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care units [19]. Images obtained using the magnetic resonance imaging system must
be transferred to other diagnostic terminals via secured communication channels.
In this respect, the protection of the patient’s data is crucial for magnetic resonance
systems when wireless terminals are used.

Previous encrypting algorithms for magnetic resonance systems are described
here. Encrypted images with watermarks were created using a magnetic resonance
system [12]. Discrete maps were embedded to encrypt the images in a magnetic
resonance system [9]. A generative adversarial network with a high encrypting
capability was proposed to provide high encrypting capability in the magnetic res-
onance system [14]. A data-encrypted algorithm based on a logistic map has been
proposed for patient data using magnetic resonance brain imaging [7]. Encrypted
images based on game theory were optimized using the region of interest in the
magnetic resonance imaging data [24]. An encrypted magnetic resonance has been
proposed based on a diffusion algorithm with odd and even interleaved points [21].
An encrypted algorithm was proposed based on a chaotic map and a system with
Brownian motion in the ultrasound, computed tomography, and magnetic resonance
system applications [13].

According to the literature, the ability of magnetic resonance systems to encrypt
images is important for systems with wireless communication channels. Therefore,
we developed a new mathematical encrypting algorithm for magnetic systems. The
remainder of this paper is organized as follows. Section 2 describes the development
of an encrypting algorithm based on the proposed mathematical functions. Section
3 presents the encrypted magnetic resonance images obtained using the proposed
algorithm. Finally, Section 4 concludes this paper.

2. Methods

The proposed algorithm converts the decimal part of an irrational number into a
k-digit integer as shown in Equation (2.1). Thus, only the integer part of the k-digit
integer can be used as a candidate for a random bit when a Gaussian function is
used.

(2.1) y = f(x, k) = |x× 10k|.
Equation (2.2) is an example of extracting the integer part of the irrational num-

ber π as a candidate random bit when using the given Equation (2.2).

(2.2) f(π, 10) = [3.141569265358797× 1010] = [3141596253.5897] = 314596253.

Equation (2.3) is a random bit generator used to extract nonduplicated values by
extending the periodic function. This generates a graph that spreads the oscillation
of the period by multiplying the periodic function by a real number.

(2.3) f(x) = xcos(x).

Figure 1 shows a graph representing the function in Equation (2.3). The graph
spreads as the period increases when a real number multiple is applied to a periodic
function.

The random bit candidates generated from the graph in Figure 1 are shown in
Figure 2. Figure 2 shows the discrete points that can be applied to a digital system
with the proposed random bit generation function.
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Figure 1. The graph for the proposed algorithm.

Figure 2. The domain for the proposed algorithm.

First, we define the x-coordinate that can be extracted from a digital system with
discontinuous characteristics. Equation (2.4) represents the domain for extracting
the points shown in Figure 2.

(2.4) x|x = a0 + idx, a0 = 0.3, dx = 0.2312, i = 0, 1, 2, . . . .

The proposed random function is a function of the spreading amplitude. As
shown in points of one to four (Figure 3), the values for the same period have
different values.

The characteristics of the digital system are shown in Figure 4. In previous
papers [3,4], we first applied Equation (2.1), rather than applying the exact period
and then extracted values for similar periods. However, in this paper, we extracted
the values of periods that could be generated mathematically.
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Figure 3. The random bits around the period of the proposed algorithm.

Figure 4. The random bit when using the previous approach.

As a result, the proposed idea has the advantage of obtaining nonduplicated f(x)
values from exact values of the same period. Figure 5 shows the range that can
be extracted from the domain using the proposed random bit which generates the
function and Equation (2.3).

The domain of the function whose amplitude can be spread operates as the period
of Equation (2.5).

(2.5) z = p((f(x), 10).
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Figure 5. The candidates of the random bit.

The seed for extracting the random bit candidates generated in the domain of
Equation (2.4) is converted into a period as shown in Equation (2.5). The values of
the domain were restricted to discrete forms using the congruent equation shown in
Equation (2.6). Therefore, it can be operated within the finite range of the digital
systems.

(2.6) Zm = Z(z,m) = |z|(mod m).

This method generates random bits of a certain size or larger, such as 128, 192, and
256 bits, using the random bits generated by Equations (2.1), (2.2), (2.3), (2.4),
(2.5), and (2.6).

In Figure 5, if the equation p0 = (f(x0), 10) is selected and the value of f(p0) is
selected as a 32-bit integer random bit, then the random bit can be determined by
connecting the values of f(p0), f(p1), f(p2), and f(p3) when using Equation (2.7)
to generate a 128-bit random bit.

(2.7) r = R(Zm, n) =

n−1∑
i=0

(Zm)i × (i×m/24).

3. Results and discussion

We first performed a simulation to verify the proposed encrypting algorithm.
Figure 6 shows a diagram visualizing the distribution of random bits generated
using the proposed algorithm.

Figure 7 shows a visual image of the random bits generated using the Crypt-
GenRandom function provided by Microsoft operating system to compare the per-
formance of the proposed algorithm. The CryptGenRandom function is the most
widely used function for random bit generation [15]. CryptGenRandom was tested
by the United States of America National Institute of Standards and Technology
(NIST) standard protocol (NIST-800 90B).
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Figure 6. The random bit image when using the proposed algorithm.

Figure 7. The random bit image when using the CryptGenRandom
function run by the window system.
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Current magnetic resonance systems can be used to obtain lumbar images for
laboratory or research purposes [20]. Image data from the lumbar training phan-
tom were obtained using a commercial 3.0T magnetic resonance system which is
currently used to diagnose knee, shoulder, cervical, brain, and lumbar diseases at
universities and small clinics.

To compare the performances of the encrypting algorithms of the magnetic res-
onance system, we used three typical measurement indices: peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM), and mean square error
(MSE).

The PSNR values obtained using the CryptGenRandom function and the pro-
posed algorithm were 5.98571242 dB and 5.9078501995 dB, respectively. The SSIM
values when using the CryptGenRandom function and the proposed algorithm were
0.255421107 and 0.255140541, respectively. The MSE when using the CryptGen-
Random function and the proposed algorithm were 16387.3647 and 16414.59461,
respectively. Therefore, there was almost no difference in image quality between
the two randomized images.

Figure 8 shows that the randomness of the proposed algorithm is similar to that of
Microsoft’s CryptGenRandom function as a result of NIST SP800-90B for evaluating
randomness.

Figure 8. Test results of the NIST SP800-90B with the proposed
algorithm and CryptGenRandom function.

4. Conclusion

We applied the proposed mathematical encryption algorithm to a traditional
magnetic resonance system that is currently used in hospitals. In this study, we
compared the performance of the CryptGenRandom function, which is a random
bit generator used in the Windows operating system, and a random bit genera-
tor using a mathematically encrypted algorithm. The results of the random bit
evaluation using NIST SP800-90B confirmed that the minimum entropy for the
randomness of the proposed algorithm and the random bit generator based on the
existing operating system was over 7 bits. Therefore, the results showed a similar
level of performance, close to 8 bits. For high-speed real-time data transmission, we
believe that the magnetic resonance system images can be randomized and trans-
mitted more efficiently than encryption using encryption keys and initialization
vectors. When applying the proposed algorithm to an actual system using several
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random images per transmission frame, we can expect the efficiency of the magnetic
resonance system to increase.
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