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knowledge. Furthermore, the cross-language knowledge graph can integrate knowl-
edge resources of multiple languages, cross-validate and filter information, reduce
false information, and improve the accuracy and reliability of knowledge [8].

The task of cross-language entity alignment is an important part of construct-
ing multilingual knowledge graph. Cross-language entity alignment methods are
mainly divided into two categories: traditional character matching methods and
methods based on deep learning [18]. Traditional methods translate bilingual en-
tities and then align them. The accuracy of this method is limited by the quality
of machine translation and needs to deal with issues such as translation ambiguity.
Methods based on deep learning require training on a large amount of annotated
data [2]. There are a large number of uncommon entities in the medical field, and
data annotation consumes a lot of manpower. Large language models can capture
more rich and complex language representations through large parameter scale and
deep neural network structure [7]. Compared with traditional methods, LLMs can
effectively capture the subtle differences in language, so as to understand natural
language more accurately. In addition, large language models are pre-trained on
a large amount of data, which have strong generalization ability and can adapt
to the needs of different fields and tasks. This flexibility enables models to be
easily migrated to new application scenarios without extensive domain adaptation
effort [20].

The global outbreak of the COVID-19 has significantly impacted human daily
life and work. coronavirus such as severe acute respiratory syndrome coronavirus
(SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and
SARS-CoV-2, among others, have caused numerous large-scale fatalities and sparked
global panic in this century due to their high pathogenicity [11, 23]. Numerous
Chinese and English literatures and data related to coronavirus have been accu-
mulated in relevant research fields, offering significant academic and practical value
for researchers and medical professionals. However, with the ongoing evolution of
coronaviruses, there is an urgent need to overcome language barriers and effectively
integrate scattered knowledge to facilitate in-depth study of these viruses. This pa-
per aims to extract pertinent knowledge about coronaviruses from 36,340 Chinese
and English articles and propose a cross-language entity fusion method based on
LLMs. The constructed knowledge graph is expected to provide more comprehen-
sive and systematic drug and target discovery information for researchers, thereby
promoting the further development of coronavirus research.

2. Related work

As globalization accelerates, the study of cross-lingual knowledge graph entity
alignment has garnered significant attention. Entity alignment constitutes a crucial
task within the realm of natural language processing. The objective of cross-lingual
entity alignment is to identify identical or analogous entities across different lan-
guages’ knowledge graphs and subsequently align them. Nonetheless, due to dispar-
ities in semantics, structure, and grammar among languages, executing cross-lingual
entity alignment poses considerable challenges.

The conventional approach to cross-language entity alignment involves directly
translating the entity name from the source language to the target language, and
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subsequently aligning it with the corresponding entity in the target language. Fu et
al. [9,10] introduced a comprehensive framework for this purpose. In their method,
machine translation tools are employed to convert entities from one language to
another, followed by a monolingual alignment technique to identify aligned entity
pairs. The efficacy of this strategy is significantly influenced by the quality of ma-
chine translation. Spohr et al. [22] adopted machine learning techniques to align en-
tities using machine-translated tags and explored multi-language entity alignment.
The results showed that co-translating multi-language entities into an intermediary
language can reduce the impact of machine translation, thereby enhancing experi-
mental outcomes.

Cross-language entity alignment based on deep learning mainly focuses on how
to achieve entity alignment between different languages through machine learning
methods. Some researchers propose methods based on semantic and structural in-
formation to improve the accuracy of entity alignment, other methods use contextual
information for entity alignment, and some methods integrate attribute embedding
and relational attention, and use machine translation models, etc. way to align
entities.

Kang et al. proposed a cross-language entity alignment model [12] that combines
knowledge graphs and entity description information. Initially, this model employs
TransC and parameter sharing models to map all entities and relationships within
the knowledge graph into a shared low-dimensional semantic space of entities based
on alignment. Then, model iteration and soft alignment strategies are performed
to perform entity alignment. Experimental results show that the proposed model
can effectively fuse ontology information and achieve better results. Zhao et al. [30]
proposed a cross-language entity alignment method based on graph convolutional
neural network and graph attention network. By employing multi-level learning of
entity structure, attributes, and attention, it assigns appropriate weights to neigh-
boring nodes of varying nodes, thereby capturing extensive spatial information.
Zhang et al. [29] proposed a method to minimize adjacent entity filtering rules by
integrating entity names and attributes (NENA). This method utilizes NENA fil-
tering rules to filter out redundant equivalent entities and construct a dual-relation
graph as auxiliary evidence for scenarios when the attribute information may be
insufficient. The product network embeds the knowledge graph and entity names
into a unified vector space, then applies a down sampling technique to extract the
sub-graphs of the knowledge graph. This sub-graph is embedded into GCN as a
new input. The cross-graph-matching module is subsequently employed to achieve
alignment. Wang et al. [26] introduced the FuAlign model, a novel cross-lingual
entity alignment framework based on multi-view knowledge representation learn-
ing of a pre-fused knowledge graph. FuAlign first fuses two matching knowledge
graphs based on the given seed set. Then, it exploits multi-view representation
learning to map the fused knowledge graph into a unified space. This multi-view
representation learning approach is adept at capturing diverse information types,
including semantics, entity context, and long-term entity dependencies inherent
in the knowledge graph. Nie et al. [31] proposed a context-based cross-language
knowledge graph entity alignment method. This method generates entity and rela-
tionship features through embedding representation and Bi-LSTM model, and uses
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the graph attention mechanism to model neighbor categories and assign weights,
thereby aligning entities within a unified vector space. Che et al. [5] proposed an
improved cross-language entity alignment method. This method uses a bidirectional
alignment graph convolutional network model that fuses attribute information, and
combines feedforward neural network encoding entities with initial entity embedding
to achieve cross-language entity alignment.

Cross-lingual entity alignment methods that utilize additional attributes, struc-
tures, and other information have demonstrated significant efficacy. However, these
methods are heavily reliant on datasets with extensive human annotation and train-
ing, thereby escalating the manpower requirement. Consequently, the primary chal-
lenge addressed in this paper is to enhance the precision of entity alignment while
minimizing the need for human intervention. Leveraging the superior comprehen-
sion and generalization capabilities of LLMs, we aim to efficiently execute the bilin-
gual entity alignment task through model fine-tuning techniques. This approach
seeks to optimize the entire process and elevate the alignment accuracy.

3. Materials and methods

3.1. Data Source. PubMed is one of the most commonly used literature resources.
This study used PubMed as the English data source and searched PubMed using
the search term “coronavirus”, searching from December 2019 to June 2023. After
manually excluding some irrelevant articles, a total of 18,687 articles were obtained.

We used 3 authoritative websites as Chinese data sources. UpToDate is a clinical
decision support system based on the principles of evidence-based medicine [19].
UpToDate continuously combines the existing medical evidence with the clinical
experience of experts to give a high level of practical medical information. UpToDate
COVID-19 topic contains a variety of data resources such as clinical characteristics,
diagnosis, patient management, and prevention of coronavirus.

National Science and Technology Library (NSTL) is a service system of scientific
and technological literature information resources based on network environment
[17]. NSTL collects and develops scientific and technological literature resources in
various disciplines. The latest research progress of coronavirus was recorded under
the topic of “Emerging Infectious Diseases” of NSTL.

SinoMed is a comprehensive biomedical literature service system, which integrates
multiple resources such as China Biology Medicine disc (CBM) and Western Biology
Medicine disc (WBM) [15].

A total of 17,653 coronavirus-related articles were retrieved from these three data
sources, as shown in figure 1.

3.2. Knowledge Extraction. SemRep is an effective off-the-shelf tool developed
by the U.S. National Library of Medicine for entity and relationship identifica-
tion [13]. The identified information can be linked to Unified Medical Language Sys-
tem(UMLS) standard terminology. We used SemRep to automatically extract Eng-
lish triples. Export the Titles and Abstracts information of the article in “PubMed”
format. SemRep identifies entity and relation in each sentence and form into triples,
then maps the entities to concept unique identifiers (CUIs) in the UMLS Metathe-
saurus, and the relationships map to UMLS Semantic Network. For Chinese data
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Figure 1. Statistics of Chinese and English data sources

sources, we used W2NER [14] model to extract entities and PL-Marker [27] model to
extract relations. The Encoder Layer of W2NER framework was used to obtain the
context word representation of the input sentence. The Convolution Layer builds
the word matrix. The bilinear Layer of the Co-Predictor layer performs inference.
PL-Marker was used to obtain the Solid Marker before and after subject and the
Levitated Marker of object, and the feature expressions of multiple relation pairs
were obtained for relation classification.

3.3. Knowledge fusion.

3.3.1. Ontology mapping. This study focuses on semantic types closely related to
coronavirus, such as causative viruses, genes, drugs, examine, etc. Therefore, we
screen UMLS Semantic Network, and the main types and relationships of attention
are shown in Figure 2. Mapping Chinese-English entity types and establishing 7
“identical” relationships for the next step of entity fusion.

3.3.2. Entity fusion based on LLMs. LLMs is usually exposed to data in multiple
languages during the pre-training phase, which gives them a certain cross-language
processing capability. In translation tasks, LLMs can make full use of this cross-
linguistic information to improve the accuracy and fluency of translation. In addi-
tion, LLMs can quickly adapt to new languages through fine-tuning or migration
learning. In the bilingual entity fusion stage, we use LLM’s rich semantic knowl-
edge and powerful reasoning capabilities to promote the integration of bilingual
knowledge.

Using LLMs for translation, and Chinese Unified Medical Language System
(CUMLS) terms constructed by Institute of Medical Information Chinese Academy
of Medical Sciences were selected for model fine-tuning. Calculate the similarity
between the translated entities and the extracted Chinese data. If the similarity
is greater than the threshold we defined, it means that the two are to be fused.
Then it is judged whether the entity types are the same. If the entities are of the
same type, the data will be fused and the entities will be stored in the database. If
the entity types are different, a new entity will be added, the process is shown in
Figure 3.
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Figure 2. The main schema of the knowledge graph with the inte-
gration of bilingual biomedical knowledge

Figure 3. Diagram illustrating the workflow of our approach



BILINGUAL KNOWLEDGE GRAPH 2407

The fine-tuning process aims to help LLMs better understand bilingual knowledge
and further improve its accuracy and adaptability in fusion tasks. We constructed
an instruction set for medical bilingual knowledge translation, including input, in-
structions, and output. The input is the English term in the CUMLS, the instruc-
tions is the task description, and the output is the corresponding Chinese term in
the CUMLS. Based on the constructed instruction dataset, we perform instruction
tuning on LLMs. Specifically, we choose the open source model Llama2-Chinese-
13b-Chat [25] as our base LLMs and adopt the Lora method for fine-tuning.

Since the matching objects are massive entities and the complexity of fusion
model is high, we propose a method of recalling entities first and then sorting them
during similarity calculation. The recall phase gives priority to ensuring high recall
rate and low time complexity. The sorting phase uses a higher accuracy algorithm to
calculate the similarity between each entity. The similarity algorithm in the sorting
stage is based on the recall algorithm and adds two data features for optimization.

In the recall phase, for a given entity x and candidate entity set Y, a method is
designed to quickly find the top-n candidate entity sets Y = {y1, y2, . . . , yn} with
the highest similarity to x from Y. First, perform data cleaning. Data cleaning is
used to remove symbols from entities and unify expressions such as “diabetes type
1” and “diabetes type I”.

Then perform word segmentation. The Chinese entities are segmented by charac-
ters. For example, “xin xing guan zhuang bing du fei yan(COVID-19)” is split into
“xin”, “xing”, “guan”, “zhuang”, “bing”, “du”, “fei”, “yan”. Finally, the Jaccard
similarity algorithm is used to calculate the similarity between entity characters x
and yn.

In the sorting phase, by observing the data, we found that medical entities can
be split into two parts: subject and suffix. For example, “hu xi jiong po zong he
zheng (respiratory distress syndrome)”can be split into “hu xi jiong po (respiratory
distress)”and “zong he zheng (syndrome)”, and “ao si ta wei jiao nang (oseltamivir
capsules)”can be split into “ao si ta wei (oseltamivir)”and “jiao nang (capsules)”.
When the subject words are consistent and the suffixes are different, they often refer
to the same or similar meaning; for subject words that are inconsistent, regardless
of whether the suffixes are consistent or not, the similarity is low, such as “a mo
xi lin jiao nang (amoxicillin capsule)”and “a si pi lin jiao nang (aspirin capsule)”.
By parsing the entity set, we construct a suffix vocabulary list. For entities x and
candidate entities yn, calculate the subject word similarity and suffix similarity re-
spectively. Secondly, we analyze the differences in the subject words, “fei chuan
ran xing ji bing (non-infectious diseases)”and “chuan ran xing ji bing (infectious
diseases)”, the difference words is “fei (non)”. The negative word has a more im-
portant influence on the meaning of the entity. When a negative word was present
in the entity, two entities were considered not similar.

4. Results

4.1. Data Extraction. The Titles and Abstracts of the articles were downloaded
in PubMed, and SemRep was used to extract coronavirus-related semantic informa-
tion. Finally, 641,195 triples were obtained, which contained 13,065 concepts, 209
semantic types and 97 semantic relations in UMLS.
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Extracting 17,653 coronavirus articles from 3 Chinese data sources: UpToDate,
NSTL, and SinoMed. 32,432 triples were obtained, covering 7 entity types, 3 types
of attributes, and 11 relation types.

4.2. Data Fusion. Dividing the CUMLS data into training and test sets in the
ratio of 7:3. The main parameters were set as lora rank 8, learning rate 5e-5, learn-
ing rate 5e-5, per device train batch size 8 for model fine-tuning. The translation
accuracy of the fine-tuned LLMs on the test set was 73.72%. We used open source
translation software to translate the test data, and the accuracy was 45.78%. The
performance of LLMs on translation is much higher than that of existing tools. In
the fusion stage, we set the threshold to 0.9 for data fusion, and 4330 entities can
be fused, as detailed in Table 1.

Storing the coronavirus bilingual knowledge in a graph database, we use JavaScript
to develop a B/S-based knowledge graph system, and various kinds of information
such as pictures were added for multimodal display. The system embeds graph
computing methods such as clustering and path calculation to facilitate knowledge
discovery.

5. Discussion

By fusing the Chinese and English data, we have constructed a bilingual coro-
navirus knowledge graph with more comprehensive data, which can be used for
broader knowledge discovery. The knowledge graph was used for drug and target
knowledge discovery.

5.1. Potential Drug. By performing a search of the bilingual coronavirus knowl-
edge graph, we found a “TREATS” relationship for COVID-19 for 5 drugs currently
used to treat human immunodeficiency disease (HIV), as shown in Figure 4. Accord-
ing to the Anatomical Therapeutic Chemical (ATC) classification system of drugs,
lopinavir, arbidol, and ribavirin are antiviral drugs for systemic use. The combi-
nation of lopinavir and ritonavir is often used to treat HIV-infected patients [16].
Studies have found that lopinavir can interact with the 3C-like chymotrypsin of
coronavirus. In a clinical trial, it was found that lopinavir was more effective in
treating hospitalized patients with severe COVID-19 than the control group [4].
Arbidol has strong inhibitory effect on a variety of viruses. Some researchers found
that arbidol”s inhibitory efficiency against the new coronavirus at a concentration
of 10 ∼ 30µmol ·L−1 was 60 times higher than that of the control group [1]. Arbidol
can prevent the virus shell from contacting, adhering to, and fusion with the cell
membrane of the host cell, thereby inhibiting the virus from entering the cell. Rib-
avirin is an antiretroviral drug. The drug enters cells and is phosphorylated to com-
petitively inhibit the synthesis of viral guanosine triphosphate, thereby inhibiting
the synthesis of viral mRNA [24]. In the “COVID-19 Diagnosis and Treatment Plan
(Trial Sixth Edition)”, ribavirin is recommended to treat patients with COVID-19.

5.2. Potential Target. Searching for “coronavirus infection”, we obtain entities
related to the coronavirus infection mechanism, as shown in Figure 5. Studies have
found that angiotensin-converting enzyme 2(ACE 2) is a functional receptor for
SARS-CoV-2 [3]. The recognition of viral proteins with cell surface ACE2 receptors
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Table 1. Data fusion results

is the first step for viruses to infect host cells. Transmembrane protease serine 2
(TMPRSS2) on the cell surface initiate the activation of the spike protein, which
then binds the spike protein to ACE2 and enters the host cell [6]. Although SARS-
CoV-2 uses ACE2 as a receptor, studies have shown that the expression level of
ACE2 is very low in most organs. Through gene expression similarity calculation,
it was found that dipeptidyl peptidase 4 (DPP4) may be the virus of co-receptors.
Several studies have predicted that DDP4 may be a candidate target of SARS-CoV-
2 and participate in the coronavirus infection process [21].
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Figure 4. Drug repurposing for coronaviruses

6. Conclusions

In the context of globalization, the epidemic prevention, control and research of
coronavirus require close cooperation among countries. However, language differ-
ences are a big barrier to cooperation. Consequently, this research introduces an
LLMs-based cross-lingual data fusion approach, aiming to establish a method that
is both cost-effective and highly accurate. The constructed bilingual knowledge
graph of coronavirus effectively integrates heterogeneous information from multiple
sources. The knowledge graph shows the characteristics of the virus, transmission
mode, prevention measures and other key contents in a structured form, provid-
ing a comprehensive and easy-to-understand knowledge system for researchers and
the public. In addition, the knowledge graph integrates information resources in
multiple languages, so that researchers and the public from different language back-
grounds can easily access and understand relevant information, and promote data
sharing and cooperation on a global scale.



BILINGUAL KNOWLEDGE GRAPH 2411

Figure 5. Potential target discovery
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