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CONTROLLABILITY OF TEMPERED CAPUTO FRACTIONAL
DYNAMICAL SYSTEMS

MOHAMMAD AYMAN-MURSALEEN

ABSTRACT. In this article, we explored the controllability of fractional dynam-
ical systems with tempered Caputo fractional derivative (FD). We develop the
necessary and sufficient conditions for the solution representation of controllabil-
ity of linear dynamical system involving tempered Caputo FD by utilizing the
Grammian matrix. We use Schauder’s fixed point theorem to establish suffi-
cient conditions for the controllability of nonlinear fractional dynamical systems
involving tempered Caputo FD. The theoretical results are validated through
numerical example obtained using successive approximation techniques.

1. INTRODUCTION AND PRELIMINARIES

Over the past three decades, fractional calculus has emerged as an advanced
branch of mathematical analysis dealing with differentiation and integration of non-
integer orders. This field provides a robust framework for modeling complex systems
that exhibit nonlinear dynamics, such as those found in physics, engineering, and
economics [5,13,28]. For instance, Baleanu et al. [12] developed a fractional model
of Caputo-type to study the dynamics of the COVID-19 pandemic and to explore
its fundamental behaviors.

In the domain of fractional derivatives (FDs), various types are employed to
account for memory effects. Over the past decade, experts in dynamical systems
theory have utilized a variety of FDs [31]. The most frequently applied FDs in
literature are the Caputo and Riemann-Liouville derivatives, both characterized by a
singular kernel. To address this limitation, the Caputo-Fabrizio FD was introduced,
which features a nonsingular kernel and operates locally. Later, the Atangana-
Baleanu FD was proposed as a novel derivative with both nonsingular and nonlocal
properties.

Controllability is a key concept in control theory, signifying the ability to steer a
dynamical system from any given initial state to a target final state using an appro-
priate set of controls. The controllability of nonlinear systems in finite-dimensional
spaces has been extensively studied, often through the use of fixed-point theo-
rems [9,23]. Several researchers [10,11,14,20,21] have derived controllability results
for both linear and nonlinear fractional dynamical systems, using tools such as the
Gramian matrix and the rank condition. Recently, Vishnukumar et al. [32] investi-
gated the controllability of fractional dynamical systems with a single delay in the
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control function, specifically using the Caputo fractional derivative. There is a new
variation of fractional calculus called tempered fractional calculus, as a more flexible
alternative with considerable promise for practical applications. A fractional deriv-
ative is a convolution with a power law. A tempered fractional derivative multiplies
that power law kernel by an exponential factor.

However, to the best of our knowledge, there has been no research exploring
the controllability of nonlinear fractional dynamical systems with tempered Caputo
fractional derivatives. In this work, we aim to bridge this gap by analyzing the
controllability of such systems using the Gramian matrix and Schauder’s fixed-
point theorem. In the context of fractional calculus, several studies have explored
various integral equations and approximation methods, including the works [2—4,6—
8,15,17,18,26,27,29].

Consider the nonlinear fractional differential equation with tempered Caputo
fractional derivatives:

(1.1)
{CD%w = Ax(tt) + Bu() + [(1 20 u), 1€ =lal], 0<q<L X0
z(a) = zq,

where CDZ{’“(-) represents the tempered Caputo fractional derivative of order d.
In this equation, z € R™ is the state variable, v € R™ is the control function, A is
an n X n matrix, B is an n X m matrix, and f is a continuous function mapping
J x R™ x R™ into R".

In this section, we outline important definitions, lemmas, notations, and basic
information needed to establish our main findings.

Definition 1.1 ([24]). Let z(t) be a real-valued, piecewise continuous function
that is integrable over (a,b). For ¢ > 0 and X > 0, the tempered Riemann-Liouville
(R-L) fractional integral of order d is expressed as:

t
) = D) = i [0 0200

where I3z (t) represents the R-L fractional integral:

t
I8:(t) = P(l) / (t = )L (y) dr.

q

Definition 1.2 ([24]). For n — 1 < ' < n, where n € N, and X > 0, the tempered
R-L fractional derivative (FD) of order d is defined as:

. —Xt dm t
D) = e MDHE) = i g | (L= 0 () di
where DJz(t) denotes the R-L FD:
ar 1 dar
d( Xt — 2 [n—d( At - - =
DI(1) = g (B (=) =t g
for z € Cla, b].

t
/ (L — 1)1y dr,
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Definition 1.3. For n — 1 < ' < n, where n € N and X > 0, the tempered Caputo
or x-tempered FD of order  is given by:

. —Xt t d"
PP = e ODENA) = / (L) (M) dr,

where ©DJz(1) denotes the Caputo FD:

1 t g A"
CDd(eM2(t)) = I“(n—q)/a (t—p)" lw(extw(r)) dr,

for v € C"[a, b].

Remark 1.4. For X = 0, the definition of the tempered Caputo FD reduces to the
well-known Caputo FD.

Definition 1.5. The Laplace transform (LT) of a real function g, defined for all
real numbers X > 0, is given by:

(1.2) F(t) = L{g(1)} = / TeNg() di, e C

For the integral (1.2) to exist, the function f(f) must be of exponential order ¢,
meaning there exist positive constants M and T such that e=%|f(t)| < M for all
x>T.

Definition 1.6 (]28]). The convolution of two functions, ¢i(t) and g2(t), is defined
as:

t
g1(1) * g2(0) = /0 g2(t — D)n(r) dr.

Definition 1.7 ([28]). If F(t) and G(t) are the Laplace transforms of the functions
g1(t) and ga(t), respectively, then:

L{g1 g2} = F()G(1)-
Lemma 1.8 ([22]). Fort>0 and t > X:

Xt e?(a
L{e™}H (1) = —x
Lemma 1.9 ([25]). The Laplace transform of the tempered Caputo FD is given by:
n—1
(13)  £{DI} (1) = (t+ VLI — e 3+ 0 i),
k=0

where k =0,1,2,...,n—1 and w;n](t) = (%)n (eXz(1)).

Definition 1.10 ([28]). The two-parameter Mittag-Leffler (M-L) function is defined
as:

(1.4) Eop(z) = nz:() T(na + B)
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for all Re(a), Re(8) > 0 and z € C. The M-L function for a matrix A,,x, is given
by:

oo AP
(1.5) Eqp(4) = ;) T(na+ B);
Lemma 1.11 ([22]). Let Re(c) > 0 and |4&| < 1. Then:
a—1

LIEq (5(t — a)")] = sa—

and:
B-1 x 7
L [(t —a)"" " Eap (5(t— a)a)} =3

2. CONTROLLABILITY OF LINEAR SYSTEMS

Consider the linear fractional differential system with the tempered Caputo frac-
tional derivative (FD):

CDI* (1) = Az({) + Bu(t), t€J, 0<d<1, x>0,
z(a) = zq,

(2.1)

where CD;‘“(-) represents the tempered Caputo FD of order . Here, z € R" is the
state variable, u € R™ is the control input, A is an n X n matrix, and B is an n x m
matrix.

Lemma 2.1. The solution to equation (2.1) is given by:
(2.2)

z(t):e_XtE(ﬁ( [—ad)za /[—) trECﬁ( (t—r1) q)Bu

Proof. Taking the Laplace transform (LT) of both sides of (2.1) and using Lemma
1.9 for n = 1, we get:

(t+X)TLEOI) — e (L +X)T 20 = AL[(1)] + BLIu()]
Solving for L[z(t)] gives:

e (g +Xx)I! B
L = a L .
[=(1)] (t+X)97 — A Zat (t+X)97 — A [u(t)]
Taking the inverse L'T and applying Lemmas 1.8 and 1.11, we get:

(0 = B (- 0)) o+ £ |y | £ 1]
= ¢ MEq (AL —a)®) 7o + / (L= 1T e DB (AL - 1) Bu(r) dr
Il

Definition 2.2. The system (2.1) is controllable on J if, for any z,, z;, € R", there
exists a control u(-) € L2(J,R™) such that the solution of (2.1) satisfies z(a) = z,
and z(b) = z.
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Theorem 2.3. The system (2.1) is controllable on J if and only if the n x n Gram-
mian matrix

b
(2.3) G = / Eqq (A — 1)) BB Eqq (A" (0 - 1)) dr
s positive definite.

Proof. Assume that G is positive definite. Then it is non-singular, and thus its
inverse exists. Define the control function:

(2.0 u(r) = [(6 - )T 10D T BB (A0~ 1))
X G |z = e B (A - a)) 2]
Using (2.3) and (2.4) in (2.2) at ¢t = b, we have:
2(b) = e MEq1 (A(b — a)?) 2z, + / b(b — )T leREDE 4 (A - 1))
x B [(b - I)q_le_x(b_r)} - ;*Eq,cf (A*(b—1)9)

x Gt [zb — e MEq1 (A(b - a)9) za} dr

b
= e MEq1 (A(b—a)?) 2z, + / Eqq (A(b —1)7) BB"Eqq (A"(b—1)7) dr
x G~ {Zb — e MEq1 (A(b—a)?) Za}
= e MEq; (A(b — a)?) 2, + GG} [Zb — e Bq1 (A(b - a)T) Za]
= 2.

Thus, the system (2.1) is controllable on J.
On the other hand, if G is not positive definite, then there exists a z % 0 such that:

2*Gz =0,
i.e.,
b
z* / Eqq (A(b—1)%) BB*Eqq (A*(b —1)?) drz=0.
This implies that, for all 1 € J:
Z*E(f,q (A(b - r)d) B=0.

Let z, = [e "Eq. (A(t — a)cf)]_1 z. Since the system (2.1) is controllable, there
exists a control u(r) such that z(a) = 2z, and z(b) = 0. Then, from (2.2), we have:

b
z(b) = e_)‘bE(m (A(b — a)of) Za + / (b— r)‘f_le_x(b_r)Eq’q (A(b — r)‘f) Bu(r) dr

b
0=2z2+ / (b— r)cf_le_x(b_r)z*Eq,q (A(b — I")q) Bu(r) dr,
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leading to z*z = 0, which contradicts z # 0. Therefore, G must be positive definite.
O

3. CONTROLLABILITY OF NONLINEAR SYSTEMS

Let Y = C,,(J) x Cy,(J), where C,,(J) is the Banach space of continuous R"™-valued
functions on J. Hence, Y forms a Banach space with the norm || (z,u) ||=| z || + |
u l, where | = ||= sup{(1) : { € J} and || u [|= supfu(t) : { € J}.

For any (y,v) € Y, the system (1.1) becomes:

{CDZf’xz(o = Az(t) + Bu(t) + f(t,y(t),v(1), te,

z(a) = z4.

(3.1)

Lemma 3.1. For a given control u(t) € L2(J,R™), the solution to system (3.1) is
given by:

t
dozeﬂmﬁmAa—@%zW+/<r—> e XD B (At — 1)) Bu(p)
t
(3.2) +/wa> e MEDE o (A — DD F(ry(1), () dr.

Proof. The proof follows similarly to Lemma 2.1. U
Theorem 3.2. The nonlinear system (1.1) is controllable on J if the function g
satisfies limjp |g(|t"p)| = 0 uniformly for t € J, where |p| = |y| + |v|, and if the

associated linear system (2.1) is controllable on J.

Proof. Define the operator L : Y — Y by L(y,v) = (2,u), where:
~1
ult) = [(b— )1V BB (AT - )9 G

X [zb — 67x(b)Eq71 (A(b — a)q) Za

b
- / (b— 1) e X DE (AD - 1)) 1, y(1),v()) dr|,

and

2(t) = e MEq1 (At — a)) 2, + / t(t — 1) e MDE ¢ (At — 1)) Bu(r) dr

# [ N B (A 19 T w0, ()
Now, chooge constants:
@ =|(b—1) e OV, d = [Eqq (A 1)),
o = sup {1, d1d||B*||(b—a)}, b= e Eq 1 (A(b — a)9) 24,
G =4[a?B|G7 (b -a)], ¢ =4[didx(b—a)], d=max{di,d>}.
Given |z(t)| and ]u( )|, one can now choose f > 0 such that || ¢ ||< . Let
X(1) = {( uw) | z[|< 5 [Jull<E } be a convex, closed, and bounded subset of Y.
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From the Arzela-Ascoli theorem, L : X(f) — X(f) is compact and continuous. By
Schauder’s fixed point theorem, there exists a (y,v) € X() such that L(y,v) =
(z,u). Hence, z(t) is the solution to system (1.1), and:

b
oAb = By (Ab- 0 20+ [ g (G- 1)) B
< (b )T N00] T BB (A% 1))

x G [zb — e MEq1 (A(b - a)9) za] dr

b
+ / (b= e VE (A — 1)) f(1,y(1), 0(r) dr.
Thus, z(b) = zp, and system (1.1) is controllable on J. O

4. NUMERICAL EXAMPLES

Example 4.1. Consider the following nonlinear tempered Caputo fractional differ-
ential control system:

(4.1)
1 —_ 22
DI = [ O | o | VTR e,
2(0) = [8] .
Comparing (4.1) with (1.1), we get ' = %,)\ =1, A= [ _01 _01 ] ,
B = [1},@ =0,b = 2,z = [8] ft,z(t) = [ Vz%($)+2] and z(t) =

[ 21(t) ] Let us take z(2) = [ “(2) ] = [ L ] . The M-L matrix function for the
z2(t) 2)

given matrix A is

2
G[0,2]:/0 E) 1 (A(z—r)%) BB'E, , (A*(Q—r)%>dr
- / B, (-2-1)?) By 1 ((2-1)3)B; 1 (—(2-1)%)
Jo | By i(@-D2Ey(-2-D)?) B2 ((2-1)2)

~ | 1.7359 168.1998

is positive definite. Therefore, the linear system corresponding to (4.1) is control-
lable on [0,2]. Further, lim., ;)00 Fzwl _ uniformly on [0,1]. The system

|(z,u)]

_[0.0665 1.7359 ]
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The steering of the control function
12 T T T T T T T

u(t)

Control function u(t)

L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
Time t

F1GuRE 1. The trajectory of u(t) of the system (4.1)on [0, 2]

(4.1) is controllable on [0, 2] by theorem 3.2. The controlled trajectories of the sys-

tem (4.1) steering from the initial state z(0) = to a desired state z(2) = [ L }

0
0
during [0, 2] can be approximated from the following algorithm

2

a"(t) = |2 =) P eIV B'E, , (AT - 1)) 60,2

11
2°2
2

X [Z(Q) — 6_1E0.5071 (A 2 0'50) 20 — 2 — I-)_O-5O e—%(Q—I")
)

(2) (
0
Eo.50,0.50 (A2 — 1)) £(1, 4" (1), v(r))dr]

Z"TH({) = e Egso1 (A()*") wo
+ /0t (t—1)""" e~ Eo.50,0.50 (A(t — r)0‘5°)
(Bu"(r) + f(r, 9" (1), v(1))) dr

with 3°(t) = yo, where n € N. Using MATLAB, the controlled trajectories and
steering control u(t) are computed and are depicted in Fig.1 and Fig.2.

5. CONCLUSION

In this article, we studied the controllability of fractional dynamical system in-
volving tempered Caputo FD. This study of controllability of Caputo FD gives the
controllability results for many possible FDs, in particular Caputo FD. Here, we
have used controllability Grammian matrix and Schauder’s fixed point technique
to establish sufficient conditions for controllability of fractional dynamical system.
The numerical example is presented to illustrate the main results.
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The steering of the trajectories
T T T T T

50 T T

X,
%, 4

40t

30r

State x(t)
N
o

0r

10 L L L L L L L L L |
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2

Time t

FI1GURE 2. The trajectory of the system (4.1) steers from [{] to the
final state [}] during the interval [0, 2].
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