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PULSE WAVE MORPHOLOGICAL FEATURE CLASSIFICATION
AND TIME DOMAIN FEATURE RECOGNITION METHOD
BASED ON 1D-DCNN MODEL

YANG LI*, XINGGUANG GENG', FEI YAO, HAO WANG, YITAO ZHANGH,
XIAOYU WANG?, AND HUA HUA

ABSTRACT. Pulse wave time-domain characteristics are essential for blood pres-
sure monitoring and cardiovascular disease prediction. The coordinate positions
of pulse wave morphology and time-domain characteristics are closely related.
Therefore, this paper proposes a time-domain feature recognition method based
on morphological features for pulse waves. A three-channel pulse wave acquisi-
tion device collected radial artery pulse signals from 150 subjects. We prepro-
cessed the signal to obtain a single-cycle pulse waveform. The next task was to
identify the extreme, inflection points, and feature fusion forms of dicrotic and
TWs, then classify nine pulse wave types. Finally, based on the classification
characteristics of tidal and DWs, the extreme value or curvature method was
used to identify the characteristic parameters of nine classes of pulse waves. To
this end, we adopted a 1D-DCNN model, containing input, convolutional, fully
connected, and output layers. The convolutional layer included three operation
steps: convolution, activation, and max pooling. The model provided input of
one-dimensional single-cycle signal data, performed convolution operations on the
input data, and used the sliding of convolution kernels to capture local patterns
in the input data. The activation function introduced non-linear properties into
the results of convolution operations, better fitting complex data patterns. The
experiment validated excellent recognition accuracy of the algorithm: 93% for
DWs and 94% for TWs. This study’s time-domain feature extraction algorithm
for pulse waves has a minimum correction regression coefficient of 0.97 for the
three types of TWs and a minimum correction coefficient of 0.96 for DWs. Cor-
responding to each feature point dataset, the statistical parameter values were
less than 2, proving that the algorithm has achieved excellent accuracy.

1. INTRODUCTION

Pulse wave time-domain features identify the physical features of related blood
flow, an important physical quantity for blood pressure estimation [4,7,9,11,18].
The simple, noninvasive, and easily obtainable features of pulse waves meet the
requirements of modern continuity detection [3,12,13]. Accurately extracting the
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time-domain features of pulse waves is the foundation of blood pressure model-
ing [8,14,15,20]. A complete pulse wave mainly comprises a main wave (MW),
dicrotic wave (DW), and tidal wave (TW). Currently, time-domain feature parame-
ter extraction methods mainly include the slope method (SM), slope and threshold
combination method (STCM), differential method (DM), wavelet method (WM),
etc. The SM and STCM are achieved through the abrupt change of the slope of
the pulse wave at the feature point to achieve feature recognition [21]. The DM
mainly achieves feature recognition by differentiating the waveform and finding the
zero point position of the pulse wave characteristics. They mainly use continuous
wavelet decomposition to highlight pulse wave feature points at different decomposi-
tion layers and achieve wavelet transform [10,16]. The above methods perform well
in identifying pulse wave features but are susceptible to noise interference, which
can lead to a decrease in recognition rate [6]. Qian et al. [19] and Chang et al. [1]
proposed fitting pulse waves with three and four Gaussian functions, respectively,
and calculating time-domain parameters through the parameters of the Gaussian
functions. On this basis, Chen [2] used mixed genetics to fit three Gaussian func-
tions to the pulse wave. In comparison, Sun et al. [19] applied a pulse wave model
containing three Gaussian functions to generate pulse wave simulation data and
used it for algorithm validation. The waveforms fitted by these models are indeed
similar to real pulse waves, but their physiological significance still needs to be
clarified. Whether their relevant parameters can truly represent the information
in the pulse map has yet to be thoroughly studied, and there are many unknown
parameters in the models, making the fitting method more complex and, therefore,
less applied. Hou et al. [17] proposed a pulse wave time-domain feature recognition
algorithm based on the angle method. By changing the angle, the time-domain
features are obtained. This algorithm is similar to the curvature method. Wang et
al. [5] proposed a pulse wave time-domain feature recognition algorithm based on
deep learning algorithms. They first divided the pulse waves into six categories and
used six deep-learning algorithms to classify and recognize the six types of pulse
waves. However, the recognition waveform of this algorithm is limited and cannot
meet the needs of practical applications. The fundamental driving force of human
blood circulation comes from the periodic pumping of blood by the heart, and the
ventricles mainly complete the pumping function. The activity of left ventricular
contraction and relaxation forms the cardiac cycle. Left ventricular contraction in-
jects blood into arterial blood vessels, while left ventricular relaxation draws blood
into the ventricle, forming a cycle of pulse waves during this process. During the
systolic phase of the heart, blood flows from the heart to the arterial ducts, causing
rapid dilation of the arterial wall and the formation of the ascending branch of the
MW. The height of the ascending branch mainly reflects the left ventricular ejection
capacity and the compliance of the aortic vessel wall. The higher and steeper the
ascending branch, the stronger the ejection capacity of the human heart and the
greater the vessel wall compliance. Conversely, the weaker the ejection capacity, the
smaller the vessel wall compliance. Due to the flow of blood in the tube, the pres-
sure on the blood vessel wall decreases, forming descending branches. The external
resistance causes the wave to propagate towards the near center and superimpose
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the descending branch of the MW to become a TW. TWs mainly reflect the com-
pliance of arterial blood vessel walls. When the compliance is small, an increase in
the Young modulus can lead to a high propagation rate of pulse waves, resulting
in a higher amplitude of TWs, forward phase shift, and even overlapping with the
MW peak. During diastole, the indoor pressure rapidly decreases, and blood within
the aortic vessels begins to flow back, causing the vessel wall to retract and rapidly
closing the aortic valve.As a result, a notch is formed on the pulse waveform, known
as the descending isthmus (the DW trough). Due to the obstruction of the closed
aortic valve, the refluxed blood flows back to the aortic canal, forming an upward
wave after the descending isthmus, known as a pulsation wave, which mainly re-
flects the elasticity of the large artery. The increase in vascular sclerosis can lead
to an increase in the conduction velocity of pulse waves, which in turn accelerates
the speed of blood return and causes the phase of the DW to shift forward, even
overlapping with the DW’s MW peak or the front wave. A decrease in the E-value
will cause a reduction in the conduction velocity of the pulse wave, increasing the
velocity of blood reflux. This will cause the phase of the DW to shift backward, the
descending isthmus to decrease, and the peak value of the DW to increase. From
Figure 1, it can be seen that the characteristic form of the MW can be reduced
to one state, namely extremum point. Tidal and DW characteristic forms can be
divided into extreme points, inflection points, and feature fusion. Combining the
three states of DWs and TWs, pulse waves can be divided into nine classes.

2. MATERIALS AND METHODS

2.1. A signal acquisition instrument. Asshown in Fig. 2(a), this study uses the
pulse wave acquisition device. This instrument’s three compound pressure sensors
can achieve synchronous pressure acquisition of three-channel signals through airbag
pressurization. The pressure range is 10-140 mmHg, the pressure gradient is 20
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mmHg, the sampling frequency is 225 Hz, and the pulse wavelength collected at each
pressure gradient is about 2250 points. Figure 2 (b) shows a compound pressure
Sensor.

2.2. Methods. As shown in Figure 3, this method includes three parts: (i) Signal
preprocessing, (ii) Classification method for nine pulse waves, and (iii) Time domain
feature recognition for nine pulse waves.

2.2.1. Data preprocessing. Preprocessing mainly includes noise treatment, cycle di-
vision, and standardization treatment. Figure 4 shows a signal preprocessing flow-
chart. As shown in Figure 5 (a), because the pulse signal is a weak physiological
signal on the body surface, the data acquisition equipment used in this study is a
pressure sensor based on PVDF piezoelectric film. Hence, the collected data will
inevitably be interfered with. Therefore, it is necessary to preprocess the collected
original signal to obtain the single-cycle pulse wave in the whole period The noise
carried by pulse waves mainly comprises tip, power frequency, EMG, and respira-
tory noise. Firstly, the median filter removes the data transient, and the 50Hz power
frequency interference is removed based on the notch filter. The band-pass filter
removes part of the respiratory and out-of-band EMG noises, and the new threshold
function denoising algorithm based on the translation wavelet transform removes
the EMG noise. Figure 5 (b) shows the denoised pulse wave sequence. The period
division is mainly divided into four parts. Firstly, the Viola integral and Shannon
energy algorithm extract the pulse signal’s envelope energy function. Secondly, the
optimal peak is obtained by using the time-frequency characteristics. The periodic
step obtained using the frequency-domain characteristics is the initial value of the
iteration. The maximum value and the next most considerable value are found in
the step. The interval of the maximum value is used as the step of the next iteration
until the average interval between the peak points obtained this time is the same as
the last iteration, and the optimal peak point is obtained. K-mean clustering and
Haar wavelet transform are used to locate the peak of the pulse wave. The lowest
point of the pulse wave between the two peaks is the starting point of the pulse.
The baseline drift curve is obtained by fitting the starting point with third-order
spline interpolation. Finally, the denoising pulse wave can be obtained by subtract-
ing the baseline drift curve from the pulse wave. Between the two starting points
is a single-cycle pulse wave. Figure 5 (c) shows the signal after completing cycle
division and removing baseline drift.

(2.1) Yi(z) = A+ As(z — 23) + Ci(x — 23)* + Dyi(x — x4)%,i = 0,1,2,3, ..., 225.

The least squares method is used to fit the curves of three adjacent sampling points,
where z() is the sampling point, A;, B;, C;, D; represent the constant coefficients
in different orders, respectively.

Next, we sample the zero-mean normalization method and normalize the ampli-
tude of the pulse wave.

m

(2.2) yor Y-t o 1 SO — )= 1 S v

0 m 4 .
i=1 i=1
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FIGURE 2. (a) Multi channel pulse wave acquisition device.
(b) A compound pressure sensor.
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FIGURE 4. Acquire single cycle signal (a) Original pulse wave se-
quence (b) Signal after noise processing (c) Signal after completing
cycle division and removing baseline drift

where Y ) represents each sample, u represents the mean of all samples, § represents
the standard deviation of all samples, Y (9* represents each normalized sample. The
standardized single-cycle signals are manually labeled, the noise is labeled as 0, the
pulse signal is labeled as 1, and the interference signal is labeled as 2.
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FIGURE 5. Signal Preprocessing Flowchart

2.2.2. Pulse wave waveform classification based on CNN. The 1D-DCNN model is
shown in Figure 6 and includes an input layer, a convolutional layer (CONV), a fully
connected layer (FC), and an output layer. The convolutional layer includes three
operation steps: convolution, activation, and max pooling. Input one-dimensional
single-cycle signal data, perform convolution operations on the input data, and use
the sliding of convolution kernels to capture local patterns in the input data. The
activation function introduces non-linear properties into the results of convolution
operations, better fitting complex data patterns. To accelerate the learning speed of
the model structure, max pooling downsamples the input representation by selecting
the maximum value within the spatial region. After extracting the required overall
features through multiple convolutional layer operations, flatten them into a feature
tensor. The fully connected layer maps feature tensors to the output layer, learns
the relationship between features and output results, and serves as a criterion for
classification tasks, as shown in (2.3). This study divides the output results of heavy
and TWs into three categories: extreme points, inflection points, and feature fusion.

(2.3) y=g(kz+0).

Where, z is input, y represents output, k is weight, b is bias, and y isnon-linear
activation. In the network, we need to train the weights and biases of CONV and
FCs to enable the network to learn the complex functional expressions of input
and output automatically. We need to set some hyperparameters and optimization
methods of the 1ID-DCNN model in advance to accelerate learning speed, as shown
in Table 1. Based on experience, mini-batch processing accelerates gradient cal-
culation and weight updates by placing multiple samples in one batch. We chose
64(2%) as one batch. To dynamically adjust the learning rate, we use Adam as a
gradient descent optimization algorithm based on past gradient information during
the training process during the training process. As shown in (2.4)-(2.6), apply the
Softmax function at the output layer of the model to convert the original value of
the network’s last layer into the probability distribution of the category so that the
most likely category can be determined based on the probability size z;.

(2.4) zp = Zthjz',
J
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(2.5) softmax(z); = p; =

(2.6) § = argmaxp;.

1

The accuracy and training time of the 1D-DCNN for single-cycle waveform recog-
nition were significantly influenced by sample size, model architecture, and hyper-
parameters. Given a limited dataset, optimization focused on adjusting the model
architecture (number of convolutional layers, input/output channels) and hyper-
parameters (learning rate, input data length). Validation set performance guided
the selection of the optimal configuration, minimizing training time. Experiments
were conducted using Python 3.10.12, PyTorch 2.1.0 (with CUDA support), and
an NVIDIA GTX 1660Ti GPU. The learning rate significantly impacts model con-
vergence speed and stability. Fight learning rates, logarithmically spaced between
0.0001 and 0.01, were tested using gradient descent, stopping when average training
loss fell below a threshold. Figure 7(a) shows validation set performance: accuracy
increased and stabilized with higher learning rates, but training time grew expo-
nentially (lower learning rates took longer). While larger learning rates yielded
faster training, excessively high rates prevented convergence, ultimately increasing
training time. A learning rate of 0.003 achieved optimal validation accuracy with
relatively fast convergence. Subsequent training employed a learning rate scheduler,
halving the initial 0.003 learning rate every 100 epochs. The number of convolu-
tional layers determines the model’s ability to learn increasingly abstract features.
Figure 7(b) shows validation set performance using 2 to 8 convolutional layers.
Accuracy initially increased with the number of layers but subsequently decreased
while training time per epoch consistently increased. Adding layers doesn’t guar-
antee linear performance improvement; excessive layers can lead to overfitting and
slower training. With high validation accuracy and relatively fast convergence,
optimal performance was achieved with six convolutional layers (CONV=6). The
number of input and output channels in the convolutional layers affects the fea-
ture representation. Eight models, each with six convolutional layers and two fully
connected layers, were designed with varying channel ratios (Table 2). The sixth
convolutional layer consistently produced 32 feature tensors (size 4), concatenated
into a 128-element vector for the fully connected layers. Figure 7 (c) shows vali-
dation set performance. Structures 1 and 2 exhibited superior accuracy; however,
Structure 1, with fewer parameters, offered better computational efficiency and was
therefore selected. To reduce the computational cost, the original 256-point signal
was downsampled to 128, 64, and 32 points, corresponding to sampling frequencies
of 112.5 Hz, 56.25 Hz, and 28.125 Hz, respectively. This avoided aliasing according
to the Nyquist-Shannon sampling theorem. Figure 6 (d) shows validation accuracy
for different input lengths; accuracy decreased below 128 points. Therefore, a 128-
point single-cycle waveform was used. Training stopped after 30 consecutive epochs
without improvement in the cross-entropy loss (2.7). Otherwise, backpropagation
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and optimization continued.

c—1
(2.7) Loss = — Zyi log (p;) = —log (.. .ic) -
i=0
Among them, p = [po,...,pc—1] is a probability distribution, where each element is

the probability that the sample belongs to class i. y = [yo,...,yc—1] is a unique
hot code representation of the sample label when the sample belongs to a category.
Otherwise, y; = 0. C is the sample label. Based on the above experiment, we
ultimately selected the CNN, which includes 6 CONV and 2 FC layers. The iteration
stop condition is that the accuracy of the validation set does not decrease for 30
consecutive times, and the final classification result is output. The trend curves
of the loss and accuracy of the training and validation sets during the training
process are shown in Figure 8 (a)-(d), indicating that as the number of training
rounds increases, the loss function gradually decreases while the accuracy gradually
increases.

TABLE 1. Parameter Settings for CNN Models

Batch size 64
Kernel size 1X3
Pooling size 1 X2
Stride 2
Loss function Cross-Entropy Loss
Optimizer Adam
Activation function ReLU

TABLE 2. Different Structures of 1ID-DCNN Model

CONV (a-b) FC (c-d)
No. Layerl Layer2 Layer3 Layer4 Layerb5  Layer6 Layer7  Layer8
1 1-2 2-4 4-8 8-16 16-32 32-32
2 1-4 4-8 8-16 16-32  32-32 32-32
3 1-4 4-16 16-32 32-32 32-32 32-32
4 1-4 4-32 32-32 32-32 32-32 32-32 (128-64)  (64-3)
) 1-8 8-16 16-32 32-32 32-32 32-32
6 1-8 8-32 32-32 32-32 32-32 32-32
7 1-16 16-32 32-32 32-32 32-32 32-32

2.2.3. Time domain feature extraction methods for different types of pulse waves.
(1) Calculation method for extreme points of pulse waves Assuming the data length
of a single cycle pulse wave y(n) is N, the method to determine the i-th point as
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the peak point is as follows:

(2.8)

y(1) —y(i—1) >0,
N>i>1.

2383

By traversing all sampling points on y(n) and using the above formula, the position
of the maximum pulse wave can be obtained:

(2.9)

y(i) —y(i = 1) <0,
y(i) —y(i +1) <0,
N >i>1.

By traversing all sampling points on y(n) and using the above for + , the position
of the minimum pulse wave can be obtained.
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(2) Calculation method of pulse wave inflection point Obtain the curvature trans-
formation expression for z(n) based on the definition of curvatur.

1.5

Y2
2.10 k(n) = ,n=12...N.
en (i)

In the formula, y; is the first derivative of y and y, is the second derivative of y.
In order to remove the interference term in the curvature, a 5-point smoothing filter
is applied to the original curvature, and the number of filtering points is determined
by the sampling frequency of the original data.

k(i) —k(i—1) >0,
(2.11) k(i) —k(i+1) >0,
N >idi>1.

By traversing all sampling points on k(n) and using the above formula, the convex
position of the pulse wave inflection point can be determined.

3. ALGORITHM VERIFICATION

3.1. Data sources. The participants in this experiment are team members from
our laboratory, including 86 males and 64 females, for a total of 150 participants.
The volunteers of this experiment fully understood the experiment’s content before
the experiment and had the resources to participate in the experiment. The subject
sample’s specific inclusion criteria are shown as follows: (1) There is no skin disease



PULSE WAVE FEATURE CLASSIFICATION AND RECOGNITION METHOD 2385

on the wrist; (2) The subject showed no significant upper limb tremors; (3) The
subject does not have oblique pulse orno pulse. 1623 single-cycle waveforms were
collected, including 537 TWs with extreme points, 559 with inflection points, and
527 disappearing pulse waves, respectively. The number of pulse waves with extreme
points, inflection points, and disappearance is 641, 532, 450, respectively.

3.2. Evaluation results of pulse wave morphology classification model.

3.2.1. Performance evaluation of tidal wave three classification model. As shown in
Table 3 and Figure 7 (a), in the model validation set, the classification precision of
the model extreme point is 93.59%, recall is 93.59%, F'1 score is 93.59%, the classi-
fication precision of Inflection point is 95.45%, recall is 90.32%, F'1 score is 92.82%,
the classification precision of Fusion disappearance is 89.74%, recall is 95.89%, F1
score is 92.72%,the accuracy of the algorithm is 93.03%, the average precision is
92.93%, the average recall is 93.27%, the average F1 score is 93.04%, macro-F1 is
93.04%. It can be seen that the model performs well in training. It can be seen that
the model performs well in prediction accuracy. As shown in Table 4 and Figure 7
(b), in the model test set, the classification precision of the model extreme point is
96.81%, recall is 96.81%, F 1 score is 96.81%, the classification precision of Inflection
point is 94.59%, recall is 92.11%, F'1 score is 93.33%, the classification precision of
Fusion disappearance is 93.33%, recall is 95.89%, F1 score is 94.59%,the accuracy
of the algorithm is 95.06%, the average precision is 94.91%, the average recall is
94.93%, the average F 1 -score is 94.91%, macro-F1 is 94.91%. It can be seen that
the model performs well in training.

3.2.2. Performance evaluation of the triple classification model for dicrotic wave.
As shown in Table 5 and Figure 8 (a), in the model validation set, the classification
precision of the model extreme point is 95.00%, the recall is 97.44%, F1 score is
96.20%, the classification precision of Inflection point is 97.78%, recall is 94.62%,
F1 score is 96.17%, the classification precision of Fusion disappearance is 98.65%,
recall is 100.00%, F'1 score is 99.32%,the accuracy of the algorithm is 97.13%, the
average precision is 97.14%, the average recall is 97.35%, the average F 1 score
is 97.23%, macro-F1 is 97.23%. It can be seen that the model performs well in
training. The model performs well in prediction accuracy. As shown in Table 6 and
Figure 8 (b), in the model test set, the classification precision of the model extreme
point is 97.78%, recall is 93.62%, F'1 score is 95.65%, the classification precision
of Inflection point is 92.11%, recall is 92.11%, F'1 score is 92.11%, the classification
precision of Fusion disappearance is 90.91%, recall is 95.89%, F1 score is 93.33%,the
accuracy of the algorithm is 93.70%, the average precision is 93.60%, the average
recall is 93.87%, the average F 1 -score is 93.70%, macro-F1 is 93.70%. It can be
seen that the model performs well in training.

3.2.3. FEwaluation of time-domain feature extraction algorithms for pulse waves. As
the purpose of this study is to predict specific eigenvalues that belong to regression
problems, Adjusted R-Square( R? Mean Absolute Error (MAE) Root Mean

ajusted)
Square Error (RMSE) are usually used to evaluate the training accuracy of the

model Randomly select 100 extreme points, inflection points, and fused disappear-
ance pulse waves from TWs and DWs to evaluate the recognition results of DW
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and TW coordinate points. For the convenience of evaluation, this paper evalu-
ates the algorithm’s accuracy by calculating the results of the three TW and DW
states. The results in Table 6 show that after using the algorithm for classification
and recognition in this study, the lowest correction regression coefficient for the
three characteristics of pulse wave time-domain TW is 0.97, and the lowest correc-
tion coefficient for DW is 0.96. The corresponding statistical parameter values for
each feature point dataset, such as and are less than 2, indicate that the algorithm
model has achieved high accuracy in feature point recognition.

As shown in Table 7, using traditional methods to identify feature points on
the same test set data, it was found that the correction coefficient reached 0.92
only when the TWs were extreme points and the statistical parameters were all
below 5.However, the recognition correction coefficients for other feature points
are all negative, and the statistical parameter values are relatively large. When
the TW and DW are Infection and Fusion disappearance, the RMSE values reach
312.79,501.64, 522.85,613.41, indicating that the predicted feature point positions
differ significantly from the actual ones. The reason for the low recognition accuracy
of the traditional curvature method is that the pulse waveform is complex, and there
is interference, so the algorithm’s robustness could be better. The recognition is
higher when TWs and DWs are extreme points, which is not significantly different
from the algorithm proposed in this paper.

TABLE 3. Valid Dataset Results of Tidal Wave Three Classification Model

Valid Dataset

Index (%) extreme poin Inflection point Fusion disappearance Average
Precision(%) 96.81 94.59 93.33 94.91
Recall(%) 96.81 92.11 95.89 94.93
F1-score(%) 96.81 93.33 94.59 94.91
Accuracy(%) 95.06
macro-F1(%) 94.91

TABLE 4. Test Set Results of Tidal Wave Three Classification Mode

Test Dataset

Index extreme poin Inflection point Fusion disappearance Average
Precision(%) 93.59 95.45 89.74 92.93
Recall(%) 93.59 90.32 95.89 93.27
F1-score(%) 93.59 92.82 92.72 93.04
Accuracy (%) 93.09

macro-F1(%) 93.04
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TABLE 5. Valid Dataset Results of of the triple classification model
for dicrotic waves

Valid Dataset

Index (%) extreme poin Inflection point Fusion disappearance Average
Precision(%) 95.00 97.78 98.65 97.14
Recall(%) 97.44 94.62 100.00 97.35
F1-score(%) 96.20 96.17 99.32 97.23
Accuracy(%) 97.13
macro-F1(%) 97.23

TABLE 6. Test Set Results of the triple classification model for di-
crotic waves

Test Dataset

Index extreme poin Inflection point Fusion disappearance Average
Precision(%) 97.78 92.11 90.91 93.60
Recall(%) 93.62 92.11 95.89 93.87
F1-score(%) 95.65 92.11 93.33 93.70
Accuracy (%) 93.70
macro-F1(%) 93.70

TABLE 7. Effect of dicrotic Wave and Tidal Wave Coordinate Point Recognition

Tidal wave Dicrotic wave
extreme Inflection Fusion extreme Inflection Fusion
Methods Results point point  disappearance point point disappearance
R 0.98 0.97 0.99 0.98 0.96 0.98
This article’s MAE  0.31 0.75 0.21 0.45 0.84 0.25
algorithm RSME 0.52 1.34 0.13 0.67 1.45 0.23
R 0.92 -0.82 -10.57 0.90 -0.65 -14.69
Traditional MAE  0.37 11.05 8.64 0.35 14.22 15.48
method RSME 1.58 312.79 501.64 2.64 522.85 613.41

4. CONCLUSION

Starting from hemodynamics, this study analyzes the formation mechanism of
pulse waves and determines the morphology of heavy and TWs. On this basis, a
pulse wave time-domain feature extraction algorithm based on morphological fea-
tures was proposed. Firstly, deep learning algorithms are used to identify the three
states of pulse waves and TWs. Then, the curvature and extremum methods are
combined to achieve parameter recognition of the time-domain characteristics of
pulse waves. Experiments have shown that the algorithm has high recognition ac-
curacy and is widely used. Its accuracy and directness make it valuable for clinical
applications like noninvasive blood pressure and central pulse pressure measure-
ment and the quantification of pulse wave characteristics (e.g. Karterial reflection
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wave enhancement index). This significantly improves vascular disease prevention,
diagnosis, treatment, and prognosis.
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