

CONTROLLABILITY OF TEMPERED CAPUTO FRACTIONAL DYNAMICAL SYSTEMS

MOHAMMAD AYMAN-MURSALEEN

ABSTRACT. In this article, we explored the controllability of fractional dynamical systems with tempered Caputo fractional derivative (FD). We develop the necessary and sufficient conditions for the solution representation of controllability of linear dynamical system involving tempered Caputo FD by utilizing the Grammian matrix. We use Schauder's fixed point theorem to establish sufficient conditions for the controllability of nonlinear fractional dynamical systems involving tempered Caputo FD. The theoretical results are validated through numerical example obtained using successive approximation techniques.

1. Introduction and preliminaries

Over the past three decades, fractional calculus has emerged as an advanced branch of mathematical analysis dealing with differentiation and integration of non-integer orders. This field provides a robust framework for modeling complex systems that exhibit nonlinear dynamics, such as those found in physics, engineering, and economics [5,13,28]. For instance, Baleanu et al. [12] developed a fractional model of Caputo-type to study the dynamics of the COVID-19 pandemic and to explore its fundamental behaviors.

In the domain of fractional derivatives (FDs), various types are employed to account for memory effects. Over the past decade, experts in dynamical systems theory have utilized a variety of FDs [31]. The most frequently applied FDs in literature are the Caputo and Riemann-Liouville derivatives, both characterized by a singular kernel. To address this limitation, the Caputo-Fabrizio FD was introduced, which features a nonsingular kernel and operates locally. Later, the Atangana-Baleanu FD was proposed as a novel derivative with both nonsingular and nonlocal properties.

Controllability is a key concept in control theory, signifying the ability to steer a dynamical system from any given initial state to a target final state using an appropriate set of controls. The controllability of nonlinear systems in finite-dimensional spaces has been extensively studied, often through the use of fixed-point theorems [9,23]. Several researchers [10,11,14,20,21] have derived controllability results for both linear and nonlinear fractional dynamical systems, using tools such as the Gramian matrix and the rank condition. Recently, Vishnukumar et al. [32] investigated the controllability of fractional dynamical systems with a single delay in the

²⁰²⁰ Mathematics Subject Classification. 47H10, 34A08, 26A33, 34K37, 93B05, 93C10.

Key words and phrases. Fractional dynamical systems, tempered Caputo FDs, M-L functions, fixed point theorem, controllability Gramian.

The author is supported by the JUNIOR STAR OU internal grant as per the rules outlined in Rector's order 266/2024 at University of Ostrava, Ostrava, Czechia.

control function, specifically using the Caputo fractional derivative. There is a new variation of fractional calculus called tempered fractional calculus, as a more flexible alternative with considerable promise for practical applications. A fractional derivative is a convolution with a power law. A tempered fractional derivative multiplies that power law kernel by an exponential factor.

However, to the best of our knowledge, there has been no research exploring the controllability of nonlinear fractional dynamical systems with tempered Caputo fractional derivatives. In this work, we aim to bridge this gap by analyzing the controllability of such systems using the Gramian matrix and Schauder's fixed-point theorem. In the context of fractional calculus, several studies have explored various integral equations and approximation methods, including the works [2–4,6–8,15,17,18,26,27,29].

Consider the nonlinear fractional differential equation with tempered Caputo fractional derivatives:

$$\begin{cases} (1.1) \\ \int_a^C \mathcal{D}_a^{\mathbf{q},\lambda} x(\mathsf{t}) = Az(t\mathsf{t}) + Bu(\mathsf{t}) + f(\mathsf{t},z(\mathsf{t}),u(\mathsf{t})), & \mathsf{t} \in J = [a,b], \quad 0 < \mathsf{q} < 1, \ \lambda \ge 0, \\ z(a) = z_a, \end{cases}$$

where ${}^{C}\mathrm{D}_{a}^{\mathfrak{q},\lambda}(\cdot)$ represents the tempered Caputo fractional derivative of order \mathfrak{q} . In this equation, $z\in\mathbb{R}^n$ is the state variable, $u\in\mathbb{R}^m$ is the control function, A is an $n\times n$ matrix, B is an $n\times m$ matrix, and f is a continuous function mapping $J\times\mathbb{R}^n\times\mathbb{R}^m$ into \mathbb{R}^n .

In this section, we outline important definitions, lemmas, notations, and basic information needed to establish our main findings.

Definition 1.1 ([24]). Let z(t) be a real-valued, piecewise continuous function that is integrable over (a, b). For f > 0 and $k \ge 0$, the tempered Riemann-Liouville (R-L) fractional integral of order f is expressed as:

$$I_a^{\mathbf{q};\lambda}z(\mathfrak{t}) = e^{-\lambda \mathfrak{t}}I_a^{\mathbf{q}}(e^{\lambda \mathfrak{t}}z(\mathfrak{t})) = \frac{1}{\Gamma(\mathbf{q})} \int_a^{\mathfrak{t}} (\mathfrak{t} - \mathfrak{r})^{\mathbf{q}-1}e^{-\lambda(\mathfrak{t}-\mathfrak{r})}z(\mathfrak{r}) \ d\mathfrak{r},$$

where $I_a^{\P}z(\mathfrak{t})$ represents the R-L fractional integral:

$$I_a^{\mathsf{qf}}z(\mathsf{t}) = \frac{1}{\Gamma(\mathsf{q})} \int_a^{\mathsf{t}} (\mathsf{t} - \mathsf{r})^{\mathsf{qf}-1} w(\mathsf{r}) \ d\mathsf{r}.$$

Definition 1.2 ([24]). For n-1 < q < n, where $n \in \mathbb{N}$, and $\chi \geq 0$, the tempered R-L fractional derivative (FD) of order q is defined as:

$$D_a^{\mathbf{q};\lambda}z(\mathfrak{t}) = e^{-\lambda t}D_a^{\mathbf{q}}(e^{\lambda \mathfrak{t}}z(\mathfrak{t})) = \frac{e^{-\lambda t}}{\Gamma(n-\mathfrak{q})}\frac{d^n}{dt^n}\int_{\mathfrak{s}}^{\mathfrak{t}}(\mathfrak{t}-\mathfrak{r})^{n-\mathfrak{q}-1}e^{\lambda t}w(\mathfrak{r})\ d\mathfrak{r},$$

where $D_a^{\mathfrak{q}}z(\mathfrak{t})$ denotes the R-L FD:

$$D_a^{\mathrm{qf}}(e^{\lambda \mathsf{t}}z(\mathsf{t})) = \frac{d^n}{d\mathsf{t}^n} \left(I_a^{n-\mathsf{qf}}(e^{\lambda \mathsf{t}}z(\mathsf{t})) \right) = \frac{1}{\Gamma(n-\mathsf{qf})} \frac{d^n}{d\mathsf{t}^n} \int_a^{\mathsf{t}} (\mathsf{t}-\mathsf{r})^{n-\mathsf{qf}-1} e^{\lambda \mathsf{t}}z(\mathsf{r}) \ d\mathsf{r},$$
 for $z \in C[a,b]$.

Definition 1.3. For n-1 < q < n, where $n \in \mathbb{N}$ and $\lambda \geq 0$, the tempered Caputo or λ -tempered FD of order q is given by:

$${}^CD_a^{\mathbf{q};\mathbf{x}}z(\mathbf{t}) = e^{-\mathbf{x}\mathbf{t}} \, {}^CD_a^{\mathbf{q}}(e^{\mathbf{x}\mathbf{t}}z(\mathbf{t})) = \frac{e^{-\mathbf{x}\mathbf{t}}}{\Gamma(n-\mathbf{q})} \int_a^{\mathbf{t}} (\mathbf{t}-\mathbf{r})^{n-\mathbf{q}-1} \frac{d^n}{ds^n}(e^{\mathbf{x}t}w(\mathbf{r})) \, d\mathbf{r},$$

where ${}^{C}D_{a}^{\mathbf{q}}z(\mathfrak{t})$ denotes the Caputo FD:

$$^{C}D_{a}^{\mathbf{q}}(e^{\mathbf{\lambda}\mathbf{t}}z(\mathbf{t})) = \frac{1}{\Gamma(n-\mathbf{q})}\int_{a}^{\mathbf{t}}(\mathbf{t}-\mathbf{r})^{n-\mathbf{q}-1}\frac{d^{n}}{ds^{n}}(e^{\mathbf{\lambda}\mathbf{t}}w(\mathbf{r}))d\mathbf{r},$$

for $u \in C^n[a, b]$.

Remark 1.4. For $\lambda = 0$, the definition of the tempered Caputo FD reduces to the well-known Caputo FD.

Definition 1.5. The Laplace transform (LT) of a real function g, defined for all real numbers $\lambda \geq 0$, is given by:

(1.2)
$$F(t) = \mathcal{L}\{g(t)\} = \int_0^\infty e^{-\lambda t} g(t) \ dt, \quad t \in \mathbb{C}.$$

For the integral (1.2) to exist, the function f(t) must be of exponential order q, meaning there exist positive constants M and T such that $e^{-q\lambda}|f(t)| \leq M$ for all $\lambda \geq T$.

Definition 1.6 ([28]). The convolution of two functions, $g_1(t)$ and $g_2(t)$, is defined as:

$$g_1(t) * g_2(t) = \int_0^t g_2(t-r)g_1(r) dr.$$

Definition 1.7 ([28]). If F(t) and G(t) are the Laplace transforms of the functions $g_1(t)$ and $g_2(t)$, respectively, then:

$$\mathcal{L}\{g_1 * g_2\} = F(\mathfrak{t})G(\mathfrak{t}).$$

Lemma 1.8 ([22]). For t > 0 and $t > \lambda$:

$$\mathcal{L}\lbrace e^{\lambda t}\rbrace(t) = \frac{e^{\lambda a}}{t - \lambda}.$$

Lemma 1.9 ([25]). The Laplace transform of the tempered Caputo FD is given by:

(1.3)
$$\mathcal{L}\left\{{}^{C}\mathrm{D}_{a}^{q,\lambda}z(t)\right\}(t) = (t+\lambda)^{q}\mathcal{L}[z(t)](t) - e^{-\lambda a}\sum_{k=0}^{n-1}(t+\lambda)^{q-k-1}w_{\lambda}^{[k]}(a),$$

where
$$k = 0, 1, 2, \dots, n-1$$
 and $w_{\lambda}^{[n]}(t) = \left(\frac{d}{dt}\right)^n \left(e^{\lambda t}z(t)\right)$.

Definition 1.10 ([28]). The two-parameter Mittag-Leffler (M-L) function is defined as:

(1.4)
$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\alpha + \beta)}$$

for all $Re(\alpha)$, $Re(\beta) > 0$ and $z \in \mathbb{C}$. The M-L function for a matrix $A_{m \times m}$ is given by:

(1.5)
$$E_{\alpha,\beta}(A) = \sum_{n=0}^{\infty} \frac{A^n}{\Gamma(n\alpha + \beta)}.$$

Lemma 1.11 ([22]). Let $Re(\alpha) > 0$ and $\left|\frac{\kappa}{\lambda^{\alpha}}\right| < 1$. Then:

$$\mathcal{L}\left[E_{\alpha}\left(\kappa(t-a)^{\alpha}\right)\right] = \frac{\chi^{\alpha-1}}{\chi^{\alpha} - \kappa},$$

and:

$$\mathcal{L}\left[(t-a)^{\beta-1} \operatorname{E}_{\alpha,\beta}\left(\kappa(t-a)^{\alpha}\right)\right] = \frac{\chi^{\alpha-\beta}}{\chi^{\alpha}-\kappa}.$$

2. Controllability of linear systems

Consider the linear fractional differential system with the tempered Caputo fractional derivative (FD):

(2.1)
$$\begin{cases} {}^{C}D_{a}^{q,\lambda}z(t) = Az(t) + Bu(t), \ t \in J, \ 0 < q < 1, \ \lambda \ge 0, \\ z(a) = z_{a}, \end{cases}$$

where ${}^C\mathrm{D}_a^{\mathfrak{q}, \chi}(\cdot)$ represents the tempered Caputo FD of order \mathfrak{q} . Here, $z \in \mathbb{R}^n$ is the state variable, $u \in \mathbb{R}^m$ is the control input, A is an $n \times n$ matrix, and B is an $n \times m$ matrix.

Lemma 2.1. The solution to equation (2.1) is given by:

(2.2)

$$z(t) = e^{-\lambda t} \mathbf{E}_{q,1} \left(\mathbf{A} (t-a)^{q} \right) z_{a} + \int_{a}^{t} (t-r)^{q-1} e^{-\lambda (t-r)} \mathbf{E}_{q,q} \left(\mathbf{A} (t-r)^{q} \right) \mathbf{B} u(r) \ dr.$$

Proof. Taking the Laplace transform (LT) of both sides of (2.1) and using Lemma 1.9 for n = 1, we get:

$$(\mathsf{t} + \mathsf{x})^{\mathsf{q}} \mathcal{L}[z(\mathsf{t})](\mathsf{t}) - e^{-\mathsf{x}a} (\mathsf{t} + \mathsf{x})^{\mathsf{q}-1} z_a = A \mathcal{L}[z(\mathsf{t})] + B \mathcal{L}[u(\mathsf{t})].$$

Solving for $\mathcal{L}[z(t)]$ gives:

$$\mathcal{L}[z(\mathsf{t})] = \frac{e^{-\lambda a} (\mathsf{t} + \lambda)^{\mathsf{q}-1}}{(\mathsf{t} + \lambda)^{\mathsf{q}}I - \mathsf{A}} z_a + \frac{\mathsf{B}}{(\mathsf{t} + \lambda)^{\mathsf{q}}I - \mathsf{A}} \mathcal{L}[u(\mathsf{t})].$$

Taking the inverse LT and applying Lemmas 1.8 and 1.11, we get:

$$z(t) = e^{-\lambda t} E_{q,1} \left(A(t-a)^{q} \right) x_{a} + \mathcal{L}^{-1} \left[\frac{B}{(t+\lambda)^{q}I - A} \right] \mathcal{L}^{-1} [\mathcal{L}[u(t)]]$$

$$= e^{-\lambda t} E_{q,1} \left(A(t-a)^{q} \right) z_{a} + \int_{a}^{t} (t-r)^{q-1} e^{-\lambda(t-r)} E_{q,q} \left(A(t-r)^{q} \right) Bu(r) dr.$$

Definition 2.2. The system (2.1) is controllable on J if, for any $z_a, z_b \in \mathbb{R}^n$, there exists a control $u(\cdot) \in L^2(J, \mathbb{R}^m)$ such that the solution of (2.1) satisfies $z(a) = z_a$ and $z(b) = z_b$.

Theorem 2.3. The system (2.1) is controllable on J if and only if the $n \times n$ Grammian matrix

(2.3)
$$G = \int_{a}^{b} \mathrm{E}_{q,q} \left(\mathrm{A}(b-I)^{q} \right) \mathrm{BB}^{*} \mathrm{E}_{q,q} \left(\mathrm{A}^{*}(b-I)^{q} \right) dI$$

is positive definite.

Proof. Assume that G is positive definite. Then it is non-singular, and thus its inverse exists. Define the control function:

(2.4)
$$u(\mathbf{r}) = \left[(b - \mathbf{r})^{\mathbf{q} - 1} e^{-\lambda (b - \mathbf{r})} \right]^{-1} \mathbf{B}^* \mathbf{E}_{\mathbf{q}, \mathbf{q}} \left(\mathbf{A}^* (b - \mathbf{r})^{\mathbf{q}} \right) \times G^{-1} \left[z_b - e^{-\lambda b} \mathbf{E}_{\mathbf{q}, 1} \left(\mathbf{A} (b - a)^{\mathbf{q}} \right) z_a \right].$$

Using (2.3) and (2.4) in (2.2) at t = b, we have:

$$\begin{split} z(b) &= e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a + \int_a^b (b-\mathbf{r})^{\mathbf{q}-1} e^{-\lambda (b-\mathbf{r})} \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A} (b-\mathbf{r})^{\mathbf{q}} \right) \\ &\times \mathbf{B} \left[(b-\mathbf{r})^{\mathbf{q}-1} e^{-\lambda (b-\mathbf{r})} \right]^{-1} \mathbf{B}^* \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A}^* (b-\mathbf{r})^{\mathbf{q}} \right) \\ &\times G^{-1} \left[z_b - e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a \right] d\mathbf{r} \\ &= e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a + \int_a^b \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A} (b-\mathbf{r})^{\mathbf{q}} \right) \mathbf{B} \mathbf{B}^* \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A}^* (b-\mathbf{r})^{\mathbf{q}} \right) d\mathbf{r} \\ &\times G^{-1} \left[z_b - e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a \right] \\ &= e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a + G G^{-1} \left[z_b - e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a \right] \\ &= z_b. \end{split}$$

Thus, the system (2.1) is controllable on J.

On the other hand, if G is not positive definite, then there exists a $z \neq 0$ such that:

$$z^*Gz = 0,$$

i.e.,

$$z^* \int_a^b \mathbf{E}_{\mathbf{f},\mathbf{q}} \left(\mathbf{A}(b-\mathbf{r})^{\mathbf{q}} \right) \mathbf{B} \mathbf{B}^* \mathbf{E}_{\mathbf{f},\mathbf{q}} \left(\mathbf{A}^* (b-\mathbf{r})^{\mathbf{q}} \right) d\mathbf{r} z = 0.$$

This implies that, for all $r \in J$:

$$z^* \mathrm{E}_{\mathbf{q},\mathbf{q}} \left(\mathrm{A}(b-\mathbf{r})^{\mathbf{q}} \right) \mathrm{B} = 0.$$

Let $z_a = \left[e^{-\lambda t} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A}(t-a)^{\mathbf{q}}\right)\right]^{-1} z$. Since the system (2.1) is controllable, there exists a control $u(\mathbf{r})$ such that $z(a) = z_a$ and z(b) = 0. Then, from (2.2), we have:

$$z(b) = e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A}(b-a)^{\mathbf{q}} \right) z_a + \int_a^b (b-\mathbf{r})^{\mathbf{q}-1} e^{-\lambda(b-\mathbf{r})} \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A}(b-\mathbf{r})^{\mathbf{q}} \right) \mathbf{B}u(\mathbf{r}) d\mathbf{r}$$
$$0 = z + \int_a^b (b-\mathbf{r})^{\mathbf{q}-1} e^{-\lambda(b-\mathbf{r})} z^* \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A}(b-\mathbf{r})^{\mathbf{q}} \right) \mathbf{B}u(\mathbf{r}) d\mathbf{r},$$

leading to $z^*z=0$, which contradicts $z\neq 0$. Therefore, G must be positive definite.

3. Controllability of nonlinear systems

Let $Y = C_n(J) \times C_m(J)$, where $C_n(J)$ is the Banach space of continuous \mathbb{R}^n -valued functions on J. Hence, Y forms a Banach space with the norm $\parallel(z,u)\parallel=\parallel z\parallel+\parallel$ $u \parallel$, where $\parallel z \parallel = \sup\{z(t) : t \in J\}$ and $\parallel u \parallel = \sup\{u(t) : t \in J\}$.

For any $(y, v) \in Y$, the system (1.1) becomes:

(3.1) For any
$$(y, v) \in Y$$
, the system (1.1) becomes:
$$\begin{cases} {}^{C}\mathrm{D}_{a}^{\mathsf{q},\mathsf{X}}z(\mathfrak{t}) = Az(\mathfrak{t}) + Bu(\mathfrak{t}) + f(\mathfrak{t}, y(\mathfrak{t}), v(\mathfrak{t})), & \mathfrak{t} \in J, \\ z(a) = z_{a}. \end{cases}$$

Lemma 3.1. For a given control $u(t) \in L^2(J, \mathbb{R}^m)$, the solution to system (3.1) is

$$z(t) = e^{-\lambda t} \mathbf{E}_{q,1} \left(\mathbf{A} (t-a)^{q} \right) z_{a} + \int_{a}^{t} (t-r)^{q-1} e^{-\lambda (t-r)} \mathbf{E}_{q,q} \left(\mathbf{A} (t-r)^{q} \right) \mathbf{B} u(r) dr$$

$$(3.2) \qquad + \int_{a}^{t} (t-r)^{q-1} e^{-\lambda (t-r)} \mathbf{E}_{q,q} \left(\mathbf{A} (t-r)^{q} \right) f(r, y(r), v(r)) dr.$$

Proof. The proof follows similarly to Lemma 2.1.

Theorem 3.2. The nonlinear system (1.1) is controllable on J if the function g satisfies $\lim_{|p|\to\infty} \frac{|g(t,p)|}{|p|} = 0$ uniformly for $t \in J$, where |p| = |y| + |v|, and if the associated linear system (2.1) is controllable on J.

Proof. Define the operator $L: Y \to Y$ by L(y, v) = (z, u), where:

$$\begin{split} u(\mathbf{t}) &= \left[(b - \mathbf{t})^{\mathbf{q} - 1} e^{-\lambda (b - \mathbf{t})} \right]^{-1} \mathbf{B}^* \mathbf{E}_{\mathbf{q}, \mathbf{q}} \left(\mathbf{A}^* (b - \mathbf{t})^{\mathbf{q}} \right) G^{-1} \\ &\times \left[z_b - e^{-\lambda (b)} \mathbf{E}_{\mathbf{q}, 1} \left(\mathbf{A} (b - a)^{\mathbf{q}} \right) z_a \right. \\ &\left. - \int_a^b (b - \mathbf{r})^{\mathbf{q} - 1} e^{-\lambda (b - \mathbf{r})} \mathbf{E}_{\mathbf{q}, \mathbf{q}} \left(\mathbf{A} (b - \mathbf{r})^{\mathbf{q}} \right) f(\mathbf{r}, y(\mathbf{r}), v(\mathbf{r})) \ d\mathbf{r} \right], \end{split}$$

and

$$z(t) = e^{-\lambda t} E_{q,1} \left(A(t-a)^{q} \right) z_a + \int_a^t (t-r)^{q-1} e^{-\lambda (t-r)} E_{q,q} \left(A(t-r)^{q} \right) Bu(r) dr$$

$$+ \int_a^t (t-r)^{q-1} e^{-\lambda (t-r)} E_{q,q} \left(A(t-r)^{q} \right) f(r,y(r),v(r)) dr.$$

Now, choose constants:

$$\begin{split} \hat{a_1} &= \|(b-\mathbf{r})^{\mathbf{q}-1}e^{-\lambda(b-\mathbf{r})}\|, \quad \hat{a_2} &= \|\mathbf{E}_{\mathbf{q},\mathbf{q}}\left(\mathbf{A}(b-\mathbf{r})^{\mathbf{q}}\right)\|, \\ \hat{a} &= \sup\left\{1, \hat{a_1}\hat{a_2}\|\mathbf{B}^*\|(b-a)\right\}, \quad \hat{b_1} &= \|e^{-\lambda b}\mathbf{E}_{\mathbf{q},\mathbf{1}}\left(\mathbf{A}(b-a)^{\mathbf{q}}\right)z_a\|, \\ \hat{c_1} &= 4\left[\hat{a_2}^2\|\mathbf{B}^*\|G^{-1}(b-a)\right], \quad \hat{c_2} &= 4\left[\hat{a_1}\hat{a_2}(b-a)\right], \quad \hat{d} &= \max\{\hat{d_1}, \hat{d_2}\}. \end{split}$$

Given |z(t)| and |u(t)|, one can now choose $\hat{r} > 0$ such that $||q|| \le \hat{r}$. Let $X(\hat{I}) = \left\{ (z, u) : \parallel z \parallel \leq \frac{\hat{I}}{2}, \parallel u \parallel \leq \frac{\hat{I}}{2} \right\}$ be a convex, closed, and bounded subset of Y. From the Arzelà-Ascoli theorem, $L: X(\hat{r}) \to X(\hat{r})$ is compact and continuous. By Schauder's fixed point theorem, there exists a $(y, v) \in X(\hat{r})$ such that L(y, v) = (z, u). Hence, z(t) is the solution to system (1.1), and:

$$\begin{split} z(b) &= e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a + \int_a^b \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A} (b-\mathbf{r})^{\mathbf{q}} \right) \mathbf{B} \\ &\times \left[(b-s)^{\mathbf{q}-1} e^{-\lambda (b-\mathbf{t})} \right]^{-1} \mathbf{B}^* \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A}^* (b-\mathbf{t})^{\mathbf{q}} \right) \\ &\times G^{-1} \left[z_b - e^{-\lambda b} \mathbf{E}_{\mathbf{q},1} \left(\mathbf{A} (b-a)^{\mathbf{q}} \right) z_a \right] d\mathbf{r} \\ &+ \int_a^b (b-\mathbf{r})^{\mathbf{q}-1} e^{-\lambda (b-\mathbf{r})} \mathbf{E}_{\mathbf{q},\mathbf{q}} \left(\mathbf{A} (b-\mathbf{r})^{\mathbf{q}} \right) f(\mathbf{r},y(\mathbf{r}),v(\mathbf{r})) d\mathbf{r}. \end{split}$$

Thus, $z(b) = z_b$, and system (1.1) is controllable on J.

4. Numerical examples

Example 4.1. Consider the following nonlinear tempered Caputo fractional differential control system:

$$\begin{cases}
CD_{0+}^{\frac{1}{2},1}z(t) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} z(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) + \begin{bmatrix} \sqrt{z_1^2(t)+2} \\ 0 \end{bmatrix}, \ t \in [0,2], \\
z(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\end{cases}$$

Comparing (4.1) with (1.1), we get
$$\mathbf{q} = \frac{1}{2}, \lambda = 1$$
, $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, a = 0, b = 2, z_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $f(\mathbf{t}, x(\mathbf{t})) = \begin{bmatrix} \sqrt{z_1^2(\mathbf{t}) + 2} \\ 0 \end{bmatrix}$ and $z(\mathbf{t}) = \begin{bmatrix} z_1(\mathbf{t}) \\ z_2(\mathbf{t}) \end{bmatrix}$. Let us take $z(2) = \begin{bmatrix} z_1(2) \\ z_2(2) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The M-L matrix function for the given matrix A is

$$\mathbf{E}_{\frac{1}{2},\frac{1}{2}}(At) = \begin{bmatrix} \mathbf{E}_{\frac{1}{2},\frac{1}{2}}(-t) & 0\\ 0 & \mathbf{E}_{\frac{1}{2},\frac{1}{2}}(t) \end{bmatrix}.$$

The controllability Gramian matrix

$$\begin{split} G[0,2] &= \int_0^2 \mathbf{E}_{\frac{1}{2},\frac{1}{2}} \left(\mathbf{A} (2-\mathbf{r})^{\frac{1}{2}} \right) \mathbf{B} \mathbf{B}^* \mathbf{E}_{\frac{1}{2},\frac{1}{2}} \left(\mathbf{A}^* (2-\mathbf{r})^{\frac{1}{2}} \right) d\mathbf{r} \\ &= \int_0^2 \left[\begin{array}{c} \mathbf{E}_{\frac{1}{2},\frac{1}{2}}^2 (-(2-\mathbf{r})^{\frac{1}{2}}) & \mathbf{E}_{\frac{1}{2},\frac{1}{2}} ((2-\mathbf{r})^{\frac{1}{2}}) \mathbf{E}_{\frac{1}{2},\frac{1}{2}} (-(2-\mathbf{r})^{\frac{1}{2}}) \\ \mathbf{E}_{\frac{1}{2},\frac{1}{2}} ((2-\mathbf{r})^{\frac{1}{2}}) \mathbf{E}_{\frac{1}{2},\frac{1}{2}} (-(2-\mathbf{r})^{\frac{1}{2}}) & \mathbf{E}_{\frac{1}{2},\frac{1}{2}}^2 ((2-\mathbf{r})^{\frac{1}{2}}) \\ &= \begin{bmatrix} 0.0665 & 1.7359 \\ 1.7359 & 168.1998 \end{bmatrix}, \end{split}$$

is positive definite. Therefore, the linear system corresponding to (4.1) is controllable on [0,2]. Further, $\lim_{|(z,u)|\to\infty}\frac{|f(t,z,u)|}{|(z,u)|}=0$ uniformly on [0,1]. The system

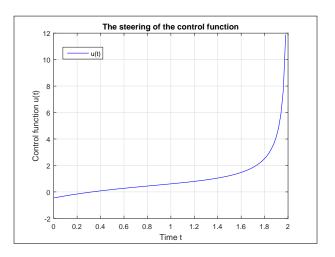


FIGURE 1. The trajectory of u(t) of the system (4.1)on [0, 2]

(4.1) is controllable on [0,2] by theorem 3.2. The controlled trajectories of the system (4.1) steering from the initial state $z(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to a desired state $z(2) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ during [0,2] can be approximated from the following algorithm

$$u^{n}(t) = \left[(2-t)^{-0.50} e^{\frac{1}{2}(2-t)} \right] B^{*} E_{\frac{1}{2},\frac{1}{2}} \left(A^{*}(2-t)^{0.50} \right) G^{-1}[0,2]$$

$$\times \left[z(2) - e^{-1} E_{0.50,1} \left(A(2)^{0.50} \right) z_{0} - \int_{0}^{2} (2-r)^{-0.50} e^{-\frac{1}{2}(2-r)}$$

$$E_{0.50,0.50} \left(A(2-r)^{0.50} \right) f(\mathbf{r}, y^{n}(\mathbf{r}), v(\mathbf{r})) d\mathbf{r}]$$

$$z^{n+1}(t) = e^{\frac{-s}{2}} \mathcal{E}_{0.50,1} \left(\mathcal{A}(t)^{0.50} \right) w_0$$

$$+ \int_0^t (t-r)^{-0.50} e^{\frac{-(t-r)}{2}} \mathcal{E}_{0.50,0.50} \left(\mathcal{A}(t-r)^{0.50} \right)$$

$$\left(\mathcal{B}u^n(r) + f(r, y^n(r), v(r)) \right) dr$$

with $y^0(t) = y_0$, where $n \in \mathbb{N}$. Using MATLAB, the controlled trajectories and steering control u(t) are computed and are depicted in Fig.1 and Fig.2.

5. Conclusion

In this article, we studied the controllability of fractional dynamical system involving tempered Caputo FD. This study of controllability of Caputo FD gives the controllability results for many possible FDs, in particular Caputo FD. Here, we have used controllability Grammian matrix and Schauder's fixed point technique to establish sufficient conditions for controllability of fractional dynamical system. The numerical example is presented to illustrate the main results.

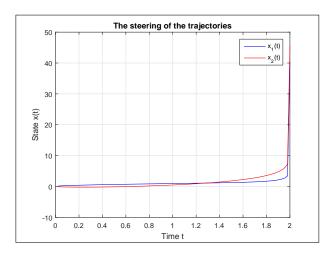


FIGURE 2. The trajectory of the system (4.1) steers from $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to the final state $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ during the interval [0,2].

Acknowledgments

The author would like to thank the anonymous referees for their insightful comments and suggestions.

References

- [1] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci. 41 (2018), 336–352.
- [2] M. Asaduzzaman, F. Özger and M. Z. Ali, Analytical approximate solutions of some fractional nonlinear evolution equations through AFVI method, Partial Differential Equations in Applied Mathematics, 12 (2024): 100937.
- [3] M. Asaduzzaman, F. Özger and A. Kilicman, Analytical approximate solutions to the nonlinear Fornberg-Whitham type equations via modified variational iteration method, Partial Differential Equations in Applied Mathematics, 9 (2024): 100631.
- [4] R. Aslan, Some approximation properties of Riemann-Liouville type fractional Bernstein-Stancu-Kantorovich operators with order of α, Iran J. Sci. (2024). DOI:10.1007/s40995-024-01754-1
- [5] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save markind before vaccination?, Chaos Solit. Fractals 136 (2020), 109860.
- [6] M. Ayman-Mursaleen, Quadratic function preserving wavelet type Baskakov operators for enhanced function approximation, Comp. Appl. Math. 44 (2025): 395.
- [7] M. Ayman-Mursaleen, B. P. Lamichhane, A. Kilicman and N. Senu, On q-statistical approximation of wavelets aided Kantorovich q-Baskakov operators. FILOMAT 38 (2024), 3261–3274.
- [8] M. Ayman-Mursaleen, M. Nasiruzzaman and N. Rao, On the approximation of Szász-Jakimovski-Leviatan beta type integral operators enhanced by Appell polynomials, Iran. J. Sci. 49 (2025), 1013–1022.
- K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point theorems, J. Optim. Theory Appl. 53 (1987), 345–352.
- [10] K. Balachandran and J. Kokila, On the controllability of fractional dynamical systems, Int. J. Appl. Math. Comput. Sci. 12 (2012), 523–531.
- [11] K. Balachandran, J. Y. Park and J. J. Trujillo, Controllability of nonlinear fractional dynamical systems, Nonlinear Anal. Theory Methods Appl. **75** (2012), 1919–1926.

- [12] D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade and M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res. 48 (2023), 157–173.
- [13] D. Baleanu, J. A.T. Machado and A. C.J. Luo, Fractional Dynamics and Control, Springer, Berlin, 2012.
- [14] M. Bettayeb and S. Djennoune, New results on the controllability and observability of fractional dynamical systems, J. Vib. Control 14 (2008), 1531–1541.
- [15] Q. Cai, R. Aslan, F. Özger and H. M. Srivastava, Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators, Alexandria Engineering Journal 107 (2024), 205–214.
- [16] J. P. Dauer, Nonlinear perturbations of quasi-linear control systems, J. Math. Anal. Appl. 54 (1976), 717–725.
- [17] S. Deniz, F. Özger, Z. Ö. Özger, S. A. Mohiuddine and M. T. Ersoy, Numerical solution of fractional Volterra integral equations based on rational Chebyshev approximation, Miskolc Mathematical Notes 24 (2023), 1287–1305.
- [18] M. T. Ersoy and H. Furkan, On the existence of the solutions of a Fredholm integral equation with a modified argument in Hölder spaces, Symmetry, 10 (2018): 522.
- [19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
- [20] I. Haque, J. Ali and M. Malik, Controllability of fractional dynamical systems with (k, ψ) -Hilfer fractional derivative, J. Appl. Math. Comp. **70** (2024), 3033–3051.
- [21] I. Haque, J. Ali and J. J. Nieto, Controllability of ψ -Hilfer fractional differential equations with infinite delay via measure of noncompactness, Nonlinear Anal.: Modelling and Control, **29** (2023), 379–399.
- [22] F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 709–722.
- [23] J. Klamka, Schauder's fixed point theorem in nonlinear controllability problems, Control Cybern. 29 (2000), 153–165.
- [24] M. Medved, E. Brestovanská, Differential equations with tempered Ψ-Caputo fractional derivative, Math. Model. Anal. 26 (2021), 631–650.
- [25] M. Medved and M. Pospíšil, Generalized Laplace transform and tempered Ψ-Caputo fractional derivative, Math. Model. Anal. 28 (2023), 146–162.
- [26] M. Nasiruzzaman, N. Rao, A. Srivastava and R. Kumar, Approximation on a class of Szśz-Mirakyan operators via second kind of beta operators, J. Inequal. Appl. 2020 (2020): 45.
- [27] F. Özger, M. Temizer Ersoy and Z. Ö. Özger, Existence of Solutions: Investigating Fredholm Integral Equations via a Fixed-Point Theorem, Axioms, 13 (2024): 261.
- [28] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Applications, Academic Press, New York, 1999.
- [29] E. Savaş and M. Mursaleen, Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties, Bull. Iran. Math. Soc., 49 (2023): 68.
- [30] A. P. Selvam, M. Vellappandi and V. Govindaraj, Controllability of fractional dynamical systems with ψ-Caputo fractional derivative, Physica Scripta, 98 (2023): 025206.
- [31] J. Sousa, E. De Oliveira, On the ψ -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., **60** (2018), 72–91.
- [32] K. S. Vishnukumar, S. M. Sivalingam, H. Ahmad and V. Govindaraj, Controllability of the time-varying fractional dynamical systems with a single delay in control, Nonlinear Dyn. 112 (2024), 8281–8297.
- [33] H. A. Wahash, A. B. D. O. Mohammed and S. K. Panchal, Existence and stability of a non-linear fractional differential equation involving a ψ-Caputo operator, Advances in the Theory of Nonlinear Anal. and its Appl. 4 (2020), 266–278.

CONTROLLABILITY OF TEMPERED CAPUTO FRACTIONAL DYNAMICAL SYSTEMS 2511

M. Ayman-Mursaleen

Department of Mathematics, Faculty of Science, University of Ostrava, Mlýnská 702/5, 702 00 Moravská Ostrava, Czechia

E-mail address: mohdaymanm@gmail.com, ayman.mursaleen@osu.cz