = (1, 0) and (v∗1, v

∗
2) = (1, 0), then we have

µ1∇xf1(x
∗
1, x

∗
2, u

∗
1, u

∗
2) + µ2∇xf2(x

∗
1, x

∗
2, u

∗
1, u

∗
2) + λ1∇xg(x

∗
1, x

∗
2, v

∗
1, v

∗
2) = 0,

λ1g(x
∗
1, x

∗
2, v

∗
1, v

∗
2) = 0.

Moreover, (x̄1, x̄2) = (− 1√
2
,− 1√

2
) ∈ C is a properly robust efficient solution of

(UMP). We have U1(x̄1, x̄2)×U2(x̄1, x̄2) = {(0, 0)} and V(x̄1, x̄2) = {(− 1√
2
,− 1√

2
)}.
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Moreover, it is easy to check that (ENMFCQ) holds at (x̄1, x̄2) and if we let µ1 =
µ2 = 1, λ1 = 0, (ū1, ū2) = (0, 0) and (v̄1, v̄2) =

(
− 1√

2
,− 1√

2

)
, then we have

µ1∇xf1(x̄1, x̄2, ū1, ū2) + µ2∇xf2(x̄1, x̄2, ū1, ū2)) + λ1∇xg(x̄1, x̄2, v̄1, v̄2) = 0,

λ1g(x̄1, x̄2, v̄1, v̄2) = 0.

Thus, Theorem 3.3 and 3.6 hold.
Moreover, (x̂1, x̂2) = (0, 0) ∈ C is a properly robust efficient solution of the prob-

lem (3.1). We have U1(x̂1, x̂2) × U2(x̂1, x̂2) = U1 × U2 and V(x̂1, x̂2) = V. But
(ENMFCQ) does not holds at (x̂1, x̂2). On the other hand, the Slater’s condi-
tion holds at (x̂1, x̂2), that is, g(x̂1, x̂2, v1, v2) < 0, for all (v1, v2) ∈ V. Moreover,
f1(·, u1, u2), f2(·, u1, u2) and g(·, v1, v2) are convex. If we let µ1 = µ2 = 1, λ1 = 0,
(û1, û2) = (0, 0) and (v̂1, v̂2) = (1, 0), then we have

µ1∇xf1(x̂1, x̂2, û1, û2) + µ2∇xf2(x̂1, x̂2, û1, û2) + λ1∇xg(x̂1, x̂2, v̂1, v̂2) = 0,

λ1g(x̂1, x̂2, v̂1, v̂2) = 0.

Thus, Theorem 3.7 holds.
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