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AUTONOMOUS NAVIGATION FOR 4 WHEEL SHUTTLE
VEHICLE IN THE NARROW AREA UNDER THE VISUAL
SIMULTANEOUS LOCALIZATION AND MAPPING(VSLAM)

METHOD

HEONJONG YOO AND SEONGGON CHOI*

ABSTRACT. Visual simultaneous localization and mapping at the narrow stand-
ing still obstacle area based on the precise map facilitates the 4 wheel shuttle
vehicle to recognize its current longitude and latitude information and head-
ing angle while moving at the aforementioned environment effectively. In the
broad notion, trajectory tracking control including waypoint following method is
cruicial techniques that facilitates a 4 wheel shuttle vehicle’s fully driving perfor-
mance without human’s intervention. The Laptop for MATLAB and for Ubuntu
is a high- and low-level control system that influences the 4 wheel shuttle vehi-
cle equipped with the Inertial Measurement Unit(IMU), 16 channels LiDAR, and
Encoder Sensors of the 4 wheel shuttle vehicle. The 4 wheel shuttle vehicle is con-
trolled in terms of a Robot Operating System (ROS) connection, set-up parame-
ters for each 4 wheels, and visualizes sensor data in a MATLAB odometry system.
In the paper, the proposed model presents more accurate path following scenario
that integrates the visual simultaneous localization and mapping(VSLAM) algo-
rithm with the 4 wheel shuttle vehicle. The generated reference path following
scenario that performs optimal navigation and standing still object avoidance
performance successfully localized 4 wheel shuttle vehicle simultaneously and it
is tested at the narrow stading still obstacle area. The Root mean square er-
ror(RMSE) between generated reference path and actual path is demonstrated
through several experimental results in the ROS map. In this presentation, the
visual simultaneous localization and mapping(VSLAM) method is applied for 4
wheel independent mobile platform, and it is shown that the result is effective
way to move in a safe way especially in the narrow indoor environment. The
root mean square error(RMSE) is about 3 and 4 centimeter which shows better
performance than Lidar odometry and mapping(LOAM) method.

1. INTRODUCTION

Today, the Robot operating system (ROS) API will take advantage of modern
libraries utilized in commercial mobile robot systems for robot manipulators, au-
tonomous agriculture mobile robots. Furthermore, autonomous ground vehicles
(AGVs) applications such as outdoor and indoor mobile robots, cleaning robots,
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security robots, vehicles, military, and industry of their industrial robotics. The
industries used robot operating systems (ROS) toolboxes to control their applica-
tion of robotic arms, medical-surgical robots, logistics mobile robots, manufacturing
robots, agriculture robots, healthcare logistic robots and service robots.

The accuracy of the mobile vehicle autonomous location system is critical for ef-
ficient and safe navigation. The Global Navigation Satellite System (GNSS) is used
worldwide to recognize of the current position and navigation of the 4 wheel shuttle
vehicle [6]. The trajectory tracking method represents the current position of 4
wheel shuttle vehicle and reaches the goal of accerelating commands. In the final
demo, we start with the starting points where we developed the kinematic model
and odometry for the mobile robot path following the model into a single Simulink
environment that can move the mobile robot. Therefore, the precision of the rec-
ognizating the current longitude and latitude information of the 4 wheel shuttle
vehicle was implemented based on the available constellation and the well-shaping
of the linear and angular velocities input [16]. The map acquisition shows how to
acquire data from the mobile robot regarding the environments to match the data
to obtain a complete map. The VSLAM method is a recursive estimation procedure
that simultaneously minimizes: the localization errors of the 4 wheel shuttle vehi-
cle and the narrow area mapping errors [24]. The SLAM algorithm was proposed
in [7]. SLAM methods have been implemented for autonomous mobile robots [10].
The waypoint-following control is one of a path-following method that computes
the mobile robot’s input commands to move the 4 wheel shuttle vehicle from the
starting point to the look-ahead position. However, the autonomous mobile robot
uses Global Positioning Systems (GPS) and inertial measurements to navigate, as
described in [20]. The robot state estimate accumulates drift during long traversals.
This issued loop closure localization, which recognizes revisited sites using either
visual SLAM or LiDAR methods for a mobile robot position known by the position
information of the x, y, #, and segment-based algorithms such as seg Match are used
in LiDAR approaches to recognize localizations [14]. The perception of the state of
agricultural machinery and information about the environment is attracting more
interest from researchers [7]. The pure pursuit control will generate the control
action of the two linear and angular velocities input V' (¢) and W (t) in [20]. Stereo
vision and 3D LiDAR independently detect barriers, which are then combined in
uncertainty to produce final classification results that generate a path that accounts
for the obstacle on the map [5]. However, finding a path sequence of points that go
from the starting to the end point of a new mobile robot position and 4 wheel shuttle
vehicle’s actual path is decided by the path generation defined by the way-points,
and the standing still obstacle on the mobile robot’s path. The popular positioning
system of the Global Navigation Satellite System (GNSS) does not perform well in
indoor environments. A precise positioning and localization system for autonomous
mobile robots have required precision for narrow indoor area with standing still
separated obstacle; with a centimeter precision, all described in [13]. This map op-
eration continues until the map is dense enough for the purpose. SLAM stands for
localization and mapping of 4 wheel shuttle vehicle simultaneously. It is a task to
estimate a ROS map of the area and at the same time recognize the current position
of the mobile robot. However, the mobile robot needs a map to move in a safe way
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within unknown environments. The 4 wheel shuttle vehicle needs to build a map of
the area to localize itself within that mapping. Several researchers were researching
autonomous indoor positioning systems using the Global Positioning System (GPS)
which cannot be used successfully in the indoor environment. They investigate a
variety of systems capable of centimeter accuracy, including a tachometer, cameras,
Radio Frequency Identification (RFID), magnetic systems, ultrawideband (UWB),
and sound [3]. The current state-of-the-art laser scanning of the Simultaneous Lo-
calization and Mapping (SLAM) system is a constant velocity model. Therefore,
the Gaussian algorithm procedure is required to implement the motion model. The
PRM is a probabilistic road map, mainly considered in two phases. The first phase
of the image construction on the right side builds up a graph that links different
positions and different free positions inside the map [11]. The second phase search
was for a specific mobile robot path that connected lined one point with another
point. Specifically, the construction phase consists of three steps. It starts from
the map course to check some random robot points. The cardinality of these ran-
dom points depends on how to define the problem. An example is a low-density
problem that selects a point each time on the map. On the other side of research,
trajectory tracking control method is applied for 4 wheel independent steering sys-
tem in [18]. [19] says that a novel differential drive assisted steering technology is
applied for the independent-wheel-drive electric vehicle, and compares the result
with the traditional PID controller in which the proposed method shows better
performance.In [4], a nonlinear disturbance observer and sliding mode controller is
applied for the hardware-in-the-loop system, which can achieve better tracking per-
formance and suppress the chattering phenomenon. [9] proposed artificial potential
field that is applied to the framework of automated vehicles. Specifically speaking
for AI, the deep reinforcement learning technique is studied in [15]. [2] shows recent
Deep Deterministic Policy Gradient(DDPG) algorithm can be used for path follow-
ing of bicycle type model in mobile platform. Furthermore, the Deep Deterministic
Policy Gradient(DDPG) method can also be applied for 3D path-following such
as drone’s control in [23]. With the aforementioned development, the author pre-
viously developed waypoint following mechanism which is incorporated into ROS
publish and subscribe system to control 4 wheel mobile platform described in [8]. [1]
shows that dynamic obstacle avoidance and path following is implemented through
reinforcement learning using the mobile platform.

Recently, several autonomous trajectory generation algorithm is proposed, in [17],
which utilizes convex optimization algorithm. For drone’s path -following, the [21]
offered autonomous drone avionics amplified with pontryagin-based optimization
to improve robotic drone path following. Furthermore, [12] proposed autonomous
trajectory shaping for noise amelioration in robotics illustrating sinusoidally shaped
trajectories yield the best trajectory tracking ability.

In this presentation, proposed model produces a simultaneous localization and
mapping and generated reference path following scenario that incorporate ROS map
with 4 wheel shuttle vehicle using the ROS Simulink program. The trajectory track-
ing problem that implement optimal VSLAM navigation and standing still obstacle
avoidance performance shows that the vehicle which recognizes it’s current longitude
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and latitude information is tested at the narrow area. The improvement of accu-
racy is shown through Root mean square error. We implemented the path-following
algorithm with our real 4 wheel shuttle vehicle and compared the accuracy between
the LiDAR odometry and VSLAM method. In this method, an environment of
SLAM may be generated and updated automatically during robot navigation. We
optimized the accuracy of the SLAM algorithm for the recognization of the current
position of 4 wheel shuttle vehicle.

2. SETUP PARAMETERS OF MOBILE ROBOT 3D, ROS RVIZ (ROS
VISUALIZATION) SIMULINK, AND ROS GAZEBO

The mobile robot parameters set up to the differential drive 4 wheel shuttle
vehicle’s longitude and latitude represented the linear speed input and angular ve-
locity input that presents 4 wheel shuttle vehicle’s angular speed. The orientation
data y = v x sin(f) is the variation of x in the y direction and the opposite for
y = v X sin(f#) of the mobile robot direction. In the final step, the W (t) is simply
the derivative of the mobile robot’s heading angle 6. Equation (3.1) produces the
information on the derivative x(t),y(t) position of shuttle vehicle. However, the
Inertial Measurement Unit (IMU) and encoder worked with the sampling frequen-
cies are 200 and 100 cycles per second (HZ) and used the mobile robot’s reference
coordinate for the ground robot’s position at the time step 7 during the encoder’s
time cycle. In Fig. 1(a), the mobile vehicle’s placement at the next time-step j is
shown by the trajectory of the robot, ¢;; and the chord-length vector L;; Eq (2.1).

(2.1) Lij = 59yaw

Where L;; is the vector length. The mobile robot parameters set up t660,;., and
00yqw are robot pitch and yaw variations. Using the current Inertial Measurement
Unit (IMU) measurement and bias, we can determine 660, and 66,4, variations.

We used the encoder’s estimated angle to compute the distance of the trajectory
cij by applying Eq (2.2). By calibrating the odometry’s intrinsic parameter matrix
J, it is possible to derive chord length L;; by geometric reasoning and approximation
because the robot’s rotation is modest within the sample interval (0.6ms).

(2.2) lij = 045 cos(c X 08yquw),

cij cos(c X 08yquw) coS(00pitcn) cos(08yquw)
(2.3) DP,,,; = | cijcos(c X 00yaw) cos(80pitch) sin(d6yquw)
—¢4j €os(¢ X 08yqu) SIN(30pitch )

Where ¢;; is the length of the trajectory curve ¢;; and c is used for the ground
roughness to compensate for mistakes caused by minor ground variation. In this
case, the minimum surface roughness is 1 which corresponds to a smooth surface.
According to the actual working environment of the mobile robot and the ground’s
roughness can also be adjusted. To obtain the position variation from time-step j
to time-step 7. We finally project the motion vector onto the O;, O; coordinate sys-
tem. The mobile robot used rotate matrix equation. The radius model transforms
the speed command and the linear and angular speed command into the angular
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speed of each mobile robot wheel. The odometry is the transformation from the
speed of the mobile robot into the position described in Fig. 1(b). The mobile
robot kinematic model transformed the linear and angular speed command to this
information. The first step is to take the command velocity cmdyeiocity into the
velocities input transform. This transformation is a kinematic transform based on
the reference speed for the mobile robot’s right wheel Vi.cference right Will be the
actual linear speed of the mobile robot in addition to [ (¢)] which are the mobile
robot angular speed produced by Eq. (2.3).

(©)

FiGure 1. The 3D indoor mobile robot to precisely register in the
corridor and localize with ROS Gazebo Simulink (a). Set up mobile
robot odometer model (b). The result of ROS RVIZ Simulink with
a real mobile robot (c). The mobile robot experimental setup indoor
environment (d).

3. THE MOBILE ROBOT KINEMATIC MODEL, ODOMETRY, AND INERTIAL
MEASUREMENT UNIT (IMU)

We selected the unicycle model for the experimental test since it is well-known
type of 4 wheel vehicle in many industrial field, such as floor clearning, and wheelchair
robot.

The 4 wheel shuttle vehicle has one input and two outputs, so the inputs are the
speed command that we want the robot to achieve. The outputs are the Velodyne
LiDAR sensor result and the wheel commands measured from the encoders inside
the 4 wheel shuttle vehicle wheels.

The right side of the 4 wheel shuttle vehicle wheelyejocity Wheel left, wheel right is
the output of the speed command, and the left side of wheel cmd,eciocity Wheel left,
wheel right is the input of the speed command. Both are measured from the mobile
robot speed Eq (3.1), (3.2), (3.4). This transformation model is produced from the
linear and angular speed V' (t), W (t) to the speed of each wheel. The mobile robot’s
right and left are linear speeds that transform this speed into the corresponding
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rotational speed. It is sufficient to divide each of the mobile robots into the speed
of the right and left wheels by radius R.

X(t) cos(f) 0

- . V()
(3.1) Y(t)| = 0 sin(0) :

The integrated form for (3.1) are given as

(3.2) X(t) = /0 cos(0())V (£)dt,
(3.3) Y(t) = / sin(6(0)V (1)dt,

0
t
(3.4) (t) = /0 W (¢)dt.

In the first step, the mobile robot path must be 2 if the trajectory K > Kpax,
is not trackable. If K > Kupin — WiaxVmax defined in (3.6), there will always
be a sufficient rotation speed condition for the input of linear and angular speed
to control the expected curvature to maintain. Hence, the maximum of the linear
speed of the mobile robot Vj,ax is utilized for the definition of V;, and the rotational
speed definition of W;,determined by W; = Kpin - Vinax in Eq (3.5)-(3.7).

ot;
(3.5) / Vi COS(Qi + W/Z't)dt = X411 — X; = 60X,
0

(3.6) 0X; = % sin(6; + Wit)]gti = sin(f: & WZI(?Z) — s1n(0i)’

sin ! (6x:k; + sin(6;)) — 6;
W; ’

Secondly. the time dimension to V; and W; is assigned and then the user trans-
forms the aforementioned variables V;,W; into V;(t) and W;(t). The model was
determining a series of §t; between all P;. In the SIMULINK, the small time con-
stant represents the sampling time in P; and next sample P;; on the path, assuming
that it is constant within this short time interval. Based on the aforementioned fact,
the following equations (3.5)-(3.7) will hold, [22]. The determination of the spatial
variables V; and W; in SIMULINK is implemented by the curvatures K at each
point along the path.

(3.7) 5t; =

4. TO CALCULATE THE RESULT BY USING RMSE EQUATIONS

To evaluate the various matching sets of the ROS map, the real-world odome-
try data sets to the ROS map registration was performed by taking into account
the point cloud data received from the mobile robot Velodyne HDL-16 LiDAR sen-
sor and odometry sensors of the mobile robot. The total root mean square error
(RMSE) and the translational, and rotational errors is provided by comparing with
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the actual data from ROS odometry block. As shown below, the RMSE describes
in Eq. (4.1) by point j ([22]).

1 n
(4.1) RMSE = ||+ > (Ty — RS; —t,)2.

=1

Where T, 5, R and t,. denote the source point cloud, the target point cloud, and the
rotation and translation transformations.

5. RESULTS AND DISCUSSION

5.1. The test mobile robot moved along the indoor environment at four
travel speeds. Using simultaneous localization and mapping (SLAM), the 4 wheel
shuttle vehicle knows its current longitude and latitude information at the indoor
area while moving and estimated z and y positions on the 2D map. We used a
LiDAR sensor to estimate the position of the 4 wheel shuttle vehicle, and further
estimate the heading angle from IMU sensor in the unknown environment and
to build at the same time a 2D map of this environment. SLAM is the task of
estimating an environmental map while simultaneously localizing the sensor to the
mobile robot. The 4 wheel shuttle vehicle needs a ROS map for navigation in
unknown environments. The 4 wheel shuttle vehicle must produced a ROS map of
the narrow area and localize the platform within it. Furthermore, it requires the
pole to estimate the obstacle by using the map. Therefore, the role of SLAM is to
estimate anytime to the trajectory of the LiIDAR sensor to extract the key points
from the current frame in the map described in Fig. 2.

F1GURE 2. The generated the 2D SLAM using the Velodyne VLP-
16 (PUCK) LiDAR mounted on the mobile robot (a). The mobile
robot used lidar data and IMU data to precisely register in the mobile
robot localization and optimization by reducing the uncertainty in
indoor environments (b).

5.2. Evaluation of LIDAR mapping and LiDAR odometry using SLAM
algorithms. We investigated and evaluated the SLAM algorithm LOAM (LIDAR,
IMU) and evaluated the location of our model’s mobile robot using ORB SLAM
in indoor environments, both of which hold some of the top scores on the dataset
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benchmarks. The developed localization algorithm shows approximately the same
behavior for all paths, with slight differences in RMS errors described in Table
1. From between straight lines and turning movements, we obtained the accuracy
results of the robot from Table 2. Our mobile robot’s localization had to be ac-
curate relative to starting point of the 4 wheel shuttle vehicle. Furthermore, the
user estimate the position of the 4 wheel shuttle vehicle in the operational indoor
environment using ROS map in Fig. 3, 4.

Velocity = 0.6 m/s elocity < 03 /s

F1GURE 3. The comparison between reference path and actual path,
and estimated linear and angular velocities in the narrow indoor
environment in the Experiment 1.

Velocity = 1.0 mfs

FIGURE 4. The comparison between reference path and actual path,
and estimated linear and angular velocities in the narrow indoor
environment in the Experiment 2.

Fig. 5 shows the 2D map we generated using the SLAM. The RMSE(Root mean
square error) calculated from (4.1) is given as Table 1. The RMSE between the
generated reference path and the actual path is small in which 4 wheel mobile
platform moves to the designated position in a safe way.

The developed localization algorithm shows approximately the same behavior for
all paths, with slight differences in RMS errors. From between straight lines and
turning movements, we obtained the accuracy results of the robot from Table 1.



AUTONOMOUS NAVIGATION 2353

The corner of mbile robot path The end of mobil robot pat

y (m)
_ Heading angle (degree)

Time (s)

(b)

Lidar intensity y (m)

Lidar intensity x (m)

(©)

FIGURE 5. Generated the 2D SLAM using the 16 channel (PUCK)
LiDAR and mounted it on the 4 wheel shuttle vehicle (a). The
4 wheel shuttle vehicle used lidar data and IMU data to precisely
register in the mobile robot localization and optimization by reducing
the uncertainty in indoor environments (b).

TABLE 1. The Root mean square error for indoor experiment in
Figures 3 and 4

LOAM in Figure 3 | Proposed method in Figure 3
6 cm 3 cm

LOAM in Figure 4 | Proposed method in Figure 4
7 cm 4 cm

The mobile robot localization algorithm developed uses the starting point IMU
data to calibrate the coordinate system, which all mobile robot path planning con-
verts into simple 2D coordinates for positional purposes. We evaluated the different
results of the RMSE of the longitude and latitude information of the 4 wheel shuttle
vehicle. The solution for LiDAR mapping and LiDAR odometry required the tool
with centimeter precision in a sparse operational indoor environment.

6. DISCUSSION

We developed the kinematic model (Kinematic (¢mdyeiocity) VW) and this kine-
matic transforms the speed command input V' (¢), W (t) into the reference of a mobile
robot left and right. This kinematic module is used in both the input and output
ports. The Wheel Velocity measured wheeljepiwheel,;gnt, those measured the speed
of the left and right wheels of the 4 wheel shuttle vehicle. The output kinematic
Vin Wi and emdyejocity is measured by the linear and velocity speed measured. The
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odometry represents the actual speed measured by the mobile robot to extract the
longitude and latitude information. Lastly, the generated reference following mod-
ule is provided. Furthermore, the module takes the position of the mobile robot
and compares it with a path that follows the input in this block and produces a
speed from V(t)W (t), the command speed that forces the 4 wheel shuttle vehicle
to pursue the generated reference path using generated velocities speed input. The
advantage of proposed method is that the accuracy was improved compared to the
existing design method. The shortcoming of proposed method was that there was
possibility of touching dynamical obstacle such as human, and moving object that
suddenly interrupted to the mobile platform. In the future, some of mechanism
should be incorporated into the proposed algorithm for the possibility of moving
object-aware scenario.

7. CONCLUSION

In addition to the significant amount of polish needed for production, a revised
construction, obstacle avoidance, and a fully automated workflow should be imple-
mented to improve the robot. A SLAM algorithm that fuses the output from all
three sensor types (IMU, LIDAR, and cameras) may also be required. Our proof-of-
concept prototype convinced the stakeholders that the project has potential. The
project is currently being expanded upon by Automation AB, which hopes to re-
lease a full-featured product in the future. We presented our local and mapping
systems that use an efficient 3D model
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