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These idea turns to general locally compact abelian (LCA) group G with dual group

Ĝ, that is the space of all functions defined on G into the unit circle of the complex
space C. That is,

Ĝ = {γ : G→ unit circle of the complex field C}
such that

| ⟨x, γ⟩ | = 1, for all γ ∈ Ĝ, x ∈ G, and

⟨x1 + x2, γ⟩ = ⟨x1, γ⟩ · ⟨x2, γ⟩, ⟨x, γ1 + γ2⟩ = ⟨x, γ1⟩ · ⟨x, γ2⟩,

⟨0, γ⟩ = 1 = ⟨x, 0⟩, for any x1, x2, x ∈ G, and γ1, γ2, γ ∈ Ĝ.

There is a well known fundamental theorem for studying on multipliers in harmonic
analysis. Multipliers have also appeared in studying operator theory, stochastic
processes, PDE, optimization theory and the mathematical economics, . . . etc .

Now we state firstly to describe a well known fundamental theorem as following
(cf. Theorem 0.1.1 in Larsen [15], and Wendel [19] for application of multipliers).

Theorem 1.1. Let G be a LCA group with dual group Ĝ. Suppose that
T ∈ L(L1(G), L1(G)) = L(L1(G)), the space of all continuous linear (= bounded
linear) operators on L1(G). Then the following statements are equivalent.

(i) Tτa = τaT for any a ∈ G,
where τa is a translation operator : τaf(t) = f(ta−1) = f(t− a).
This T is called an invariant operator.

(ii) T (f ∗ g) = Tf ∗ g = f ∗ Tg, “∗” denotes convolution of f , g ∈ L1(G).
where f ∗ g(t) =

∫
G f(t− s)g(s)ds =

∫
G f(ts

−1)g(s)ds.

T commutes with the algebra operation (convolution “∗” in L1(G)),
this T is called a multiplier of L1(G).

(iii) ∃ ! a µ ∈Mb(G) (bounded regular Borel measure space) such that

Tf = µ ∗ f , for all f ∈ L1(G), and so T̂ f = µ̂f̂ ,

where f̂(γ) =
∫
G ⟨t, γ⟩f(t)dt, and µ̂(γ) =

∫
G ⟨t, γ⟩dµ(t).

µ̂ is the Fourier Stieltjes transform of µ ∈Mb(G) .

(iv) ∃ ! a bounded function ϕ ∈ M̂b(G) ≡ B(Ĝ) ⊂ Cb(Ĝ) such that T̂ f = ϕ · f̂ ,
for any f ∈ L1(G).

Any bounded linear operator T ∈ L(L1(G)) satisfies one of (i) ∼ (iv) is called
a multiplier of L1(G), and denoted by M(L1(G)) the space of all multipliers of
L1(G). M(L1(G)) is a closed subalgebra of the operator algebra L(L1(G)).

Essential Remarks

Harmonic analysis on LCA group G with dual group Ĝ has the following useful
concepts. (cf. the book: Fourier Analysis on Groups by W. Rudin.)

(1) The Fourier transform of f ∈ L1(G) is given by

f̂(γ) =

∫
G
⟨t, γ⟩f(t)dt =

∫
G
⟨−t, γ⟩f(t)dt.

and f̂ ∈ L̂1(G) = A(Ĝ) ⫋ C0(Ĝ), where C0(Ĝ) is the space of all contin-

uous functions vanishing at infinity of Ĝ. A(Ĝ) is a Banach algebra under
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pointwise product with norm ∥ f̂ ∥∞≤∥ f ∥1. A(Ĝ) is dense in C0(Ĝ) of

first Category. The algebra A(Ĝ) is a Fourier algebra in pointwise product

and shows that A(Ĝ) ∼= L1(G) provided A(Ĝ) use the norm ∥ f̂ ∥A=∥ f ∥1 .
This shows that the Fourier transform of f ∈ L1(G) is uniquely defined.
C0(G) is a Banach algebra under pointwise product in the uniform norm
∥ f ∥∞ = sup

t∈G
|f(t)| for f ∈ C0(G).

(2) Let Mb(G) be the space of all bounded regular Borel measures on G.
Then for µ ∈Mb(G), the Fourier-Stieljes transforms of µ is given by

µ̂(γ) =

∫
G
⟨γ, t⟩dµ(t), and µ̂ ∈ M̂b(Ĝ) ≡ B(Ĝ) ⫋ Cb(Ĝ),

where Cb(Ĝ) is the space of all bounded continuous functions on Ĝ, and

B(Ĝ) is the space of all Fourier - Stieljes transform for Mb(G). If we denote
the space of all invariant operators by (L1(G), L1(G)), and the space of
all multiplier operators of L1(G)) by M(L1(G)). Then by (i) (ii) and (iii) of
Theorem 1.1, we get the following isometrically isomorphic relations.

M(L1(G)) ∼= (L1(G), L1(G)) ∼= HomL1(G)(L
1(G), L1(G)) ∼=Mb(G).(1.1)

The last “∼=” follows from (iii) of Theorem 1.1 ,it shows that ∃ ! µ ∈Mb(G)
such that

Tf = µ ∗ f, for all f ∈ L1(G) and ∥ T ∥=∥ µ ∥,

where ∥ µ ∥ is the norm of the bounded regular Borel measure algebra
Mb(G).

2. Multipliers on a commutative Banach algebra

From Theorem 1.1, one sees that the multiplies of L1(G) can be regarded as
various types in representations. It can also be extended to multiplies of Lp(G) for
each p, 1 < p < ∞, by using (i) only, or to multiplies of general Banach algebra
by using (ii) only. In the study of multiplier theory, it is essentially to identify (or
characterize) the multiplier space which is a subalgebra of bounded linear operators
as a function space.

In order to develop the multipliers in the expression (1.1) to vector-valued func-
tion spaces on G, we process to this section. Throughout we let A be a semi-
simple commutative Banach algebra, a Banach space X is said to be A-module
if AX ⊆ X and ∥ ax ∥X≤∥ a ∥A∥ x ∥X . An A-module Banach space X is said to
be essential A-module if AX = X.

Theorem 2.1. If A has a bounded approximate identity {eα}, that is, there exists
a positive number K such that ∥ eα ∥A≤ K for all α, then any A-module Banach
space is essential A-module.

Proof. If a Banach algebra A has a bounded approximate identity {eα} ⊆ A and X
is an A-module without order since A is semi-simple. Thus
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eαx ∈ X and ∥ eαx ∥X≤ K ∥ x ∥X for all x ∈ X.
It follows that for any x ∈ X, we can show that

∥ eαx− x ∥X→ 0 (and ∥ xeα − x ∥X→ 0)

as the limit is taken over all α. This shows that AX is dense in X and so AX = X.
The proof is completed. □

A continuous linear operator T ∈ L(A) is said to be a multiplier of A if

T (a · b) = Ta · b = a · Tb for all a, b ∈ A.

Example 1. Let G be a LCA group. Then

(1) L1(G) is a commutative Banach algebra under convolution product, and
L1(G) has a bounded approximate identify of norm 1.

(2) The Banach spaces Lp(G), 1 ≤ p < ∞, and C0(G) are essential L1(G)-
module Banach spaces.

Proof. (1) The proof of commutative Banach algebra is easy. While L1(G) has
a bounded approximate identity of norm 1, we can take a neighbourhood
system {Vα} of open subsets at the origin θ ∈ G and define a system {eα}
of functions eα by

eα =
χVα

|Vα|
(any open set V in G has Haar measure |V | > 0)

with Haar measure |Vα| and the characteristic function χVα of Vα.
{Vα} is a neighborhood system of θ ∈ G and ordered by β ≺ α if Vα ⊂ Vβ.

Then

∥ eα ∥1=
∫
G

χVα

|Vα|
dt =

∫
Vα

1

|Vα|
dt = 1 for all α.

(2) Since L1(G) has bounded approximately identity as shown in (1), for each
p, 1 < p <∞, the spaces

Lp(G) =
{
f : G→ C

∣∣∣ ( ∫
G
(|f(t)|)pdt

) 1
p
<∞

}
,

and C0(G) = the space of all continuous functions vanishing at infinity on
G, are essential L1(G)-modules. That is

(2.1) L1(G) ∗ Lp(G) = Lp(G), for each p, 1 < p <∞
and

(2.2) L1(G) ∗ C0(G) = C0(G).

□

In general if A has a bounded approximate identity, then B is essential A-module.
We can construct a family {A ·B} as a subspace of B by

S =
{
u =

n∑
i=1

aibi | ai ∈ A, bi ∈ B,

n∑
i=1

∥ ai ∥A∥ bi ∥B<∞,∀n ∈ N
}

where N is the integer space.
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Define |||u||| = infu∈S{
∑

i ∥ ai ∥A∥ bi ∥B | u =
∑

i aibi ∈ S}. It is easy to show
that ||| · ||| is a norm, and (S, ||| · |||) is a closed subspace of (B, ∥ ∥B). Since
∥ u ∥B=∥ aibi ∥B≤∥ ai ∥A · ∥ bi ∥B for all ai ∈ A, bi ∈ B, and for any finite sum
u =

∑n
i aibi, ai ∈ A, bi ∈ B , we have

∥ u ∥B≤ |||u|||S = inf
{ n∑

i=1

∥ ai ∥A∥ bi ∥B
∣∣∣ u =

∑
aibi ∈ S

}
.

This shows that S ⊂ B, and the dual spaces of B and S turn to be S∗ ⊃ B∗. Hence
for A ⊂ M(A), and B∗ ⊂ S∗, one may check easily that

M(A) ∼= S∗ provided A = B∗.

One can establish the following plausible theorem.

Theorem 2.2. Let A be a commutative Banach algebra having a bounded approxi-
mate identity, and B an essential A-module with property A = B∗. Then the mul-
tiplier space M(A) of A is isometrically isomorphic to S∗. On the other word, we
can describe this theorem as the following interesting diagram to prove M(A) ∼= S∗.

A ⊂ M(A)

∥ ≀ ?
=⇒ ∥ ≀

B∗ ⊂ S∗

Proof. Let T ∈ M(A) correspond to a µ ∈ S∗ by the following expression :
for any u =

∑
i aibi ∈ S ⊂ B, the mapping : T → µ defined by

(1) ⟨u, µ⟩ =
∑

i⟨bi, Tai⟩ for
∑

i aibi = u ∈ S .
We want to show that T → µ defined by the above identity (1) is well defined.

That is to show :

u =
∑
i

aibi = 0 ⇒ ⟨u, µ⟩ =
∑
i

⟨bi, Tai⟩ = 0.

Indeed for each α, let Teα = hα. We obtain

|⟨bi, hαai⟩ − ⟨bi, Tai⟩| ≤ ∥ hαai − Tai ∥A∥ bi ∥B
≤ ∥ T ∥∥ eαai − ai ∥A∥ bi ∥B
→ 0, as the limit is taken over α.

It yields that for u =
∑

i aibi ∈ S, and µ ∈ S∗, we have

⟨u, µ⟩ =
∣∣∣∑

i

⟨bi, Tai⟩
∣∣∣ =

∣∣∣∑
i

⟨bi, Tai⟩ −
∑
i

⟨bi, hαai⟩
∣∣∣

≤
∑
i

|⟨bi, Tai − Teαai⟩|

≤
∑
i

∥ bi ∥∥ ai − eαai ∥∥ T ∥

→ 0, as the limit is taken over all α.
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This shows that

u =
∑
i

aibi = 0 ⇒ ⟨u, µ⟩ =
∑
i

⟨bi, Tai⟩ = 0.

Next we would prove that the mapping T → µ is an isometrically isomorphism map
M(A) onto S∗. Actually, for any a ∈ A, µ ∈ S∗, define

ta : µ ∈ S∗ → B∗

by b→ ⟨b, taµ⟩ = ⟨ab, µ⟩ for all b ∈ B.

Evaluate |⟨ab, µ⟩| = |⟨b, taµ⟩| ≤∥ µ ∥∥ a ∥A∥ b ∥B yields ∥ taµ ∥≤∥ µ ∥∥ a ∥A.
For T ∈ M(A) is a continuous linear operator on A, if A ∼= B∗, a ∈ A corresponds
a ta ∈ B∗, says ta = Ta ∈ A, such that for b ∈ B,

⟨b, Ta⟩ = ⟨ab, µ⟩ = ⟨b, taµ⟩,
we obtain

(a) ∥ Ta ∥A≤∥ taµ ∥≤∥ µ ∥∥ a ∥A=⇒∥ T ∥≤∥ µ ∥ .
Since T ∈ M(A), from u =

∑
aibi ∈ S, µ ∈ S∗ , we have

|⟨u, µ⟩| =
∣∣∣∑

i

⟨bi, Tai⟩
∣∣∣ ≤

∑
i

∥ Tai ∥A∥ bi ∥B

=⇒ |⟨u, µ⟩| ≤ inf
u∈S

∥ T ∥
∑
i

∥ ai ∥A∥ bi ∥B ≤∥ T ∥∥ u ∥S .

Thus,

(b) ∥ µ ∥≤∥ T ∥, for all u =
∑
i

aibi ∈ S.

By (a) and (b) we obtain that ∥ µ ∥=∥ T ∥ . □
Remark. In Theorem 2.1 , we assume that the Banach algebra A has a bounded
approximate identity . But we notice that not every Banach algebra has a bounded
approximate identity . For example, It is well known that the space

Ap(G) = {f ∈ L1(G) | the Fourier transform f̂ ∈ Lp(Ĝ), 1 ≤ p <∞}

with norm ∥ f ∥Ap=∥ f ∥1 + ∥ f̂ ∥p , is a commutative Banach algebra under
convolution product. This Banach algebra Ap(G) has no uniform (∥ · ∥Ap) bounded
approximate identity in Ap(G). We state this algebra as the following example.

Example 2 (cf Lai [6] , p.574, and Larsen [15])). Prove that Ap(G), 1 ≤ p < ∞
is a commutative Banach algebra, and that Ap(G) has no bounded approximate
identity.

Proof. Let f, g ∈ Ap(G). Then f̂ , ĝ ∈ C0(Ĝ) ∩ Lp(Ĝ), for 1 ≤ p <∞ .
It yields

∥ f ∗ g ∥Ap = ∥ f ∗ g ∥1 + ∥ f̂ · ĝ ∥p
= ∥ g ∗ f ∥Ap

≤ ∥ f ∥1∥ g ∥1 + ∥ f̂ ∥∞∥ ĝ ∥p
≤ ∥ f ∥1 (∥ g ∥1 + ∥ ĝ ∥p) (since ∥ f̂ ∥∞≤∥ f ∥1)
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= (∥ f ∥1 + ∥ f̂ ∥p) ∥ g ∥Ap

= ∥ f ∥Ap∥ g ∥Ap

Hence Ap(G) is a commutative Banach algebra.
Let {eα} be a bounded approximate identity in L1(G) with Fourier transform êα
of eα having compact support in Ĝ for each α, then êα ∈ Lp(Ĝ) deduces that the
approximate identity {eα} ⊂ Ap(G) ⊂ L1(G) can not uniform bounded in Ap(G).

Indeed, for any f ∈ AP (G),

∥ eα ∗ f − f ∥Ap = ∥ eα ∗ f − f ∥1 + ∥ êαf̂ − f̂ ∥p
≤ ∥ eα ∗ f − f ∥1 + ∥ f̂ ∥∞∥ êα − 1 ∥p

−→ 0, as limit taken over all α.
This implies that êα → 1 uniformly on a compact set K ⊂ Ĝ. It follows that for an
ϵ > 0 , ∫

K
(|êα(γ)| − 1)pdγ > −ϵ =⇒

∫
K
|êα(γ)|pdγ > m(K)− ϵ

where m(K) is the measure of K and ϵ is small, it yields

∥ êα ∥p>
(m(K)

2

) 1
p
,

but m(K) may be large enough. Hence ∥ êα ∥p is not uniform bounded on α, and
so ∥ eα ∥Ap is not uniformly bounded in Ap(G). □

3. Multipliers of Banach module homomorphism

Recall that A is a commutative Banach algebra and that X and Y are A-module
Banach spaces. A bounded linear operator T ∈ L(X,Y ) satisfying

(3.1) T (ax) = a(Tx) for all a ∈ A, x ∈ X,

is called a multiplier of X to Y under A-module. The space of such multipliers is
A-module homomorphisms from X to Y and is denoted by

(3.2) MA(X,Y ) = HomA(X,Y ) = {T ∈ L(X,Y )| T (ax) = a(Tx), a ∈ A, x ∈ X}.
It is a closed subalgebra of L(X,Y ), the space of all bounded linear mappings of X
into Y . In particular, if A = X = Y = L1(G), then the multiplier space M(L1(G))
coincides with the expression of isometrically isomorphic relations “∼=” as in (1.1).

(3.3) M(L1(G)) = HomL1(G)(L
1(G), L1(G)) ∼= (L1(G), L1(G)) ∼=Mb(G).

where (E(G), F (G)) stands for the space of all invariant operators commute with
translation operator τa on the function spaces of E(G) to F (G). The isometrically
isomorphism ” ∼= ” in (3.3) is the same as (1.1) which is followed from (i) (ii) (iii)
of Theorem 1.1.

In general, the multiplier space HomA(X,Y
∗) was characterized by Rieffel [16]

as the following dual space of the module tensor product X ⊗A Y :

(3.4) HomA(X,Y
∗) ∼= (X ⊗A Y )∗,

where ⊗A denotes the A-module tensor product defined by

X ⊗A Y = X⊗̂γY/K.
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Here K is the closed linear subspace of the complete projective tensor product space
X⊗̂γY generating by elements:

ax⊗ y − x⊗ ay, for a ∈ A, x ∈ X, y ∈ Y

and ⊗̂γ is the completion of the algebra tensor X ⊗ Y under the largest reasonable
cross norm γ. Here

X ⊗ Y =
{
u =

∑
i

xi ⊗ yi

∣∣∣ ∑
i

∥ xi ∥X∥ yi ∥Y<∞
}

with norm

γ(u) ≡ |||u||| = inf
u

∑
i

∥ xi ⊗ yi ∥= inf
u

∑
i

∥ xi ∥x∥ yi ∥y,

inf
u

means that the infimum is taken by all representations of u =
∑

i xi ⊗ yi in

X ⊗ Y .
The reasonable crossnorm means that

u ∈ X ⊗ Y, u = x⊗ y implies ∥ u ∥=∥ x⊗ y ∥=∥ x ∥X∥ y ∥Y ;

and u =
∑
i

xi ⊗ yi, ∥ u ∥= inf
∑
i

∥ xi ∥X∥ yi ∥Y .

Note that a bounded linear operator T ∈ HomA(X,Y
∗) in (3.4) corresponding a

continuous linear functional ψ on X ⊗A Y is given by

(Tx)(y) = ψ(x⊗ y) for all x ∈ X, y ∈ Y.

Here HomA(X,Y
∗) = MA(X,Y

∗) is the space of all A-module homomorphisms
from X to Y ∗, the topological dual of Y , that is , each T ∈ HomA(X,Y

∗)satisfies

T (ax) = a(Tx) for all a ∈ A, x ∈ X, Tx ∈ Y ∗.

where T is a bounded linear operator from X to Y ∗; X⊗A Y denotes the A-module
tensor product space of X and Y .

There are some known results in scalar-valued function space of L1(G)-module by
convolution. We state three typical L1(G)-module multiplier problems as follows.

(i) HomG(L
1(G), L1(G)) ∼=Mb(G), (by Theorem1.1, (iii) ⇐⇒ (ii))

where HomG = HomL1(G), and Mb(G) is the space of all bounded regular
Borel measures on G.

(ii) HomG(L
1(G), Lp(G)) ∼= (L1(G)⊗G L

q(G))∗ = (Lq(G))∗ = Lp(G),
for 1 < p <∞, 1

p + 1
q = 1 where ⊗G = ⊗L1(G).

(iii) HomG(L
P (G), LP (G)) ∼= (Lp(G)⊗G L

q(G))∗ ∼= Sp(G)
∗,

where Sp(G) is a Banach algebra generated by{
u =

∞∑
i

figi : fi ∈ Lp(G), gi ∈ Lq(G),
∞∑
i

∥ fi ∥p∥ gi ∥q<∞
}

under pointwise product and the norm is defined by (cf. Theorem2.2 or
Larsen [15])

|||u||| = inf
{ ∞∑

i

∥ fi ∥p∥ gi ∥q ; u =

∞∑
i

fi · gi ∈ Sp(G)
}
.
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4. Some multiplier spaces of L1(G,A)-module spaces

Assume that A is a commutative semisimple Banach algebra with a bounded
approximate identity of norm 1. The space L1(G,A) is the set of all A-valued
(Bochner) integrable functions defined on G. It is a Banach algebra under convolu-
tion product.

It is known that if two Banach algebras A and B have bounded approximate
identities {aα} and {bβ}, respectively, then A⊗̂γB has a bounded approximate

identity {aα⊗bβ}(α,β) where ⊗̂γ is the completion of usual tensor product of Banach
algebras with respect to the projective tensor norm γ.

It is easy to show that L1(G,A) = L1(G) ⊗̂γ A. Thus if A has a bounded approx-
imate identity, then so does L1(G,A). Hence L1(G,X) is an essential L1(G,A)-
module. Moreover, Lp(G,X) for each p, 1 < p <∞ and C0(G,X) are also essential
L1(G,A)-module Banach spaces.

We would characterize the multipliers of Banach space / algebra-valued function
spaces defined on locally compact Abelian group G, which is closely related in
scalar-valued function on G. Mainly, there are three statements for a bounded
linear operator T ∈ L(L1(G,A)) as in Theorem 1.1 (i), (ii) and (iii) by changing
L1(G) to L1(G,A) as the following (i), (ii) and (iii):

(i) Tτa = τaT for any a ∈ G, T is an invariant operator.
That is, T ∈ (L1(G,A), L1(G,A)).

(ii) T (f ∗ g) = Tf ∗ g = f ∗ Tg, T is a multiplier of L1(G,A), f, g ∈ L1(G,A).
(iii) ∃ ! µ ∈Mb(G,A) such that Tf = µ ∗ f for all f ∈ L1(G,A).

But in Banach vector A-valued space, not any bounded linear invariant operator
is always a multiplier (cf. Tewari, et al. [18]). They showed as Theorem4.1.

Theorem 4.1. If A has dimA > 1, there is a bounded linear invariant operator
T ∈ (L1(G,A), L1(G,A)) which is not a multiplier of L1(G,A). That is,

T /∈ HomA(L
1(G,A), L1(G,A)).

This theorem disprove Akinyele’s results in [1] about the equivalent of multi-
plier and invariant operator on L1(G,A). Actually, (i) ⇒ (ii) is false. The other
implications: (ii) ⇒ (i), (ii) ⇔ (iii) and (iii) ⇒ (i) are true.

In [18] Tewari, et al. established that

HomA(L
1(G,A), L1(G,A)) ∼=M(G,A) (that is, (ii) ⇔ (iii))

provided A has identity of norm 1.
This result is extended by Lai [10, Theorem 9] which we state as Theorem 4.2.

Theorem 4.2. Let A be a commutative Banach algebra with identity of norm 1, and
X an A-module Banach space. Then the following two statements are equivalent.

(a) T ∈ HomL1(G,A)(L
1(G,A), L1(G,X)).

(b) ∃ ! X-valued vector measure µ ∈Mb(G,X) such that

Tf = f ∗ µ for all f ∈ L1(G,A).

Moreover, by Theorem 4.2, we have the next relation:

(4.1) (L1(G,A), L1(G,X)) ⇏⇐ HomL1(G,A)(L
1(G,A), L1(G,X)) ∼=Mb(G,X).
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If A = C in (4.1), we deduce that

(4.2) HomG(L
1(G), L1(G,X)) ∼=Mb(G,X). (where HomG=Hom L1(G))

If X = A in Theorem 4.2, we then deduce

(4.3) M(L1(G,A)) = HomL1(G,A)(L
1(G,A), L1(G,A)) ∼=Mb(G,A).

We treat with on a more general form and prove that (cf. Lai [ [10], Theorem 9])

(4.4) HomL1(G,A)(L
1(G,A), L1(G,X)) ∼=Mb(G,X).

Furthermore, we also prove that (cf. Lai [11])

(4.5) HomL1(G,A)(L
1(G,A), Lp(G,X)) ∼= Lp(G,X) for 1 < p <∞,

provided both X∗ and X∗∗ have wide Radon Nikodym Propery (R.N.P. for
bravity).
Complementary Interpretation for a Banach Space X has wide R.N.P..

Let Ω be a locally compact Hausdorff topological space. Let (Ω,Γ, µ) be a measure
space with a fixed positive measure µ. Let X be a normed linear space.

Definition 4.3. In a finite measure space (Ω,Γ, µ), if each µ-continuous vector
measure ψ : Γ → X of bounded variation, there exists a Bochner integrable function
g : Ω → X such that ψ(E) =

∫
E |g(t)|Xdµ, E ∈ Γ. The Banach space X is said to

have the R.N.P. with respect to the positive measure µ.

Proposition 4.4. The dual Banach space X∗ of X has R.N.P. with respect to a
finite measure E if and only if X is an Asplund space. That is every continuous
real value convex functions defined on an open subset of X is Fréchèt differentiable
on a dense subset Gδ in its domain. (The set A ⊂ X is a Gδ set if A= countable
intersection of open sets, A =

∩
Uα, Uα is open.)

Consider a function space Lp(Ω, X) of all X-valued strongly measurable function

f on Ω such that ∥f∥Xp = (
∫
Ω |f(t)|pXdµ(t))1/p < +∞ for 1 ≤ p <∞.

In the case Ω = G, µ = Haar measure of G. Then the dual space of Lp(G,X),
1 ≤ p < ∞, and the space Lq(G,X∗), 1/p + 1/q = 1, has the following relation
stated as in the following Theorem.

Theorem 4.5 (cf. Lai [11], Theorem 2). For each p, 1 < p < ∞, the duality
expression holds

Lp(G,X)∗ ∼= Lq(G,X∗),
1

p
+

1

q
= 1

if and only if X∗ has the wide R.N.P. (see the definition later).

In harmonic analysis it takes (G,Γ, µ) instead of the measure space (Ω,Γ, µ) in
which G is a LCA group with Haar measure µ. Thus we denote Γ a family of
compact subsets of G. Then a Banach space X is said to have a wide R.N.P. with
respect to (Haar) measure µ if for any K ∈ Γ, µ(K) < ∞ has R.N.P. with respect
to µK defined by µK(E) = µ(K ∩E) for any measurable subset E ⊂ G. So that E
is partitioned to be finite sum of disjoint characteristic functions.

Our main goal is to characterize

Lp(G,X)∗ ∼= Lq(G,X∗), 1/p+ 1/q = 1
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under the process of Cc(G,X) and Cc(G,X
∗) are dense in Lp(G,X) and Lq(G,X∗)

respectively, and employ these simple sums of step functions to approach the strongly
(Bochnar) integrable function. Therefore in the characterization always by using
Cc(G,X) and Cc(G,X

∗) function spaces to dense in Lp(G,X) and Lq(G,X∗), re-
spectively, and in case use the spaces Cc(G,X) embeded isometrically isomorphism
in Cc(G,X

∗∗). Thus cause us to assume X∗ and X∗∗ have wide R.N.P., can be as-
sumed that X and X∗ have wide R.N.P. to improve X∗ and X∗∗ have wide R.N.P.
regarded X is embeded in X∗∗. This improvement was indebted from Prof. T. S.
Quo in The National University of Singapore.

Note that we do not discuss the space L∞(G,X) but use C0(G,X) to instead of
L∞(G,X) since Cc(G,X) is not dense in L∞(G,X).

We shall now consider the other spaces of Banach (vector)- valued functions
defined on G. The spaces given as the following are essential. They are easily to
see the results given by each of the explanation.

(1) L1(G,A) denotes the set of all Bochner integrable A-valued functions de-
fined on G. It is a commutative Banach algebra under convolution, and
L1(G,A) ∼= L1(G) ⊗̂γ A has a bounded approximate identity provided A
has.

(2) Lp(G,X) is the space of all X-valued measurable functions defined on G
whose X-norm are usual Lp-space (f = g in Lp means f = g a.e.).
It is a Banach space for each p, 1 ≤ p < ∞, which is essential L1(G,A)-
module.

(3) C0(G,X) denotes the space of all X-valued continuous functions defined
on G vanishing at infinity. It is also an essential L1(G,A)-module under
supremum norm over G:

f ∈ Co(G,X), ∥ f ∥X,∞= sup
t∈G

∥ f(t) ∥X .

(4) C0(G,A) denotes the space of all A-valued continuous functions defined on
G vanishing at infinity. It is a commutative Banach algebra under pointwise
product. It is also an L1(G,A)-module Banach space by convolution.

Theorem 4.6. By L1(G,A) is a commutative Banach algebra having a bounded
approximate identity, then we have following identities

(a) L1(G,A) ∗ C0(G,X) = C0(G,X) ∼= L1(G,A) ⊗̂γ C0(G,X).
(b) L1(G,A) ∗ C0(G,A) = C0(G,A) ∼= L1(G,A) ⊗̂γ C0(G,A).

Proof. (a) We only have to show that

C0(G,X) ∼= L1(G,A) ⊗̂γ C0(G,X).

Let f ∈ L1(G,A) and F ∈ C0(G,X). Define a bilinear map

B : (f, F ) ∈ L1(G,A)× C0(G,X) −→ f ∗ F ∈ C0(G,X).

Then the bilinear map B gives rise a bounded linear map of norm ∥B∥ ≤ 1 defined
by ∥f ∗ F∥X ∞ = supt∈G |f ∗ F (t)|X ≤ ∥f∥A1∥F∥X ∞ where

|f ∗ F (t)|X ≤
∫
G
|f(ts−1)|A|F (s)|X ds ≤ sup

t∈G
|F (t)|X

∫
G
|f(s)|A ds,
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∥f ∗ F∥X ∞ = sup
t∈G

|f ∗ F (t)|X ≤ ∥f∥A1 sup
t∈G

|F (t)|X = ∥f∥A1∥F∥X ∞,

It then yields the projective tensor product norm

γ(u) = inf
{∑

i

∥fi ⊗ Fi∥X ∞ =
∑
i

∥fi∥A1∥Fi∥X ∞ :

u =
∑
i

fi ⊗ Fi, fi ∈ L1(G,A), Fi ∈ C0(G,X)
}
.

γ is the largest reasonable crossnorm of the projective tensor norm. The set {f ∗
F | f ∈ L1(G,A), F ∈ C0(G,X)} ⊂ C0(G,X), and is dense in C0(G,X) under the
γ-norm in C0(G,X). Hence C0(G,X) = L1(G,A) ⊗̂γ C0(G,X), proves (a). The
proof of (b) can be taken X = A in the expression (a) to get L1(G,A) ∗C0(G,A) =
C0(G,A) ∼= L1(G,A) ⊗̂γ C0(G,A). □

There are many researchers (cf. [1, 3–5], [9–14], [16–18]) study the multiplier
spaces in various function spaces of Banach space or Banach algebra-valued func-
tions defined on G. But there is a problem that in general , not every invariant
continuous linear operator is always a multiplier of the concerned object. Pre-
cisely in the Banach (vector-) valued function space, an invariant operator T ∈
(L1(G,A), L1(G,A)) need not be a multiplier operator in M(L1(G,A)).
That is, T /∈ HomA(L

1(G,A), L1(G,A)) provided dim A > 1 (cf. Tewari, Dutta
and Vaidya [18]). Moreover, for each p, 1 ≤ p <∞, the space

Lp(G,X) = {f : G −→ X | |f(t)|pX ∈ L1(G)}
where |f(t)|X denotes the norm of X,

is also an essential L1(G,A)-module Banach space.
If p = ∞, the space L∞(G,X) is defined by the same way with norm

∥f∥X,∞ = ess sup
t∈G

|f(t)|X , for f ∈ L∞(G,X).

In this case, we consider only a closed subspace C0(G,X) in L∞(G,X). This space
C0(G,X) is the X-valued continuous functions vanishing at infinity on G, and
supply the norm as

∥f∥X,∞ = sup
t∈G

|f(t)|X for f ∈ Co(G,X),

it is a Banach space. The dual space C0(G,X)∗ is indentified byM(G,X∗) in usual
form, provided X∗ has wide R.N.P. (cf. Lai [11]), and Tewari et al. [18]).

For 1 < p < ∞, 1/p + 1/q = 1, the dual space of Lp(G,X) is isometrically
isomorphic to Lq(G,X∗) if and only if X∗ has the wide R.N.P. (cf. Lai [11])

The following theorem is useful representation and is easy to derive.

Theorem 4.7.

L1(G,A) = L1(G) ⊗̂γ A, C0(G,A) ∼= C0(G) ⊗̂γ A,

and Lp(G,X) = Lp(G) ⊗̂γ X for 1 < p <∞.
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5. Multipliers of L1(G,A) to L1(G,X), Lp(G,X) and C0(G,X)

At first, we state the following Theorem for the characterization of the invariant
operators.

Theorem 5.1. Let X and Y be Banach spaces. Then the following statements are
equivalent.

(a) T ∈ (L1(G,Y ), L1(G,X)) is an invariant operator.
(b) There exists a unique continuous linear map L ∈ L(Y,Mb(G,X)) such that

T (f ⊗ y) = f ∗ Ly for all f ∈ L1(G), y ∈ Y.

Moreover, (L1(G, Y ), L1(G,X)) ∼= L(Y,Mb(G,X)).

Proof. (a)⇒ (b) Let T ∈ (L1(G,Y ), L1(G,X)) and y ∈ Y . We define

Ty : L1(G) −→ L1(G,X) by Tyf = T (fy) for all f ∈ L1(G).

It is clear that Ty is translation invariant whenever T is.
So that Ty ∈ (L1(G), L1(G,X)). Applying Theorem 1.1. (iii), we see that Ty is a
multiplier. That is,

Ty ∈ HomL1(G)(L
1(G), L1(G,X)),

and hence there is a unique µy ∈Mb(G,X) such that

Tyf = f ∗ µy for all f ∈ L1(G,A), and ∥Ty∥ = ∥µy∥.
Note that, ∥Ty∥ ≤ ∥y∥Y ∥T∥.
(b)⇒ (a) Conversely, if L ∈ L(Y,Mb(G,X)), we define a mapping

T 1
L : L1(G)× Y −→ L1(G,X) by T 1

L(f, y) = f ∗ L(y) for all f ∈ L1(G), y ∈ Y.

Then T 1
L is a bilinear continuous operator, and by the universal property of tensor

product, there exists a linear map TL, from Theorem4.7: L1(G) ⊗̂γ Y = L1(G,Y ),

TL : L1(G) ⊗̂γ Y = L1(G,Y ) −→ L1(G,X)

such that
TL(f ⊗ y) = f ∗ L(y) for all f ∈ L1(G), y ∈ Y

and satisfying
∥TL∥ ≤ ∥L∥.

This TL is a translation invariant operator since

τsTL(f ⊗ y) = τsT (fy)

= τs(f ∗ Ly)

= τsf ∗ L(y)
= TL(τsf(y))

= TLτs(fy) for all s ∈ G, y ∈ Y, f ∈ L1(G).

Hence TL ∈ (L1(G,Y ), L1(G,X)). By the first paragraph in the proof, we obtain
∥TL∥ = ∥L∥. Finally, the one-one correspondence between (L1(G,Y ), L1(G,X))
and L(Y,Mb(G,X)) is obvious. Therefore we obtain

(L1(G,Y ), L1(G,X)) ∼= L(Y,Mb(G,X)),
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and the proof is completed. □
Theorem 5.2. Let A be a commutative semi-simple Banach algebra (not necessarily
with identity) and X a Banach A-module. Then

(5.1) HomL1(G,A) (L
1(G,A), L1(G,X)) ∼= HomA(A,Mb(G,X)).

Proof. It is known that a multiplier operator T ∈ HomL1(G,A) (L
1(G,A), L1(G,X))

is an invariant operator T ∈ (L1(G,A), L1(G,X)).
Then for any t ∈ G and f, g ∈ L1(G,A),

g ∗ (Tτt)f = T (g ∗ τt(f)) = τt(g) ∗ Tf = τt(g ∗ Tf) = g ∗ τt(Tf),
and hence

L1(G,A) ∗ (Tτt − τtT )f = {0} for all t ∈ G and f ∈ L1(G,A).

The reason is guaranteed from semi-simple of A and then the Banach algebra
L1(G,A) without order, as well as L1(G,X) order free. It follows that T is invariant,
that is, T ∈ (L1(G,A), L1(G,X)). Taking Y = A in Theorem 5.1 , it yields (5.1).

□

6. Remark

Finally we remake that an invariant operator

T ∈ (L1(G,A), L1(G,A)) ⇏ T ∈ M(L1(G,A)).

We may ask that what is the necessary and sufficient condition for which

(L1(G,A), L1(G,A)) = HomL1(G)(L
1(G,A), L1(G,A))?

That is, whether M(L1(G,A)) ∼= (L1(G,A), L1(G,A))?
Precisely, one could consult Lai/Chang [13], Theorem 5.2, which we stated as

Theorem 6.1.

Theorem 6.1. Let A be a commutative Banach algebra with identity of norm 1. X
be a unit linked, order-free, Banach-module and A a faithful representation on X,
then each invariant operator T : L1(G,A) → F (G,X) is a multiplier if and only if
A ∼= C. Here F (G,X) = Lp(G,X) for each p, 1 ≤ p <∞, or F (G,X) = C0(G,X).
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