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Delay differential equations (DDEs) are widely applicable in various fields, including
electrical, chemical, biological, and transportation systems. A delay differential equa-
tion is defined as an equation in which the temporal derivatives at the present time
depend on both the solution and its potentially earlier derivatives. Recent studies have
employed several types of delays, such as proportional, constant, and time-dependent
delays. Additionally, fractional delay differential equations (FDDEs) can be used to
model a variety of phenomena, including population growth, economic development,
and neural networks; further details can be found in [22, 26, 29, 30, 45, 49]. In recent
years, FDDEs have gained significant attention, as they are considered suitable for de-
scribing various systems and processes in engineering and other scientific disciplines [9].
Time delays find specific applications in industrial operations [32], transportation sys-
tems [10], mechanical systems [27], and chemical processes [11]. The advantage of
studying FDDEs is that FDs are non-local in nature and can efficiently model mem-
ory effects while delay terms present history of the earlier state. Therefore, FDDEs
capture the behavior of complex systems more accurately than integer order DDEs.
This enhanced flexibility leads to a more correct representation of real world problem.
Also, multiplicative differential equations (MDEs) find applications in bio-medical
image analysis, time scale-theory, finance etc. Iterative methods such as Adomian
decomposition method and variational iteration method (VIM) can be use to obtain
solution of MDEs [15].

In recent decades, researchers have employed various methods to tackle DDEs, and
FDDEs such as differential transform method [13], Adomian decomposition method [2],
homotopy perturbation method [47], generalized Legendre polynomial configuration
method [12], residual power series method [8,25], fuzzy Elzaki transform method and
the fuzzy Elzaki decomposition method [44], variational iteration method [25, 31, 46],
Elzaki iteration method [20], Krawtchouk wavelet based projection approach [36], Fi-
nite element method [24] and spectral Galerkin technique [6]. However, most of these
approaches encounter challenges related to convergence, computational complexity,
initial approximations, or the selection of basis functions. Additionally, they often
struggle to effectively handle solitary, stiff, or highly nonlinear situations. The opti-
mal method depends on the specific issues at hand and the desired balance between
computational efficiency and accuracy.

In this paper, we focus on the following FDDEs [33]

(1.1)
lcDαw(t) = f(t, w(t), w(τt)), 0 < t ≤ T, T ∈ R+, 0 < α ≤ 1,

w(t) = ϕ(t), −τ ≤ t ≤ 0,

where f ∈ C[0, τ ], ϕ ∈ C[−τ, 0] and lcDα denotes the Liouville-Caputo fractional
derivative and ϕ(t) is initial condition.

The Elzaki transform (ET) is a modification of the Sumudu and Laplace transforms.
It was first introduced by Elzaki and Elzaki in 2011, as referenced in [14]. This
transform is commonly used in applied sciences and engineering to solve mathematical
problems, such as integral and differential equations, see [38] for application to the
Fokker-Planck equation. The Variational Iteration Method, developed by Odibat [37],
is employed for solving a wide range of nonlinear problems. Typically, VIM relies on
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general Lagrange multipliers, yielding solutions in the form of a convergent series. In
this paper, we combine the ET with the VIM to create the Elzaki Variational Iteration
Method (EVIM). Notably, this proposed method does not require the calculation of
general Lagrange multipliers. Moreover, there are several approaches to integrating
the ET with other techniques, such as the decomposition method [19], the residual
power series method [8], and the differential transform method [13]. Many researchers
utilize these techniques to address various differential equations, including DDEs of
both integer and fractional orders, ordinary differential equations (ODEs), and partial
differential equations (PDEs). The EVIM has been applied to ODEs and PDEs of both
integer and fractional orders, as well as to integer-order DDEs, with further details
available in [7, 20]. Consequently, we aim to extend this method to fractional-order
delay differential equations with proportional delay.

In our work, we address the nonlinear term using a clearly defined formula discussed
in [34] and in one of the example we apply the method of steps to transform a constant
neutral delay differential equation into a proportional delay differential equation, as
referenced in [35]. To the best of our knowledge, this technique has not been previously
employed by any researcher for FDDEs.

It is important to note that while the ET is effective on its own for linear FDDEs,
it struggles with nonlinearity. On the other hand, the VIM can adapt to nonlinear
scenarios, although it may converge slowly. The novelty of our approach lies in the
fact that by combining the VIM with the ET, we enhance both the accuracy and
convergence of the solution, making the method more reliable and effective.

This paper is organized as follows: Section 2 introduces the fractional integral and
derivative operators, the Elzaki transform (ET), and several properties and results
related to the Elzaki transform. In Section 3, we discuss fractional delay differential
equations along with the existence and uniqueness theorem. The methodology for the
proposed approach is presented in section 4, while Section 5 outlines the specific steps
involved in this method. In Section 6, we provide numerical examples to illustrate the
proposed technique. Finally, a conclusion is presented in Section 7.

2. Preliminaries

In this section, we present the Gamma function, the Riemann–Liouville integral
operator, the Liouville-Caputo fractional derivative, and present several fundamental
concepts of ET.

Definition 2.1 ([21]). The Gamma function, Γ(n) is given as

Γ(n) =

∫ ∞

0
xn−1e−xdx, n > 0.(2.1)

Definition 2.2 ([20, 28]). The Riemann–Liouville integral operator with fractional
order α is defined as

(2.2) RLI
α
w(x) =

1

Γ(α)

∫ x

0
(x− ξ)α−1w(ξ)dξ, 0 < α ≤ 1, ξ > 0.
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Definition 2.3 ([20,23,28]). The Liouville-Caputo fractional derivative of order α is
defined as

(2.3) lcDα
t w(x) =

{
In−α

(
dnw(x)
dxn

)
for n− 1 < α < n,

dnw(x)
dxn for α = n, n ∈ N.

Definition 2.4 ([20, 50]). Let

H =

{
w(x) : ∃M,k1, k2 > 0, |w(x)| < Me

|x|
ki if x ∈ (−1)i × [0,∞)

}
,

and w is of exponential order. Then, the Elzaki transform (ET) of w(x) is defined as

E[w(x)] = T (ν) = ν

∫ ∞

0
w(x)e−

x
ν dx, x ≥ 0, k1 ≤ ν ≤ k2.(2.4)

Theorem 2.5 ([50]). (i) The ET of the power series function

w(x) =

∞∑
n=0

anx
n,(2.5)

is given by

E[w(x)] = T (ν) =

∞∑
n=0

n!anν
n+2.(2.6)

(ii) Let w(x) ∈ H and suppose that Tn(ν) is the ET of the nth derivative of w(x),
for n ≥ 1. Then

(2.7) Tn(ν) =
T (ν)

νn
−

n−1∑
i=0

ν2−n+iwi(0).

(iii) If w(x) = enx, then E[w(x)] = −ν2

nν−1 .

(iv) If w(x) = xn, n ∈ N, then E[w(x)] = Γ(n+ 1)νn+2.

3. Fractional delay differential equation with proportional delay

Consider the following intial value fractional delay problem

(3.1)
lcDαw(x) = f(x,w(x), w(qx)), 0 < α ≤ 1, q ∈ (0, 1),

w(0) = w0,

where lcDα represent for the Liouville-Caputo fractional derivative, w(qx) is delay
term and f is continuous function defined on a rectangle

(3.2) X = {|x| ≤ a, |w(x)− w0| ≤ b, |w(qx)− w0| ≤ b, a, b > 0}.

Theorem 3.1. [39] Let f : X → R be a continuous function and |f | be bounded by
a positive integer R, where X is defined in (3.2). Suppose the sequence of iterations
described by

ℵ0(x) = w0,
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ℵk+1(t) = w0 +

∫ x

0

(x− s)α−1

Γ(α)
f(s,ℵk(s),ℵk(qs))ds, k = 0, 1, 2, . . . ,(3.3)

exists and remain continuous on the interval I = [−γ, γ], where γ = min
{
a,
(Γ(α+1)b

R

) 1
α
}
.

If x ∈ I, then (x,w(x), w(qx)) is found inside X and bounds

|ℵk(x)− w0| ≤ R
|x|α

Γ(α+ 1)
and |ℵk(qx)− w0| ≤ R

|x|α

Γ(α+ 1)

are accurate.

Theorem 3.2. (Existence theorem) [3, 39] Let f : X → R be a continuous function
and |f | be bounded by a positive integer R, where X is defined in (3.2). Assume that
f satisfies the Lipschitz condition

|f(x,w1(x), w1(qx))− f(x,w2(x), w2(qx))| ≤ L1|w1(x)− w2(x)|+ L2|w1(qx)− w2(qx)|,

with the Lipschitz constants L1, L2 > 0. Then, under these conditions, the iterative
solution by (3.3) converges to a solution of ℵ of the initial value problem (3.1) across

the interval I = [−γ, γ], where γ = min
{
a,
(Γ(α+1)b

R

) 1
α
}
.

4. Technique of Elzaki transform iteration method

In this section, we discuss implementation of Elzaki transform on FDDEs. Consider
the fractional differential equation

(4.1) lcDα
t w(x) +Rw(x) +Nw(x) = G(x), 0 < α ≤ 1,

with initial condition
lcDα−1

t w(x)|x=0 = fα−1(x),

where lcDα
t w(x) is the derivative of order α, Nw(x) is nonlinear term, R is linear term,

and G(x) is alternate source term.
Applying the Elzaki transform to (4.1), we get

E[lcD
α
t w(x)] + E[Rw(x)] + E[Nw(x)] = E[G(x)].

Now, rearranging the above equation, we have

E[lcDα
t w(x)] = E[G(x)]− E[Rw(x)]− E[Nw(x)].

By using Theorem 2.5, we obtain

(4.2) E[w(x)] =

α−1∑
i=0

ν2+iwi(0) + ναE[G(x)]− να [E[Rw(x) +Nw(x)]] .

Applying the inverse Elzaki operator E−1 on both sides of (4.2), we get

w(x) = E−1

[
α−1∑
i=0

ν2+iwi(0)

]
+ E−1 [ναE[G(x)]]

− E−1 [ναE[Rw(x) +Nw(x)]] ,
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which we can rewrite as

(4.3) w(x) = K(x)− E−1 [ναE[Rw(x) +Nw(x)]] ,

where K(x) = E−1
[∑α−1

i=0 ν2+iwi(0)
]
+ E−1 [ναE[G(x)]] represents the term from

source term and the initial conditions. Finally, according to the variational iteration
method [37], we can write the correctional functional as follows:

(4.4) wn+1(x) = K(x)− E−1 [ναE[Rwn(x) +Nwn(x)]] ,

and the approximate analytical solution is given by

(4.5) w(x) =

∞∑
n=0

wn(x).

Theorem 4.1. [37] Let X : H → H. Then the series solution w(x), given in (4.5),
converges if there exists 0 < β < 1 such that

∥X[w0 + w1 + · · ·+ wn+1]∥ ≤ β∥X[w0 + w1 + · · ·+ wn]∥,
that is, ∥wn+1(x)∥ ≤ ∥wn(x)∥, n ∈ N ∪ {0}.

Theorem 4.2. Suppose Nw(x) is the nonlinear term in (4.1) and satisfies a Lipschitz
condition

∥N(w)−N(v)∥ ≤ L∥w − v∥, w, v ∈ X, 0 ≤ L < 1.

Then the sequence {wn(x)} converges uniquely to the exact solution w∗(x).

Proof. Consider the iteration function

(4.6) T (w) = w + E−1R(w).

The EVIM iteration may be expressed as

(4.7) wn+1 = T (wn),

and R(wn) = G(x) − lcD
α
t wn − Rwn − N(wn) is the residual function. In order to

demonstrate convergence, we must demonstrate that T (w) is a contraction mapping.
Take a Cauchy sequence {wn} converges to a distinct fix point w∗.

Let w∗ be the exact solution of (4.1). Then

(4.8) w∗ = T (w∗) = w∗ + E−1R(w∗).

Define the error at nth step as follows:

(4.9) en = wn − w∗.

From (4.7) and (4.8), we have

en+1 = wn+1 − w∗ = T (wn)− T (w∗),

= wn + E−1R(wn)− w∗ − E−1R(w∗),

that is, en+1 = (wn − w∗) − E−1(R(wn) − R(w∗)). Taking norm on both sides, we
obtain

∥en+1∥ = ∥(wn − w∗)− E−1(R(wn)−R(w∗))∥,
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that is,

(4.10) ∥en+1∥ ≤ ∥en∥ − ∥E−1(R(wn)−R(w∗))∥.

Including the nonlinear function N(w) in R(w), from (4.7) we get

R(wn)−R(w∗) = −
(
lcD

α
wn − cDαw∗)− (

Rwn −Rw∗)
−
(
N(wn)−N(w∗)

)
.(4.11)

For the fractional derivative operator lcD
α
t , there exists a constant Cα > 0 such that

(4.12) ∥lcDα
wn − lcD

α
w∗∥ ≤ Cα∥wn − w∗∥.

For the linear operator R, there exists a bound CR > 0 such that

(4.13) ∥Rwn −Rw∗∥ ≤ CR∥wn − w∗∥.

For the nonlinear operator N(w), using the Lipschitz condition there exists L ≥ 0
such that

(4.14) ∥N(wn)−N(w∗)∥ ≤ L∥wn − w∗∥.

Thus, taking norm of (4.11) and using (4.12)–(4.14), we get

∥R(wn)−R(w∗)∥ ≤ −(Cα + CR + L)∥wn − w∗∥.

Applying E−1 and assuming that it is a bounded operator with M , we obtain

∥E−1R(wn)− E−1R(w∗)∥ ≤ −M(Cα + CR + L)∥wn − w∗∥.

Now, using (4.9) and (4.10), we get ∥en+1∥ ≤
(
1 + M(Cα + CR + L)

)
∥en∥, n ∈

N. Continuing in this way, we obtain ∥en+1∥ ≤
(
1 + M(Cα + CR + L)

)n+1∥e0∥.
Now, in order for the convergence to occur, we need 1 + M(Cα + CR + L) to be a
contraction constant that satisfies 0 < M(Cα + CR + L) < 1. Since Cα, CR, and M
rely on the Lipschitz constant L < 1, R, and the operator lcD

α
, en falls exponentially

if the nonlinear term fulfills the Lipschitz condition with constant L < 1. Since(
1 +M(Cα + CR + L)

)n+1 → 0 as n → ∞, it follows that lim
n→∞

∥en∥ = 0. Thus, {wn}
is a Cauchy sequence and converges to w∗. This completes the proof. □

5. Steps of proposed method

In this section, we present step-by-step implementation and flow chart of the pro-
posed method to solve FDDEs.

Step-1: Take Elzaki transform on both sides of the given equation.
Step-2: Use properties of the Elzaki transform and transform the function.
Step-3: Take inverse Elzaki transform.
Step-4: Apply variational iteration method by writing correctional functional.
Step-5: Obtain the components and write the solution.
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6. Numerical examples

This section covers both linear and nonlinear FDDEs with proportional and neu-
tral delays to demonstrate the method’s robustness and dependability. Numerical
calculations are performed using software Mathematica 11.1.1 and Python.

Example 6.1. Consider a linear fractional differential equation with proportional
delay [34].

(6.1) lcD
α
w(x) =

1

2
e

x
2w

(x
2

)
+

1

2
w(x), 0 < α ≤ 1,

with initial condition w(0) = 1. The exact solution of (6.1) is given by w(x) = ex.
Applying ET to (6.1), we get

E[lcD
α
w(x)] =

1

2
E
[
e

x
2w

(x
2

)
+ w(x)

]
.(6.2)

Using (2.7), we have 1
ναE[w(x)] =

∑α−1
i=0 ν2−α+iwi(0) + 1

2E
[
e

x
2w

(
x
2

)
+ w(x)

]
,

(6.3) E[w(x)] =

α−1∑
i=0

ν2+iwi(0) +
1

2
ναE

[
e

x
2w

(x
2

)
+ w(x)

]
.
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Now, taking the inverse ET of (6.3), we have

w(x) = E−1

[
α−1∑
i=0

ν2+iwi(0)

]
+

1

2
E−1

[
ναE

[
e

x
2w

(x
2

)
+ w(x)

]]
,

which may be written as w(x) = K(x) + 1
2E

−1
[
ναE

[
e

x
2w

(
x
2

)
+ w(x)

]]
.

For the correctional functional, we use variational iteration method which is given by

wn+1(x) = K(x) +
1

2
E−1

[
ναE

[
e

x
2wn

(x
2

)
+ wn(x)

]]
,

where K(x) = E−1
[∑α−1

i=0 ν2+iwi(0)
]
= w(0) = 1, and the correctional functional is

given by

wn+1(x) =
1

2
E−1

[
ναE

[
e

x
2wn

(x
2

)
+ wn(x)

]]
.

Now, for n = 0, we have

w1(x) =
1

2
E−1

[
ναE

[
e

x
2w0

(x
2

)
+ w0(x)

]]
,

=
1

2
E−1

[
ναE

[
e

x
2 + 1

]]
,

which, using Theorem 2.5, can be written as

w1(x) =
1

2
E−1

[
να

(
ν2

1− 0.5ν

)
+ ναν2

]
,

which yields

w1(x) =
xα

α!
+

1

4

xα+1

(α+ 1)!
+

1

8

xα+2

(α+ 2)!
+

1

16

xα+3

(α+ 3)!
+ . . . ,

Similarly, we get further components for n = 1, 2, . . . as

w2(x) =
3

4

xα+1

(α+ 1)!
+

13

32

xα+2

(α+ 2)!
+

39

128

xα+3

(α+ 3)!
+ . . . ,

and

w3(x) =
15

32

xα+2

(α+ 2)!
+

189

512

xα+3

(α+ 3)!
+ . . . ,

and so on. Hence, the solution of (6.1) is given by w(x) = w0(x) + w1(x) + w2(x) +
w3(x) + . . ..
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Figure 1. Graphical representation of w(x) for Example 6.1.

Table 1. Numerical solution of w(x) for Example 6.1.

x α = 0.75 α = 0.85 α = 0.95 α = 1.0 Exact(α = 1.0)
0.1 1.204954832 1.157741497 1.120580472 1.105169735 1.105170833
0.2 1.365407728 1.300483889 1.245494051 1.221382422 1.221400000
0.3 1.525402396 1.448539013 1.380551889 1.349748511 1.349837500
0.4 1.691981578 1.606122573 1.527784273 1.491452083 1.491733333
0.5 1.868723622 1.775739207 1.688809881 1.647750854 1.648437500
0.6 2.058114443 1.959356323 1.865148491 1.819976172 1.821400000
0.7 2.262188049 2.158732101 2.058311378 2.009533016 2.012170833
0.8 2.482768462 2.375542286 2.269837055 2.217900000 2.222400000
0.9 2.721579720 2.611438845 2.501308093 2.446629370 2.453837500
1.0 2.980302310 2.868080472 2.754359976 2.697347005 2.708333333

Table 2. Absolute and relative errors when α = 1.0
for Example 6.1.

x EVIM Exact Absolute error Relative error
0.1 1.105169735 1.105170833 1.09863×10−6 9.94084×10−7

0.2 1.221382422 1.221400000 1.75781×10−5 1.43918×10−5

0.3 1.349748511 1.349837500 8.89893×10−5 6.59259×10−5

0.4 1.491452083 1.491733333 2.81250×10−4 1.88539×10−4

0.5 1.647750854 1.648437500 6.86646×10−4 4.16543×10−4

0.6 1.819976172 1.821400000 1.42383×10−3 7.98193×10−4

0.7 2.009533016 2.012170833 2.63782×10−3 1.31093×10−3

0.8 2.217900000 2.222400000 4.48000×10−3 2.02484×10−3

0.9 2.446629370 2.453837500 7.20813×10−3 2.93749×10−3

1.0 2.697347005 2.708333333 1.09863×10−2 4.05649×10−3
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The graphical representation of w(x) for different values of α is shown in Figure
1. The efficiency and accuracy of the proposed technique are demonstrated through
numerical results, which are detailed in Table 1. It is evident from Table 1 and Figure
1 that the generated numerical solution converges to the correct value as α increases
from 0.75 to 1.0. The absolute and relative errors for α = 1.0 are summarized in Table
2, indicating an accuracy range between 10−7 and 10−3.

Example 6.2. Consider a nonlinear fractional differential equation with proportional
delay [34].

(6.4) lcD
α
w(x) = 1− 2w2

(x
2

)
, x ∈ [0, 1], 0 < α ≤ 1,

with initial condition w(0) = 0. The exact solution of (6.4) is w(x) = sinx.
Apply ET to (6.4), we get E[lcD

α
w(x)] = E

[
1− 2w2

(
x
2

)]
. Using (2.7), we have

(6.5) E[w(x)] =
α−1∑
i=0

ν2+iwi(0) + ναE
[
1− 2w2

(x
2

)]
.

Now, taking inverse ET of (6.5), we get

w(x) = E−1

[
α−1∑
i=0

ν2+iwi(0)

]
+ E−1

[
ναE

[
1− 2w2

(x
2

)]]
.

The correctional functional using VIM is given as wn+1(x) = E−1
[
ναE

[
1− 2w2

n

(
x
2

)]]
.

Thus, for n = 0, 1, 2, . . ., we obtain following components:

w1(x) =
xα

Γ(α+ 1)
, w2(x) =

−2(2α)!

22α(α!)2
x3α

(3α)!
, w3(x) =

8(2α)!(4α)!

26α(α!)3(3α)!

x5α

(5α)!
,

and so on. Hence, the solution of (6.4) is given by w(x) = w0(x) + w1(x) + w2(x) +
w3(x) + . . . .

Table 3. Numerical solution of w(x) for Example 6.2.

x α = 0.75 α = 0.85 α = 0.95 α = 1.0 Exact(α = 1.0)
0.1 0.191047636 0.148527049 0.114216912 0.0998334166 0.0998334166
0.2 0.313919220 0.264293912 0.219133329 0.1986693333 0.1986693307
0.3 0.412845968 0.366198738 0.318583536 0.2955202500 0.2955202066
0.4 0.494263547 0.456746053 0.412500617 0.3894186666 0.3894183423
0.5 0.561066156 0.536745310 0.500383336 0.4794270833 0.4794255386
0.6 0.615083912 0.606530505 0.581631828 0.5646480000 0.5646424733
0.7 0.657752654 0.666301806 0.655650714 0.6442339166 0.6442176872
0.8 0.690364856 0.716257888 0.721894725 0.7173973333 0.7173560909
0.9 0.714181715 0.756657620 0.779894361 0.7834207500 0.7833269096
1.0 0.730489045 0.787852710 0.829273113 0.8416666666 0.8414709848
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Table 4. Absolute and relative errors when α = 1.0 for Exam-
ple 6.2.

x EVIM Exact Absolute error Relative error
0.1 0.0998334166667 0.0998334166468 1.91000×10−11 1.99332×10−10

0.2 0.1986693333330 0.1986693307950 2.53800×10−9 1.27750×10−8

0.3 0.2955202500000 0.2955202066610 4.33390×10−8 1.46653×10−7

0.4 0.3894186666670 0.3894183423090 3.24358×10−7 8.32929×10−7

0.5 0.4794270833330 0.4794255386040 1.54473×10−6 3.22204×10−6

0.6 0.5646480000000 0.5646424733950 5.52661×10−6 9.78780×10−6

0.7 0.6442339166670 0.6442176872380 1.62294×10−5 2.51925×10−5

0.8 0.7173973333330 0.7173560909000 4.12424×10−5 5.74923×10−5

0.9 0.7834207500000 0.7833269096270 9.38404×10−5 1.19797×10−4

1.0 0.8416666666670 0.8414709848080 1.95682×10−4 2.32547×10−4

The values of w(x) for various values of α are illustrated in Figure 2. This figure
also shows that as α approaches 1.0, the numerical solution increasingly aligns with
the precise value, thereby confirming the accuracy and reliability of the numerical
method for these parameter values. Furthermore, Table 3 indicates that both the
precise and numerical solutions converge and become more similar as α gets closer
to 1.0. Additionally, Table 4 presents the absolute and relative errors for α = 1.0,
demonstrating an accuracy range from 10−11 to 10−4.

Figure 2. Graphical representation of w(x) for Example 6.2.

Example 6.3. Consider a nonlinear fractional neutral differential equation with delay

(6.6) lcD
α
w(x) = w′(x− 2) + w2

(x
2

)
− ex−2, x ∈ [0, 1], 0 < α ≤ 1,

with initial function f(x) = ex and initial condition w(0) = 1. The exact solution of
(6.6) is w(x) = ex.
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Firstly, applying method of steps in x ∈ [0, 1] to (6.6) and using initial function, we
convert fractional neutral differential equation with delay (6.6) into fractional differ-
ential equation with proportional delay

(6.7) lcD
α
w(x) = w2

(x
2

)
.

Applying ET to (6.7), we get E
[
lcD

α
w(x)

]
= E

[
w2

(
x
2

)]
, Then, using (2.7), we have

E[w(x)] =
α−1∑
i=0

ν2+iwi(0) + ναE
[
w2

(x
2

)]
.

Now, taking inverse ET of (6.3), we get

w(x) = E−1

[
α−1∑
i=0

ν2+iwi(0)

]
+ E−1

[
ναE

[
w2

(x
2

)]]
.

The correctional functional using VIM given as: wn+1(x) = E−1
[
ναE

[
w2
n

(
x
2

)]]
.

Thus, for n = 0, 1, 2, . . . , we obtain following components:

w1(x) =
xα

(α)!
, w2(x) =

2

2α
x2α

(2α)!
, w3(x) =

[
4

23α
+

(2α)!

22α(α!)2

]
x3α

(3α)!
,

and so on. Hence, the solution of (6.6) is given by w(x) = w0(x) + w1(x) + w2(x) +
w3(x) + . . . .

Table 5. Numerical solution of w(x) for Example 6.3 for dif-
ferent α.

x α = 0.75 α = 0.85 α = 0.95 α = 1.0 Exact(α = 1.0)
0.1 1.224859984 1.164684974 1.121939560 1.105166666 1.105170918
0.2 1.420083627 1.321526863 1.250003827 1.221333333 1.221402758
0.3 1.624562674 1.488870672 1.389575470 1.349500000 1.349858807
0.4 1.843327163 1.670044473 1.542375507 1.490666666 1.491824697
0.5 2.078480122 1.866820453 1.709679822 1.645833333 1.648721270
0.6 2.331202125 2.080443092 1.892604095 1.816000000 1.822118800
0.7 2.602274136 2.311910810 2.092185140 2.002166666 2.013752707
0.8 2.892270431 2.562084371 2.309413187 2.205333333 2.225540928
0.9 3.201645028 2.831737521 2.545247364 2.426500000 2.459603111
1.0 3.530775720 3.121583937 2.800624149 2.666666666 2.718281828
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Table 6. Absolute and relative errors when α = 1.0 for Ex-
ample 6.3.

x EVIM Exact Absolute error Relative error
0.1 1.105166666667 1.105170918076 4.25141×10−6 3.84683×10−6

0.2 1.221333333333 1.221402758160 6.94248×10−5 5.68402×10−5

0.3 1.349500000000 1.349858807576 3.58808×10−4 2.65811×10−4

0.4 1.490666666667 1.491824697641 1.15803×10−3 7.76251×10−4

0.5 1.645833333333 1.648721270700 2.88794×10−3 1.75162×10−3

0.6 1.816000000000 1.822118800391 6.1188×10−3 3.35807×10−3

0.7 2.002166666667 2.013752707470 1.1586×10−2 5.75346×10−3

0.8 2.205333333333 2.225540928492 2.02076×10−2 9.07986×10−3

0.9 2.426500000000 2.459603111157 3.31031×10−2 1.34587×10−2

1.0 2.666666666667 2.718281828459 5.16152×10−2 1.89882×10−2

Figure 3 illustrates the graphical representation of w(x) for different values of α.
The numerical results from Example 6.3, as summarized in Table 5, showcase the
effectiveness and accuracy of the proposed method. It is clear from Table 5 and
Figure 3 that as α approaches 1.0, the computed numerical solutions closely match
the exact solution. Furthermore, Table 6 presents the absolute and relative errors for
α = 1.0, indicating an accuracy range from 10−6 to 10−2.

Figure 3. Graphical representation of w(x) for Example 6.3.

7. Conclusion

This paper presents an approximate numerical solution for fractional delay differen-
tial equations (FDDEs) that involve proportional delay term. The solution is obtained
using the Elzaki transform and the variational iteration method. The results obtained
are in close agreement with the exact solution, in one of the problem discussed in the
paper we used method of steps to convert the neutral constant delay differential equa-
tion into proportional delay differential equation, which is then solved by proposed
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method. The proposed method is easy to implement and provides accurate result.
Additionally, we confirm through an existence and uniqueness theorem that solutions
to FDDEs are well-defined and unique. Error analysis and convergence results further
validate the accuracy of the numerical solutions. Moreover, graphical representations
are provided for various values of α. In the future, the proposed approach may be ex-
tended to include nonlinear fractional constant and time-dependent delay differential
equations, as well as systems of FDDEs with delays and other mathematical models.
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