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CONVERGENCE OF A DELAYED NEURAL NETWORK FOR A
SECOND-ORDER CONE PROGRAMMING AND SIMULATIONS

JIE ZHANG, JIANI YANG, AND YIFEI WANG

ABSTRACT. In this study, a delayed neural network (DNN) framework tailored
specifically for solving second-order cone programming (SOCP) problems is pre-
sented. The cornerstone of this method is the integration of optimality conditions
with projection operators, which serve as fundamental building blocks for the net-
work’s design. Initially, the problem of identifying optimal solutions within the
realm of SOCP is reframed as the quest for equilibrium points within the proposed
DNN framework. Subsequently, under specified conditions, we rigorously prove
existence and stability of these equilibrium points within DNN. This transforma-
tion and subsequent analysis pave the way for utilizing the DNN as an effective
tool for solving SOCP problems. Finally, we performed several numerical exper-
iments, including those for solving the linear and quadratic SOCP problems, as
well as the optimal grasping force multi-finger manipulator problem. Simulations
were subsequently conducted, confirming the feasibility and effectiveness of the
DNN.

1. INTRODUCTION

The SOCP broadens the scope of conic optimization by incorporating constraints
defined by second-order cones. This expansion has enabled its application in diverse
fields such as control theory, where it aids in the design of robust controllers; signal
processing, where it facilitates efficient signal recovery and filtering; and machine
learning, where it contributes to the development of advanced algorithms for opti-
mization and decision-making. Many familiar optimization problems, such as dis-
tributionally robust optimizations and convex quadratic programming (QP), can be
transformed into SOCP. The superiority of SOCP has made it a hot research topic
for scholars, and the research results on SOCP models and numerical methods have
deepened and enriched the field, see [10] and [1] and reference therein. Recently,
there are many significant progress in the understanding and solution of SOCP
problems. Fukuda et al. [4] formulated a new second-order necessary optimality
criteria for nonlinear SOCP problems, contingent upon the fulfillment of Robin-
son’s constraint qualification. Their findings hold significance for the advancement
of both first and second-order algorithmic approaches. Meanwhile, Liang et al. [8]
embraced a numerical Method for SOCP and showcasing competitive robustness of
solvers like Mosek and SDPT3. Andreani et al. [2] delved into the interplay be-
tween optimality conditions in nonlinear programming and SOCP, introducing an
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augmented Lagrangian approach characterized by its global convergence properties.
While significant strides have been made, there remains a need for more efficient
algorithms. Additionally, the integration of SOCP with other optimization tech-
niques and its application in emerging fields such as artificial intelligence and big
data analytics present fertile grounds for future research.

While traditional approaches to tackling SOCP, encompassing interior-point meth-
ods and smoothing Newton methods, have undergone rigorous examination, they
may falter in real-time applications owing to their intricate computational demands.
This underscores the need for more efficient strategies tailored for such time-sensitive
scenarios. In response, researchers have turned to neural network approaches, which
offer potential advantages in terms of computational efficiency and hardware im-
plementability. A notable contribution in this domain involves the conception of a
neural network architecture grounded in the generalized Fischer-Burmeister func-
tion, empirically proven efficient in resolving nonlinear convex programs constrained
by second-order cones [11]. This innovative model exhibits enhanced stability and
expedited convergence rates, outperforming traditional optimization techniques in
these key metrics. Further advancements have been made by proposing a projected-
based neural network method that simplifies the SOCP problem into an equivalent
projection equation, leading to reduced computational time and guaranteed conver-
gence to the exact solution [22]. This approach leverages the properties of second-
order cone projection, offering a stable and efficient solution to SOCP problems.
In another significant development, a new neural network was introduced to solve
SOC constrained variational inequality (SOCCVI) problem by first transforming
it into a convex SOCP task [13]. The presented model, integrating a smoothing
approach with a proficient neural network architecture, has been empirically vali-
dated to demonstrate Lyapunov stability and achieve global convergence towards
an optimal solution. Furthermore, an innovative collaborative neuro-dynamic par-
adigm has been devised to tackle convex SOCP challenges, notably in the context
of multi-fingered robotic manipulators, as demonstrated in [12]. More recently, a
novel neural network framework has emerged, targeted at resolving SOCCVI, with a
promising application in enhancing the capabilities of multi-fingered robotic hands,
as outlined in [14]. This framework simplifies the problem by reducing the state
variables and offers a model with lower structural complexity and weaker conver-
gence conditions. Lastly, a projection neural network has been introduced to ad-
dress SOCCVI problems, which achieves exponential stability under second-order
sufficient conditions [18].

Time delay neural networks have advantages in addressing certain issues, as they
can effectively capture delay phenomena within systems, thereby more clearly de-
scribing the complexity of the transmission process. In contrast, traditional neural
networks may not accurately depict these complex dynamic behaviors. In recent
years, researchers have proposed several types of DNN to solve optimization prob-
lems. Over the past two decades, there has been significant progress in employing
DNNs to address various optimization problems. These networks have demonstrated
their effectiveness in tackling complex and computationally intensive tasks across
different fields, including engineering, economics, and applied sciences. One of the
works in this area is the development of the DNN for solving QPs, as discussed
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in [6]. Subsequent research has focused on enhancing the stability and convergence
properties of DNN. For instance, the delayed projection neural network presented
in [21] has been proven to be globally exponentially stable, offering a promising
approach to solving a real-time convex QP. The introduction of time delays in neu-
ral networks, as in [7,9,23], has further enriched the methodology, allowing for the
modeling of realistic scenarios where signal transmission and processing are subject
to delays. These studies have shown that with appropriate delays. More recent
contributions, such as the work in [15], [17] and [20], have extended the applica-
tion of DNNs to convex QP with inequality constraints, which have been proven
to possess global exponential stability, ensuring the practicality and reliability of
DNNSs in solving optimization problems. The research has also explored the impact
of variable time delays on the performance of DNNs, as presented in [19]. However,
no DNN method for solving SOCP problems has emerged yet.

Motivated by the previously discussed findings, this study presents a DNN de-
signed to address a specific set of SOCP. To our fullest understanding, this marks the
inaugural instance where a DNN has been employed to tackle the SOCP. Unlike tra-
ditional neural networks that tackle SOCP, such as those referenced in [14], [12], [18],
this DNN accounts for the intrinsic time lags encountered in real-world scenarios,
thereby enhancing its practical relevance. Additionally, in contrast to standard
projection neural networks utilized for SOCP, the newly proposed projection DNN
demands fewer state variables, as the multipliers from the equality constraints are
omitted in the projection formula. By extending the technique of variation of con-
stants, we establish that this model is both Lyapunov stable and globally conver-
gent. The efficiency of this novel DNN is further substantiated through simulation
outcomes on various test cases.

The organization of the subsequent sections in this paper is detailed as follows:
Section II introduces a novel DNN, grounded in the relevant KKT conditions and
a projection operator. Section III delves into the existence and uniqueness of the
DNN'’s continuous solutions. The stability of the DNN’s equilibrium points and
the exponential convergence of its states are substantiated. Section IV showcases
numerical examples and conducts simulations to validate the DNN’s efficacy. In
addition, a comparison with the existing model further highlights the superior ef-
ficiency of the proposed DNN in addressing the specific problem. Conclusively,
Section V encapsulates the collective findings and contributions of this research
endeavor.

2. THE DELAYED NEURAL NETWORK FORMULATION

In this paper, the SOCP is specifically expressed as:

1
min ixTGx—l—ch
s. t. Ar—b=0,

r e K,

(2.1)

where z € R", G € R™" is a symmetric positive semidefinite matrix, ¢ € R", b €
RI,A € R is of full row rank, the set K is expressed as K = K™ x K™2 - - - x K™»
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withm; > 1, mi+ma+---+mp =n,i=1,---,p. Bach K™, i=1,...,pis a
m;-dimensional second-order cone defined as

K™ = {(z, Tim,) T € R™ | ||(i2,++ , Tim,)|| < i1}

| - || represents the Euclidean norm of a vector. It is worth noting that K is
defined as a set of nonnegative real numbers. Then in the case when p = n and
my =mg=---=mp=1, K is just R}.

Additionally, in this paper, we suppose that the optimal solution for (2.1) is
unique and the feasible domain is not empty. Next we investigate the equivalent
forms of the SOCP (2.1). Let Lagrange function be defined as:

1
L(z,v,u) = §xTGx +clz+ (Az —b) v +ulx.

Then by Theorem 3.6 in [3], is a optimal solution of (2.1) if and only if there exist
Lagrange multipliers v* € R!, u* € K~ such that the following KKT condition holds
at (z*,v*,u*)T:

x* is an optimal solution of (2.1) precisely when there exist Lagrange multipliers
v* € R, u* € K~ satisfying the KKT condition at the point (z*,v*, u*)T:

uw e K—,z* € K, (u*,z*) =0,
(2.2) Qz* +c+ ATv* +u* =0,
Az* —b =0,
where K~ is the polar cone of K.

Notice that v* € K, z* € K, (u*, 2*) = 0 means that for any o > 0, - (u* +
azr*) = u*, which is equivalent to Ilx(z* + au*) = z*, where for a convex set
O, Ilq(+) is the projection operator defined by Ilg(y) = argmingecq ||y — w||. The
detailed description of Il (-) can be found in [16] through spectral decomposition.

To simplify the structure of the equation system (2.2), we provide the following
theorem.

Theorem 2.1. [KKT Characterization for SOCP] Let x* be a feasible solution of
the second-order cone program (2.1). Then x* is an optimal solution if and only if
there exist Lagrange multipliers v* € R, u* € K~ such that the KKT conditions
are satisfied at the point (z*,v*, u*)T
23 (E — B)(Gz* + c+u*) + Q(Az* —b) =0,

g [t 4+ a (2 — 0 (E — B)(Ga* + ¢+ u*) + Q(Az* — b)))] — u* =0,

where B = AT(AAT)71A, Q = AT(AAT)™L, and E is the identity matriz. The
constants satisfy a > 0, o > 0.

Proof. Sufficiency. Let z* be an optimal solution to SOCP (2.1), in what follows
we know from (2.2) that there exist v* € R!, u* € K~ such that

(2.4) *eK, Az*—b=0, (u)T2z*=0

and
Gz* +c+ ATv* +u* = 0.
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Then it holds that
(2.5) —AGz* +c+ ATv* +u*) = 0.
Combining (2.4) and (2.5), We can further obtain
Az* — A(Gx* + c+u*) — AATv* =b.
Thus we have
ATy* = A1 (Az* — b — A(Gx* + ¢+ u*))
20 = AT(AAT) "V (Az* — b) — AT(AAT) L A(Ga* + ¢ + u¥).
Substituting (2.6) into Gx* + ¢ + ATv* + u* = 0, then it holds that
Ga* +c+ AT(AAT) N (Az* —b) — AT(AAT) L A(Gr* + ¢ +u*) +u* = 0.
ie.,
(I — AT(AATYTA)(Ga* + e +u*) + AT (AAT) 1 (Az* —b) = 0.

Then we have
(2.7) (E—B)(Gz" +c+u")+ Q(Az" —b) = 0.
Thus, the first equation in expression (2.3) holds.

Next, according to properties of the projection operator, z* € K,u* € K,
(u*)Tz* = 0 means
(2.8) Mp—[u* + oz —u* = 0.
Combining (2.7) with (2.8), we have

M- [u* + a((z* — o[(F — B)(Gz* 4+ ¢+ u*) + Q(Az* — b)])] = u*.

The second equation in (2.3) holds.

Necessity. Assume that u* satisfies (2.3). then we have

A(E — B)(Gz"™ + c+u*) + AQ(Az" — b) = 0.
Notice that A(E— B) =0 and AQ = F,so (F—B)(Gz*+c+u*) =0, Az*—b=0.
Let
v* = —(AAT)TLA(Gx* + ¢+ u*),
then
Gz* 4 c+ ATv* +u* = (E — B)(Gz* 4 ¢+ u*).

Therefore, the existence of (z*,v*, u*) makes the KKT condition (2.2) valid. O

Next, we will transform the above equation system (2.3) into a single projection
equation:

Theorem 2.2. The vector x* constitutes the optimal solution to the problem (2.1)
precisely when there exists a wvector u* such that the concatenated vector y* :=
(x*,u*) fulfills the projection equation:

y'=leoly" —alHy" + 2)],
where a > 0 is a constant, C :=R" x K~ and

[ (E-BG+B (E-B) ( (E-B)e—Qb
H_<dw—BW+B]—ﬂE—m>’Z_<d@—Bﬁ—@0‘
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Proof. According to the projection concept, the set of equations referenced by (2.3)
admits a representation in the subsequent format:

Ign [2* — a((E — B)(Gz* 4+ c+ u*) + Q(Az* = b)) —z* =0
and
g- [u* 4+ a((z* —o((E — B)(Gz + c+u*) + Q(Az* —b)))] —u* = 0.
Therefore

¥ =pn [2" — a((E — B)(Gz" + c+ u*) + Q(Az™ —b))]

i 2
. <((E _B)G+B (E-B) (i) + (B~ B)e— Qb))] .

On the other hand,
u' =g- [u" +a(z” —o((E - B)(Ga™ + c+u’) + Q(Az" — b)))]

o fo ()
—a ((a (E-B)G+B]-E o(E-B)) <i) +o[(E—B)c— Qb])} .

Combining the above two equations, it can be concluded that
_ (F-B)G+B E-B x* n (E—B)c—Qb
*\\o[(E-B)G+B -E o(E-B)) \u* o(E—B)e—Qb]) )|

(E—B)G+B E-B (E— B)e— Qb
H = , zZ= .
<0[(E—B)G+B] - F o*(E—B)) (O’[(E—B)C—Qb])

Then

Let

y'=lely” —a(Hy" + 2)].
Il
Based on the Theorem 2.2, we propose a new DNN to solve problem (2.1), namely
W= (v = Ve [y(t ) — a(Hy(t 1) + 2)]
(2.9) + e [y(t) — a(Hy(t) + 2)] —yy(t),
y(t) = p(t), te[-r0],

in which @ > 0,7 > 0, r > 0 represents time delay, ¢(t) is continues on [—r,0],C =
R™ x K.
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3. EXISTENCE AND STABILITY

In this section, we will discuss the existence and stability of solutions to DNN
(2.9) for SOCP problems.

We at first give a lemma to show the property of projection operator.
Lemma 3.1. For a closed convex set Q C R™. We have
Mo(z) — o ()] < [lz — 2|
holds for any z,7z' € R™.
We next give the existence of solutions to DNN (2.9).

Theorem 3.2. For every function ¢ that belongs to the space ¢ € C([—r,0], R??),
there exists precisely one continuous function y(t) that serves as a solution to the
DNN (2.9) throughout the entire global time interval [0,400).

Proof. Let
F(y) = —vy(t)+ (v —Dle [y(t —r) — a(Hy(t —r) + 2)]
+ e [y(t) — a(Hy(t) + 2)],

where y; = y(t +6), —r < 0 < 0. Define || ¢ ||,= sup_,<;<q [|#(t)||. By Lemma 3.1,
for any ¢, ¢/ € C([—r, 0], R*"),

1F(e) = F()l
<2[e—¢ - +(y =D —aH|lle =l + 1T —aH| || ¢ = ¢ |Ir

< A = aH|)[le — ¢

Thus, F is a Lipschitz continuous function on C([—r, 0], R??). There exists a single,
continuous function y(t) that serves as the solution to the equation system identified
by (2.9).

IE()l = IIF(p) — F(y)ll
<2l —y*llr + (v = DI = aH|l[l¢ — y*|lr + [T — aH|l|le — y*|I»
<2+ —aH|)le =yl

< QA+ —aHDlelr + 2+ = aH[])[ly*|l

Drawing upon the existence and extension theory of functional differential equations
as outlined in [5], we demonstrate the uniqueness and continuity of a solution that
indeed exists. Moreover, the solution y(t) persists globally over the time interval
[0,+00). This conclusion completes our proof. O

Next, we proceed to delve into the global exponential stability characteristics of
the solution pertaining to the DNN for SOCP problems.
For convenience, define Z(t) = y(t) — y* and

F(Z(t) =1 [y(t) — a(Hyt) + 2)] — Hc [y* — a(Hy" + 2)],
Z(t) =(t) == p(t) —y*, te[-r0]
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Then (2.9) can be rephrased as

{diﬁ“ = —YZ(#) + (v - VE(Z(t - 7)) + F(Z(1)),

(3:-1) Z(t) =(t), te[-r0].

We at first provide the following definition.

Definition 3.3. Assuming that the constants M > 0 and a > 0 fulfill the specified
inequality:
ly(t) —y*l| < Mll¢ — y*[|lre™, VYt >0,

The equilibrium point y* of the DNN system, as defined in (2.9), exhibits global
exponential stability, where

[ = y*[lr = sup . lo(s) = y*ll-

—r<s<
An assumption is presented as follows:
Assumption 3.4. For « > 0,y >0 and r > 0,
I+ |y=1e|+aH||-v<0
holds.
Under Assumption 3.4, we obtain the following global exponential stability result.

Theorem 3.5. Under the condition that Assumption 3.4 is fulfilled, the equilibrium
point of DNN system defined by (2.9) possesses global exponential stability.
Proof. By (3.1), we have
dZ(t)
dt
which means that for ¢t > 0
(3.2)

/Ot (5 92(8) o /Ot _76782(5)d5+/0t(7—1)6’75F(Z(S—r))ds+/0teVSF(Z(s))ds.

= —AZt)+ (y=DF(Z(t —1))+ F(Z(t)),

ds
Notice that

(3.3) /O e%%(s)ds:eﬁza)—zm)— /0 e Z(5)ds.

S
Combining (3.2) and (3.3), we have
¢ t
Z(t)=e "Z(0) + e‘”t/ (y=1)e"F(Z(s—r))ds + e_'yt/ eV F(Z(s))ds.
0 0
Therefore, we obtain

t
1Z&l < e 14 +/0 by = 1T F(Z(s — 1))l ds

- LD F(Z(s) ds
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t
SeWH¢HW+7—1/(ﬂSmu+aHWM5_ﬂ_yw%
0

t
+/¥ﬂsmu+aHWM$—yww
0

t—r

=+ -0 [+ aty(s) -y ds

T

t
+/¥ﬂs%u+aHWM@—yww
0

0
<e Y |lr +y = 16“/ TN + aH | |ly(s) — y*||ds

-Tr

t
+ 1+ - 1|€”)/ I+ aH|||y(s) — y*[lds.
0
Consequently, we have

Myt) —y | < [l +2E e (1 — eI

+aH| (|9 |l + fy (1 + |y = 1™ + aH | [ly(s) — y*1ds.
According to the Gronwall Theorem, we have
ly(t) = y*[| < Me™,
where
_ |'7 — 1| yr -
M= (147 e (I—e I +aH|) | ¢l
and 8= (14 |y —1]e™)||I + aH| — v < 0. O

Remark 3.6. Based on the aforementioned theorem, under the premise that As-
sumption 3.4 is met, the DNN model (2.9) introduced in this paper converges glob-
ally and exponentially to the sole optimal solution of the SOCP (2.1).

4. NUMERICAL RESULTS AND SIMULATIONS

In this section, we will combine the theory of above section to conduct some spe-
cific numerical calculations, verify the effectiveness of the DNN for solving SOCP
problems, and provide specific experimental data to visually demonstrate the sta-
bility of equilibrium point of the DNN for SOCP in a graphical manner. The
numerical experiments in this part were conducted on a DELL laptop with an In-
tel(R) Core(TM) i7-7500U CPU @ 2.70GHz and 2.90 GHz, using a 64 bit operating
system and Matlab R2016a for simulations.

Let’s first consider a simple example:
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Example 1: Consider the following SOCP problem:
mwin fl@)=z14+2z2+ 23+ 24 + 25+ 76

st. h(z)=Azx—-b=0, g(zr)=2¢cK°

where
1 2 00 0 1 9
1 001 40 20
A=]10 1 1 0 1 0], b=]6
1100 00 4
001020 8

Obviously, this problem can be rewritten as a SOCP problem in the form of (2.1),
and the optimal solution is * = (3,1,2,5,3,4)T. Next, we use the DNN to solve
this problem. For r = 0.1, we use the dde23 function in MATLAB to solve the
original problem. Then use the disp function to output the solution, and use the
plot function to draw a numerical solution graph, as shown in Figure 1, which
illustrates the evolution of the numerical solution over time.

x1(t)
P S e .
/it 3
——xd(t)
—x5()|
X6ty

Solutions x(t)

A "
100 150 200 250 300 350 400 450 500 950 600
time(s)

FIGURE 1. Evolution of z(t) for Example 1 with r = 0.1

It can be observed very intuitively that the continuous solution of the equation
exists and is unique, and the solution trajectory converges globally and exponen-
tially, converging to * = (3,1,2,5,3,4)T. The stored data is specifically represented
below in Table 1.

Next, we will further consider the influence of delay parameters r on the conver-
gence speed of differential equation solutions. We take r = 0.5,1, 5, in sequence and
present the corresponding convergence results, as shown in Figures 2-4.

We can see from the graph that as r increases, the time required for the solution
of the DNN to converge to the optimal solution becomes longer and longer. In fact,
when r = 5 is present, a globally exponentially stable image can still be obtained,
as shown in Figure 5.

But the computation time required to achieve this result has also significantly
increased, taking nearly 10 seconds, far exceeding the computation time required
to reach a stable solution for r = 0.5 and r = 1. That is to say, the delay in time
in DNN directly affects the global exponential convergence speed of the DNN, and
the larger the delay, the slower the convergence speed.
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TABLE 1. The optimal solution x and the optimal value f(x) of

Example 1 corresponding to column ¢ when r = 0.1

Step @

Optimal Solution x

Optimal Value f(x)

1
50
200

750
1050
1066

(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)”
(3.0999, 2.7268, 0.0977, 4.6101, 3.2002, 1.4401)
(3.2561,0.8861,2.1331, 4.8970, 2.9553, 3.9046) 7
500 (2.9822,1.0102,1.9875,5.0004, 3.0050, 3.9986)7
(2.9993,1.0007, 1.9977, 4.9898, 3.0022, 3.9996) 7
(2.9998,0.9998, 2.0000, 4.9997, 2.9994, 4.0000) "
(3.0001, 1.0001, 2.0002, 5.0001, 3.0009, 3.9999)7

6.0000

15.1748
18.0322
17.9839
17.9893
17.9987
18.0013

FIGURE 2.

FIGURE 3.

—x1it)
——xan)
- a3t
x4()
x5(1)
X6(1)

Solutions x(t)

W[WW\ ]

0
100 150 200 250 300 350 400 450 500 550 600
time(s)

Evolution of z(t) for Example 1 with r» = 0.5

—— 1t}
x2it)
x3(t)

——xah
x5(1)
xBit)| |

Solutions x(t)
|
|
{
1
!
1

0 L L L L L L . " L
100 150 200 250 300 350 400 450 500 550 600

time(s)

Evolution of z(t) for Example 1 with r =1

Next, we consider the deformation form of Example 1, changing the objective
function from a linear function to a quadratic function, that is, solving the following

problem.
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B

L L,A, x2(h)
5 } N AN x3() |A
S

%5()
4r xB(t)
: } ~ SN M
52 . ,**L‘“ WAoot
B L /

4
H -

0 . L . . L . . s n
100 150 200 250 300 350 400 450 500 550 600
time(s)

FIGURE 4. Evolution of z(t) for Example 1 with r =5

6

—yim

h ——vam
5 LT ¥3t
/

— ¥l
| ~"
“Mﬂ-‘«'\\ \hiaiais

—¥sl)
¥6(t)

-

Solutions y(t)
w

[

1+ 1 .‘(;)A'r"—(-ﬂ'JJ-L-’-JLM,':.x\L A —

0 500 1000 1500 2000 2500 3000
time(s)

F1aure 5. Evolution of y(t) for Example 1 with r =5

Example 2: Consider the following SOCP problem:

1
Hlxin flx) = 51‘%4—1724-1'3—!-1:4—{—%‘5—1—176
s.t. h(z)=Az—b=0, g(z)=2x¢c K",
where
12 00 01 9
100140 20
A=10 1 1 0 1 0], b=1]6
110 0 0 0 4
001020 8
Considering the DNN with o = 0.5, v =2, ¢ = 1. Then it can be calculated
that
0.9412  0.0588 —0.1176 —0.1765 0.0588 —0.0588
0.0588  0.9412  0.1176  0.1765 —0.0588 0.0588
p_ —0.1176 0.1176  0.7647 —0.3529 0.1176 —0.1176
| —-0.1765 0.1765 —0.3529 0.4706  0.1765 —0.1765 |’
0.0588 —0.0588 0.1176  0.1765  0.9412  0.0588
—0.0588 0.0588 —0.1176 —0.1765 0.0588  0.9412
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—0.0588 —0.1765 —1.0000 1.1765  0.8824
0.0588  0.1765  1.0000 —0.1765 —0.8824
| —0.1176 —0.3529 —0.0000 0.3529  0.7647
@= —-0.1765 0.4706  1.0000 —0.4706 —1.3529 |’
0.0588  0.1765  0.0000 —0.1765 0.1176
0.9412 —0.1765 —1.0000 —0.8235 0.8824

z = (—1.4118, —2.5882,1.1765, —0.2353, —4.5882, —2.4118)" .

Let r = 0.1, use the dde23 function in MATLAB again to solve and draw the
trajectory graph of the numerical solution, as shown in Figure 6.

6

\

IS

Solutions x(t)

S

100 150 200 250 300 350 400 450 500 550 600
time(s)

FIGURE 6. Evolution of z(t) for Example 2 with » = 0.1

Similarly, it can be observed very intuitively that the continuous solution of the
equation exists and is unique, and the equation is globally exponentially convergent,
converging to x*. Next, the stored data is specifically represented in Table 2.

TABLE 2. The optimal solution x and the optimal value f(x) of
Example 2 corresponding to column ¢ when r = 0.1

Step ¢ Optimal Solution x Optimal Value f(x)
1 (1.0000,1.0000, 1.0000, 1.0000, 1.0000, 1.0000)*"  6.5000

50 (2.9738,2.7955,0.0399,4.2190, 3.6235, 1.4258)7  19.4992
200 (2.9336,1.0622,1.9283,4.9655, 3.0270, 3.9362)7  22.1549
500 (3.0001,1.0001,2.0001,5.0003, 3.0003, 4.0001)”" 22.5013
750 (2.9996,0.9997,1.9998,4.9993,2.9992, 3.9997)T  22.4961
800 (3.0004,1.0003,2.0003, 5.0007, 3.0001,4.0000)T  22.5013
897 (2.9999, 1.0000, 2.0000, 5.0000, 2.9999, 4.0001)7  22.4996

Due to the consistent constraints in Example 2 and Example 1, the optimal
solution should also remain consistent. Next, we will further consider the effect
of time delay on the convergence speed of DNN. Due to 0 < r < 2.9793, and
r =0.5,1,2 is taken sequentially, the convergence results are shown in Figures 7-9.
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F1GURE 7. Evolution of z(t) for Example 2 with r = 0.5
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F1GURE 8. Evolution of z(t) for Example 2 with r =1
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F1GURE 9. Evolution of z(t) for Example 2 with r = 2

According to the graph, it can be intuitively seen that the delay in time in DNN
directly affects the global exponential convergence speed of the DNN |, and the larger
the delay parameter r, the slower the convergence speed.

Finally, we consider a practical problem, namely the optimization problem of
gripping force for multi finger robotic arms [18], which aims to find the minimum
gripping force required for moving objects.
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Example 3: Consider the following linear projection equation:

y=1Ilcly —a(Qy +q)],

where
3 0 0 -2
Q=10 -2 0}, g=1]0], a=0.5.
0 0 -2 0

In this example, we consider the following linear projection equation, whose exact
solution is given by z* = [2, 1.2, 1.6]T. We apply both a projection neural network

dlili“ = Tle [y(t) — a(Qy(t) + )] — y(t)

and the proposed delayed neural network (2.9) to solve this equation. The resulting
solution trajectories are illustrated in Figure 10 and 11, respectively. As observed
from the comparison, the DNN converges significantly faster and more stably than
its non-delayed counterpart. While the projection neural network (4.1) suffers from
oscillations and slow convergence due to the non-expansive nature of the projection
mapping, the delayed model effectively suppresses such behavior and drives the
state to the solution in a smoother and more efficient manner. This demonstrates
the superiority of the DNN in handling projection-type equations.

(4.1)

Traﬂ'ec(ory of the solution to the non-delayed projection neural network model

Time t

FIGURE 10. Evolution of z(¢) for Example 3 of non-DNN

Example 4: For a robotic arm with m fingers, the optimization problem of
optimal grip force is as follows:

1

oo Ler
min 5 f
st. Gf = —foxt,
I fir, fioll S pasfis (i=1,...,m),
where f = [fi1, fi2, -, fm3]? € R®" represents the gripping force, G € R6*3m

represents the grasping transformation matrix, fext represents the external wrench
that changes with the movement time of the robotic arm, and u; represents the
friction coefficient at position 4.
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Trajectory of the solution to DNN

12}

FIGURE 11. Evolution of z(t) for Example 3 of DNN

As described in reference [18], we consider the gripping problem of a three finger
robot, where the gripping positions of the fingers are (0,1,1)”, (1,0.5,0)7 and
(0,—1,0)T. For any 4, we make the j; = 1 = 0.6, robotic arm move along a vertical
circular trajectory with a radius of r at a constant speed v.

To employ the DNN methodology, we reformulate the aforementioned problem
into a SOCP problem:

1
min  —z'Qx
x 2

st. Ar=b zeK®xK?xK3,

in which
) 1 1 1
QZdlag(;ﬂ’l’l’;ﬂ’l’l’uz’l’ ),
and
0o 0 1 -, 0 0 01 0
-4 0 0 0 -1 1 00 0
0 -1 0 0 -1 0 0 0 -1
A={0 -1 0 0 -05 0 00 1|,
0 0 O 0 1 0 0 0 O
0 0 -1 0 0 -1 01 0
0 0 0 05 0 0 00 O
0
—fesin(0(1))
o | M0 Fecos(ot)
0
0
0
where g = 9.8 m/SQ, M is the mass of the object, f. = ML”2 represents centripetal

force, ¢ is the movement time of the robotic arm, § = % € [0,27]. Note that the
problem is a nonlinear convex second-order cone programming problem, and the
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matrix @ is positively definite. Let
M =0.1kg, L=02m, v=04rm/s,
When taking t = 0s,0.25,0.5s,1s, the convergence trajectory of the grasping force

obtained from the DNN are shown in Figure 12, Figure 13, Figure 14, and Figure
15, respectively.

—x11(t)
—xi2a)
xA3(1)
— 21t
x22(1)
%2301
— 31
—azn| |
—— x33(1)

F1GURE 13. Evolution of z(t) for Example 4 with t =0.2s, r =1

From the graph, we can obtain the optimal gripping force of the three finger
machinery at different motion times. Due to the period of sin §(t) and cos 6(t) being
27, the solution trajectories of the DNN of § = 0(¢ = 0s) and 6 = 27(¢t = 1s) are
the same. We also find that the maximum gripping force occurs at the position of
§ = m(t = 0.5s), corresponding to the maximum value of the downward wrench. The
simulation experiment of the robotic arm grasping problem once again demonstrates
that the DNN method is suitable for solving SOCP problems.

While conventional SOCP solvers can theoretically address static optimization
problems at each fixed time instant, their reliance on repeated matrix factoriza-
tions and iterative operations makes them less suitable for real-time tasks involving
continuously varying parameters. In dynamic environments, where optimization
must be performed repeatedly and rapidly in response to changing inputs, such
as in robotic control systems, traditional methods often struggle to meet real-time
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F1cure 15. Evolution of z(t) for Example 4 with ¢t =15, r =1

computational demands. In contrast, DNN model proposed in this paper offers a
dynamic system-based framework that naturally adapts to parameter changes with-
out the need for reinitialization or recomputation at each step. Its continuous-time
dynamics can effectively track the optimal solution trajectory, while maintaining
global exponential stability and strong robustness to time delays. Moreover, the ar-
chitecture avoids Hessian matrix inversion and supports parallel, hardware-friendly
implementation.

5. CONCLUSION

The present study introduces a novel category of DNNs designed specifically
to tackle SOCP problems, establishing the existence and uniqueness of their so-
lutions. Leveraging differential inequality methodologies, it has been rigorously
demonstrated that the DNN provides a solution that exhibits global exponential
convergence, thereby ensuring the reliability and stability of the proposed method.
Finally, four simulation experiments were conducted to solve SOCP problems. Nu-
merical calculations in MATLAB demonstrate that, und er the given assumptions,
the conditions are met, the solution of the DNN exists uniquely and globally expo-
nentially converges to the optimal solution of the SOCP problem. These verify the
feasibility and effectiveness of this method in solving SOCP problems and highlight
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its advantages in dealing with projection-type equations. It can be intuitively ob-
served that the selection of delay parameters directly affects the convergence speed
of the solution trajectory to the equilibrium point. The larger the delay parameter,
the slower the convergence speed.

While the presented numerical simulations effectively demonstrate the theoret-
ical soundness and computational feasibility of the proposed DNN model, further
discussions on its practical deployment in real-world scenarios may enrich the pa-
per’s relevance. Beyond robotic grasping, the delayed neural network framework
shows promise for broader real-time control systems where dynamic uncertainties,
communication delays, and hardware constraints are present. Potential applica-
tion domains include smart manufacturing lines, networked autonomous vehicles,
aerial drone swarms, teleoperation platforms, and real-time energy management sys-
tems. The DNN’s continuous-time structure, delay-robust stability, and hardware-
parallelizable architecture make it a suitable candidate for embedded real-time op-
timization in complex engineering environments.
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