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the first time. Since the feasible domain is non-convex when the constraint system
has more than one minimal solution, such linear programming with a max-product
FREs constraint is typically a non-convex optimization problem. In [15], the famous
branch-and-bound method was adopted to search for the optimal solution(s) in a
groundbreaking manner. In the following decades, the branch-and-bound method
became the most commonly used approach for dealing with optimization prob-
lems with FREs constraints. P. Li and S.-C. Fang [13] proposed a new algorithm
to deal with the same optimization problem presented in [11], adopting the con-
cept of chained-set suite. Besides minimizing a linear objective function, nonlinear
optimization problems with FREs constraints were also investigated. Evolutionary
algorithms, including Genetic Algorithm (GA) [9] and Particle Swarm Optimization
(PSO) [6], became universal approaches for solving such nonlinear fuzzy relation op-
timization problems. Some special nonlinear fuzzy relation optimization problems
were also discussed and solved, either with a separable objective function [10] or a
geometric one [30,39].

J. Drewniak [5] first explored the fuzzy relation inequality (FRI). He introduced
the formulae of a system with FRIs, compared to the system of FREs [5]. More
introduction to the FRI was presented in [18]. The resolution methods for the FREs
can be applied for FRIs, including solving the complete solution set or solving the
relevant optimization problems. A.A. Molai investigated the minimization problems
in which the constraint system was the FRIs with max-product composition [19,21].

T1

Ti

Ti−1

...

T2

Ti+1

...

Tn

Fig. 1. P2P educational information resources sharing system.

The FREs with max-min composition were used for describing the P2P edu-
cational information resources sharing system [34]. In such a system, there are n
terminals (see Fig. 1), with notations T1, . . . , Tn. Each terminal is able to download
its required file from any other terminal, based on peer-to-peer data transmission
mechanism. The P2P educational information resources sharing system could be
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reduced into the following max-min FREs,

(1.1)
∨
j∈N

(aij ∧ xj) = bi, ∀i ∈ M,

where N = {1, . . . , n} M = {1, . . . ,m}. In the above system (1.1), the variables
{x1, . . . , xn} represent the quality levels, on which the terminals send out their
local resources/files. The parameter aij represents the bandwidth, while bi char-
acterizes the download traffic requirement of the ith terminal. The minimization
semi-latticized fuzzy relation geometric programming, employing system (1.1) as its
constraint, was explored in [35]. Subsequently, single-variable term fuzzy relation
geometric programming [37] and fuzzy relation geometric programming [38], also
subject to system (1.1), were investigated respectively. When the download traffic
requirement is no longer an exact value, but is requested to be no less than bi, then
the P2P sharing system should be reduced to the FRIs with max-min composition
as [33]

(1.2)
∨
j∈N

(aij ∧ xj) ≥ bi, ∀i ∈ M.

Furthermore, when the download traffic requirement is considered to be a range,
e.g., between ci and ci, then system (1.2) can be further written as [3, 16]

(1.3) ci ≤
∨
j∈N

(aij ∧ xj) ≤ ci, ∀i ∈ M.

Characterized by the above max-min FREs system (1.1) or the max-min FRIs
systems (1.2) and (1.3), the terminals in the P2P educational information resources
sharing system are assumed to be linked through lines. However, when the termi-
nals in the system are wirelessly linked, the above max-min system was no longer
applicable. Instead of the max-min system, the P2P educational information re-
sources sharing system should be reduced to the following FRIs with max-product
composition [27,36],

(1.4)


c1 ≤ a11x1 ∧ a12x2 ∧ · · · ∧ a1nxn ≤ c1,

c2 ≤ a21x1 ∧ a22x2 ∧ · · · ∧ a2nxn ≤ c2,
...

cm ≤ am1x1 ∧ am2x2 ∧ · · · ∧ amnxn ≤ cm,

where x = (x1, x2, . . . , xn)
T , A = (aij) ∈ [0, 1]m×n, c = (c1, c2, . . . , cm)T , c =

(c1, c2, . . . , cm)T . That is to say, considering the wired connection, the educational
information resources sharing system could be characterized by the max-min sys-
tem (1.1), (1.2) or (1.3), while considering the wireless connection, it should be
characterized by the max-product system (1.4). Different connection types lead
to different composition. But what is similar is that any solution of the above
fuzzy relation system indeed reflects indeed a feasible (flow control) scheme in the
educational information resources sharing system.

In recent years, the max-product FRIs haven been applied in the wireless commu-
nication basic-station system [25, 26]. Moreover, the authors considered the term-
absent situation [25,26]. For the consistent system with max-product composition,
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the minimal solutions were discussed [40], while for the inconsistent system, the ap-
proximate solutions were defined and resolved [1, 32]. Regarding the max-product
system, the composition could be further generalized to the max-t-norm one [7, 8].
Moreover, the max-product FREs were also extended to the bipolar ones [4, 22].

In all the references [3, 16, 27, 33–38], during the file transfer process, external
interference was not taken into account. However, as is well known, the random
external interferences are ubiquitous. Hence, in this work we aim to consider the
random external interferences in an educational information resources sharing sys-
tem. These random external disturbances will cause variation to the parameters
{aij | i ∈ M, j ∈ N}. To reflect the extent to which a solution can withstand
the parameters’ changes, we define and investigate the concept of sensitivity of a
given solution to system (1.4), which indeed represents a feasible scheme in the
educational information resources sharing system.

The remainder is organized as follows. Sec. 2 introduces foundational concepts
and properties of the max-product FRIs system (1.4). In Sec. 3, the concepts of
positive sensitivity, negative sensitivity and sensitivity are defined, respectively. The
main results are presented in Sec. 4. In this section detailed resolution procedures
are designed for finding the positive sensitivity, negative sensitivity and sensitivity.
Moreover, we propose an algorithm for computing the overall sensitivity of a given
solution, in this section. To verify the effectiveness of our proposed resolution
procedures, several examples are provided in Sec. 5. Results and discussion are
presented in Sec. 6, while Sec. 7 provides a brief conclusion.

2. Max-product FRIs system (1.4)

This section provides some necessary properties of the max-product FRIs system
(1.4).

The above system of inequalities (1.4) can be written as

(2.1) c ≤ A⊙ x ≤ c,

where ⊙ represents the max-product operator and all the parameters and variables
belong to the unit interval [0, 1].

For convenience, two sets of indices M and N are denoted as follows:

M = {1, 2, . . . ,m}, N = {1, 2, . . . , n}.

Additionally, in the text, the solution set of the system of inequalities (2.1) is always
denoted as

X(A, c, c) = {x ∈ [0, 1]n | c ≤ A⊙ x ≤ c} .

Definition 2.1. The system of inequalities (2.1) is called consistent if it has a
solution, i.e., there exists an x ∈ X(A, c, c) such that c ≤ A ⊙ x ≤ c. Otherwise,
(2.1) is called inconsistent.

Definition 2.2. Let x̂ ∈ X(A, c, c). If for any x ∈ X(A, c, c), we always have x̂ ≤ x,
then x̂ is called the maximum solution of (2.1). Moreover, x̌ ∈ X(A, c, c) is called
a minimal solution of (2.1), if for any x′ ∈ X(A, c, c) with x′ ≤ x̌, it holds that
x′ = x̌.
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Property 1 ([18]). Let x ∈ [0, 1]n. Then the necessary and sufficient conditions
for x ∈ X(A, c, c) are the following two conditions:

(i) For any i ∈ M and j ∈ N , there is aijxj ≤ ci.
(ii) For any i ∈ M , there exists j ∈ N such that aijxj ≥ ci.

We define the operator “@” as

(2.2) aij@ci =

{
ci
aij

, if aij ≥ ci,

1, if aij < ci.

Denote the vector x̂ = (x̂1, x̂2, . . . , x̂n) ∈ [0, 1]n, where

(2.3) x̂j = min
i∈M

(aij@ci) , j = 1, 2, . . . , n.

For the vector x̂, we obtain the following Property 2 and Theorem 2.3.

Property 2 ([18]). If x ∈ X(A, c, c), then x ≤ x̂.

Theorem 2.3 ([18]). The system of inequalities (2.1) is consistent if and only if
x̂ ∈ X(A, c, c).

Theorem 2.3 can be used to check whether the system of inequalities (2.1) is
consistent. Moreover, from Property 2, we know that if the system of inequalities
(2.1) is consistent, then the vector x̂ is always the maximum solution.

3. Definition and uniqueness of the sensitivity of a given solution in
the system of inequalities (2.1)

Let y ∈ X(A, c, c) be a solution of the system of inequalities (2.1). In this section,
we will define the concepts of positive sensitivity, negative sensitivity, and sensitiv-
ity of the solution y, and explore some related properties that lay the necessary
foundation for solving the sensitivity.

Let A ∈ [0, 1]m×n and let d ∈ [0, 1] be a real number. We denote

A+ = A+ d, A− = A− d.

Property 3. For any y ∈ [0, 1]n and d ∈ [0, 1], the following inequality holds:

A− ⊙ y ≤ A⊙ y ≤ A+ ⊙ y.

Proof. Omitted. □
Definition 3.1 (Positive Sensitivity). Let d+ ∈ [0, 1]. The number d+ is called the
positive sensitivity of the given solution y (with respect to the coefficient matrix
A), if it satisfies the following three conditions:

(i) A+ d+ ∈ [0, 1]m×n,
(ii) y ∈ X(A+ d+, c, c),
(iii) If d ∈ [0, 1] and d > d+, then either A+ /∈ [0, 1]m×n or y /∈ X(A+ d, c, c).

Definition 3.2 (Negative Sensitivity). Let d− ∈ [0, 1]. The number d− is called
the negative sensitivity of the given solution y (with respect to the coefficient
matrix A), if it satisfies the following three conditions:

(i) A− d− ∈ [0, 1]m×n,
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(ii) y ∈ X(A− d−, c, c),
(iii) If d ∈ [0, 1] and d > d−, then either A− /∈ [0, 1]m×n or y /∈ X(A− d, c, c).

Definition 3.3 (Sensitivity). Let d+ and d− be the positive and negative sensitiv-
ities of the given solution y (with respect to the coefficient matrix A). Then the
sensitivity of the solution y is defined as d = min(d+, d−).

Property 4 (Uniqueness). Let y ∈ X(A, c, c) be a solution of the system of inequal-
ities (2.1). If the positive sensitivity (negative sensitivity or overall sensitivity) of the
given solution y exists, then the positive sensitivity (negative sensitivity or overall
sensitivity) is unique.

By contradiction. Assume that y has two different positive sensitivities, denoted
by d+1 and d+2 , and let d+1 < d+2 . Since d+2 is the positive sensitivity of y, by
Definition 3.1, we know A + d+2 ∈ [0, 1]m×n and y ∈ X(A + d+2 , c, c). Since d+1 is
also the positive sensitivity of y, and d+1 < d+2 , by Definition 3.1 (iii) we have either
A+ d+2 /∈ [0, 1]m×n or y /∈ X(A+ d+2 , c, c). This leads to a contradiction. Therefore,
the positive sensitivity of y is unique. Similarly, it can be proven that the negative
sensitivity (or overall sensitivity) is also unique. This completes the proof □

4. Resolution methods for the sensitivity of a given solution in the
system of inequalities (2.1)

In this section, we present methods for solving the positive and negative sen-
sitivities of the solution y. From the positive and negative sensitivities of y, the
sensitivity of y can also be derived.

4.1. Resolution of the positive sensitivity. For any i ∈ M and j ∈ N , when
yj = 0, we stipulate ci

yj
= 1. Thus, we can define the following notations:

d+1 = min
i∈M,j∈N

{1− aij} ,(4.1)

d+2 = min
i∈M,j∈N

{
ci
yj

− aij

}
,(4.2)

and

(4.3) d+ = min(d+1 , d
+
2 ).

Proposition 4.1. Let y ∈ X(A, c, c) be a solution of the system (2.1). For any
i ∈ M and j ∈ N , we always have ci

yj
− aij ≥ 0.

Proof. Since y ∈ X(A, c, c), we have

(4.4) 0 ≤ yj ≤ 1, ∀j ∈ N,

and

(4.5) ci ≤ ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≤ ci, ∀i ∈ M.

Thus,

(4.6) aijyj ≤ ci, ∀i ∈ M, j ∈ N.
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If yj ̸= 0, then 0 < yj ≤ 1. From the above, we obtain aij ≤ ci
yj
, which implies:

(4.7)
ci
yj

− aij ≥ 0, ∀i ∈ M, j ∈ N.

If yj = 0, by stipulation, ci
yj

= 1. Therefore, aij ≤ 1 = ci
yj
, i.e.,

(4.8)
ci
yj

− aij ≥ 0, ∀i ∈ M, j ∈ N.

Thus, ci
yj

− aij ≥ 0 holds in all cases. This completes the proof. □

Theorem 4.2. Let d+ be defined by formulas (4.1))-(4.3). Then d+ is the positive
sensitivity of the given solution y (with respect to the coefficient matrix A).

Proof. (i) From the assumption aij ∈ [0, 1], for any i ∈ M and j ∈ N , we know
1− aij ∈ [0, 1]. Thus, we have

d+1 = min
i∈M,j∈N

{1− aij} ∈ [0, 1].

By Proposition 4.1, we know

(4.9)
ci
yj

− aij ≥ 0, ∀i ∈ M, j ∈ N.

Therefore, d+2 = mini∈M,j∈N

{
ci
yj

− aij

}
≥ 0. Considering that 0 ≤ d+1 ≤ 1, we have

0 ≤ d+ = min(d+1 , d
+
2 ) ≤ d+1 ≤ 1.

(ii) Since y ∈ X(A, c, c), it is clear that A⊙ y ≥ c. From d+ ≥ 0 and Property 3,
we obtain

(4.10) (A+ d+)⊙ y ≥ A⊙ y ≥ c.

On the other hand, from the definition of d+2 , we know

(4.11) d+2 ≤ ci
yj

− aij , ∀i ∈ M, j ∈ N.

Thus

(4.12) d+2 + aij ≤
ci
yj

, ∀i ∈ M, j ∈ N,

i.e.,

(4.13) (d+2 + aij)yj ≤ ci, ∀i ∈ M, j ∈ N.

This means

(4.14) (A+ d+2 )⊙ y ≤ c.

Since d+ = min(d+1 , d
+
2 ), from formula (4.14) and Property 3, we get

(4.15) (A+ d+)⊙ y ≤ (A+ d+2 )⊙ y ≤ c.

From (4.10) and (4.15), we conclude that y ∈ X(A+ d+, c, c).
(iii) If d ∈ [0, 1] and d > d+. Then by d+ = min(d+1 , d

+
2 ), we have either d > d+1

or d > d+2 .
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Case 1. If d > d+1 = mini∈M,j∈N {1− aij}, then there exist i1 ∈ M and j1 ∈ N
such that

(4.16) d > d+1 = 1− ai1j1 ,

i.e.,

(4.17) d+ ai1j1 > 1.

This indicates A+ d /∈ [0, 1]m×n.

Case 2. If d > d+2 = mini∈M,j∈N

{
ci
yj

− aij

}
, then there exist i2 ∈ M and j2 ∈ N

such that

(4.18) d > d+2 =
ci2
yj2

− ai2j2 ,

i.e.,

(4.19) ai2j2 + d >
ci2
yj2

.

Thus

(4.20)
∨
j∈J

(ai2j + d)yj ≥ (ai2j2 + d)yj2 > ci2 .

This indicates y /∈ X(A+ d, c, c).
Following Definition 2.1 and the conditions (i), (ii) and (iii) verified above, we

know that d+ is the positive sensitivity of the solution y. This completes the proof.
□

4.2. Resolution of the negative sensitivity. For any i ∈ M and j ∈ N , when
yj = 0, we stipulate

ci
yj

= 0. Thus, we can define the following sets of indices

(4.21) d−1 = min
i∈M,j∈N

{aij} ,

(4.22) d−2 = min
i∈M

max
j∈J−

i

{
aij −

ci
yj

}
,

where

(4.23) J−
i = {j ∈ N | aijyj ≥ ci}.

We further denote

(4.24) d− = min(d−1 , d
−
2 ).

Theorem 4.3. Let d− be defined by formulas (4.21)-(4.23). Then d− is the negative
sensitivity of the given solution y (with respect to the coefficient matrix A).

Proof. (i) From the assumption aij ∈ [0, 1], for any i ∈ M and j ∈ N , we have

(4.25) d−1 = min
i∈M,j∈N

{aij} ∈ [0, 1].

Take any i ∈ M and j ∈ J−
i . From the definition of the index set J−

i , we know
that

(4.26) aijyj ≥ ci.
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If yj = 0, then aij − ci
yj

= aij ≥ 0. If yj > 0, then from inequality (4.26), we have

aij − ci
yj

≥ 0. Therefore, we obtain

(4.27) aij −
ci
yj

≥ 0, ∀i ∈ M, j ∈ J−
i .

As a result d−2 = mini∈M maxj∈J−
i

{
aij − ci

yj

}
≥ 0. Combining with equation (4.25),

we get 0 ≤ min(d−1 , d
−
2 ) ≤ d−1 ≤ 1. Thus d− = min(d−1 , d

−
2 ) ∈ [0, 1].

In addition, since d− = min(d−1 , d
−
2 ) ≤ d−1 = mini′∈M,j′∈N

{
ai′j′

}
≤ aij , we have

(4.28) aij − d− ≥ 0, ∀i ∈ M, j ∈ N.

Note that d− ∈ [0, 1]. We have

(4.29) aij − d− ≤ aij ≤ 1, ∀i ∈ M, j ∈ N.

The formulae (4.28) and (4.29) contribute to

(4.30) 0 ≤ aij − d− ≤ 1, ∀i ∈ M, j ∈ N.

This indicates A− d− ∈ [0, 1]m×n.
(ii) Since y ∈ X(A, c, c), it is clear that A ⊙ y ≤ c. Considering d− ∈ [0, 1], by

Property 3 we have

(4.31) (A− d−)⊙ y ≤ A⊙ y ≤ c.

On the other hand, since d−2 = mini∈M maxj∈J−
i

{
aij − ci

yj

}
, we have

(4.32) d−2 ≤ max
j∈J−

i

{
aij −

ci
yj

}
, ∀i ∈ M.

For each i ∈ M , there exists ji ∈ J−
i such that

(4.33) aiji −
ci
yji

= max
j∈J−

i

{
aij −

ci
yj

}
.

Thus

(4.34) d−2 ≤ max
j∈J−

i

{
aij −

ci
yj

}
= aiji −

ci
yji

, ∀i ∈ M,

i.e.,

(4.35) (aiji − d−2 )yji ≥ ci, ∀i ∈ M.

Hence

(4.36) (ai1 − d−2 )y1 ∨ · · · ∨ (ain − d−2 )yn ≥ (aiji − d−2 )yji ≥ ci, ∀i ∈ M.

i.e.,

(4.37) (A− d−2 )⊙ y ≥ c.

Considering d− = min(d−1 , d
−
2 ) ≤ d−2 , we have

(4.38) A− d− ≥ A− d−2 .

Thus by Property 3,

(4.39) (A− d−)⊙ y ≥ (A− d−2 )⊙ y ≥ c.
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Considering the formulae (4.31) and (4.39), it is clear y ∈ X(A− d−, c, c).
(iii) If d ∈ [0, 1] and d > d−, then from the definition of d−, we know that either

d > d−1 or d > d−2 holds.
Case 1. If d > d−1 = mini∈M,j∈N {aij}, then there exist i1 ∈ M and j1 ∈ N such

that d−1 = ai1j1 . Thus d > ai1j1 , i.e.,

(4.40) ai1j1 − d < 0.

Obviously ai1j1 − d is an element in the matrix A− d. Thus

(4.41) A− d = (aij − d) /∈ [0, 1]m×n.

Case 2. If d > d−2 = mini∈M maxj∈J−
i
{aij − ci

yj
}, then there exists i2 ∈ M such

that

(4.42) d−2 = max
j∈J−

i2

{
ai2j −

ci2
yj

}
.

Take arbitrarily j′ ∈ J . If j′ /∈ J−
i2
, then by J−

i2
= {j ∈ N | ai2jyj ≥ ci2}, we have

ai2j′yj′ < ci2 . Thus

(4.43) (ai2j′ − d)yj′ ≤ ai2j′yj′ < ci2 , ∀j′ /∈ J−
i2
.

If j′ ∈ J−
i2
, then by (4.42) we have d > d−2 = maxj∈J−

i2

{ai2j−
ci2
yj
} ≥ ai2j′ −

ci2
yj′

. Thus

(4.44) (ai2j′ − d)yj′ < ci2 , ∀j′ ∈ J−
i2
.

The formulae (4.43) and (4.44) contribute to

(ai2j′ − d)yj′ < ci2 , ∀j′ ∈ J.

This indicates (ai21−d)y1(ai22−d)y2∨· · ·∨(ai2n−d)yn < ci2 . Thus y /∈ X(A−d, c, c).
Thus, by Definition 2.2 and the cases (i), (ii) and (iii) above, d− is the negative

sensitivity of the solution y. This completes the proof. □

4.3. Resolution algorithm for the sensitivity of y. Given the solution y, the
above Subsections 4.1 and 4.2 provide some resolution formulae to calculate the
positive sensitivity and negative sensitivity of y, respectively. According to Defini-
tion 3.3, the overall sensitivity of y could be further obtained. By summarizing the
resolution formulae, we further develop an algorithm for computing the sensitivity
of y as follows.

Algorithm I. for computing the sensitivity of the given solution y

Step 1. Compute d+1 according to Eq. (4.1).
Step 2. Compute d+2 according to Eq. (4.2).
Step 3. Compute the positive sensitivity by Eq. (4.3), i.e., d+ = min{d+1 , d

+
2 }.

Step 4. Compute d−1 according to Eq. (4.21).
Step 5. Compute the index sets {J−

i | i ∈ M} according to Eq. (4.23).

Step 6. Compute d−2 according to Eq. (4.22).
Step 7. Compute the negative sensitivity by Eq. (4.24), i.e., d− = min{d−1 , d

−
2 }.

Step 8. Compute the sensitivity of y by d = min{d+, d−}, according to Definition
3.3.
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5. Numerical examples

In this section we provide two numerical examples for verifying the resolution
method proposed in the previous section.

Example 5.1. In the following system of fuzzy relational inequalities with max-
product composition (5.1), for a given solution y, we will use the method described
in Section 4 to compute the positive sensitivity of y. The considered system is
expressed by

(5.1) c ≤ A⊙ x ≤ c,

in which the matrix A is given as

A =


0.4 0.5 0.1 0.4 0.3 0.7
0.9 0.4 0.3 0.2 0.5 0.3
0.4 0.2 0.3 0.1 0.8 0.3
0.2 0.1 0.3 0.4 0.7 0.2
0.6 0.4 0.5 0.4 0.7 0.6
0.7 0.5 0.6 0.3 0.2 0.3

 ,

while the vectors c and c are given as

c = (0.42, 0.52, 0.25, 0.36, 0.28, 0.36),

c = (0.53, 0.82, 0.71, 0.58, 0.52, 0.58).

The given solution is y = (0.65, 0.85, 0.73, 0.74, 0.65, 0.80).

Solution: According to (2.2) and (2.3), we calculate the maximum solution as

x̂ = (0.757, 0.911, 0.888, 0.829, 0.757, 0.829).

After simple calculations, we verify that c ≤ A ⊙ x̂ ≤ c. Therefore, by Theorem
2.3, the system of inequalities (5.1) is consistent. Next, using the method described
in the previous section, we compute the positive sensitivity of the given solution y
with respect to A.

Computation of d+1 : For i = 1, we calculate:

min
j∈N

{1− a1j} = (1− 0.5) ∧ (1− 0.1) ∧ (1− 0.4) ∧ (1− 0.3) ∧ (1− 0.7) ∧ (1− 0.4)

= 0.3.

Similarly, for i = 2, 3, 4, 5, 6, we get minj∈N{1− a2j} = 0.1, minj∈N{1− a3j} = 0.2,
minj∈N{1−a4j} = 0.3, minj∈N{1−a5j} = 0.3, minj∈N{1−a6j} = 0.3. As a result,

(5.2) d+1 = min
i∈M,j∈N

{1− aij} = min{0.3, 0.1, 0.2, 0.3, 0.3, 0.3} = 0.1.

Computation of d+2 : For i = 1, we calculate:

min
j∈N

{c1
yj

− a1j

}
=

(0.53
0.65

− 0.5
)
∧
(0.53
0.85

− 0.1
)
∧
(0.53
0.73

− 0.4
)
∧
(0.53
0.74

− 0.3
)

∧
(0.53
0.65

− 0.7
)
∧
(0.53
0.80

− 0.4
)

= 0.315 ∧ 0.524 ∧ 0.326 ∧ 0.416 ∧ 0.116 ∧ 0.263

= 0.116.
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In the similar way, we find minj∈N{ c2
yj

− a2j} = 0.362, minj∈N{ c3
yj

− a3j} = 0.292,

minj∈N{ c4
yj

− a4j} = 0.192, minj∈N{ c5
yj

− a5j} = 0.063, minj∈N{ c6
yj

− a6j} = 0.182.

As a result,

(5.3)
d+2 = min

i∈M,j∈N

{ ci
yj

− aij

}
= min{0.116, 0.362, 0.292, 0.192, 0.063, 0.182} = 0.063.

Therefore, from formulas (4.3), (5.2), and (5.3), we conclude that the positive
sensitivity of the solution y = (0.65, 0.85, 0.73, 0.74, 0.65, 0.80) is

d+ = min(d+1 , d
+
2 ) = min(0.1, 0.063) = 0.063.

Example 5.2. We continue with the same system of inequalities (5.1) and the given
solution y. For the given solution y, we further compute the negative sensitivity
and overall sensitivity using the method from Section 4.

Solution: For i = 1, since

a11y1 = 0.325 < 0.42 = c1, a12y2 = 0.085 < 0.42 = c1, a13y3 = 0.292 < 0.42 = c1,

a14y4 = 0.222 < 0.42 = c1, a15y5 = 0.455 > 0.42 = c1, a16y6 = 0.32 < 0.42 = c1.

Thus, from formula (4.23), we have J−
1 = {5}. In the similar way we find

J−
2 = {1}, J−

3 = {1, 5}, J−
4 = {5}, J−

5 = {1, 2, 3, 4, 5, 6}, J−
6 = {1, 2, 3}

Computation of d−1 : From formula (4.21), we calculate:

(5.4) d−1 = min
i∈M,j∈N

{aij} = 0.1

Computation of d−2 : For i = 1, we have

max
j∈J−

1

{
a1j −

c1
yj

}
= 0.7− 0.42

0.65
= 0.7− 0.646 = 0.054.

For i = 2, we have

max
j∈J−

2

{
a2j −

c2
yj

}
= 0.9− 0.52

0.65
= 0.9− 0.8 = 0.1.

For i = 3, we have

max
j∈J−

3

{
a3j −

c3
yj

}
=

(
0.4− 0.25

0.65

)
∨
(
0.8− 0.25

0.65

)
= 0.015 ∨ 0.415 = 0.415.

For i = 4, we have

max
j∈J−

4

{
a4j −

c4
yj

}
= 0.7− 0.36

0.65
= 0.7− 0.554 = 0.146.

For i = 5, we have

max
j∈J−

5

{
a5j −

c5
yj

}
=

(
0.6− 0.28

0.65

)
∨
(
0.4− 0.28

0.85

)
∨
(
0.5− 0.28

0.73

)
∨
(
0.4− 0.28

0.74

)
∨
(
0.7− 0.28

0.65

)
∨
(
0.6− 0.28

0.80

)
= 0.269.
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Table 1. Operations costed in each step in Algorithm I
Step i Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

operation mn 2mn 1 mn 2mn 2mn 1 1

For i = 6, we have

max
j∈J−

6

{
a6j −

c6
yj

}
=

(
0.7− 0.36

0.65

)
∨
(
0.5− 0.36

0.85

)
∨
(
0.6− 0.36

0.73

)
= 0.146.

As result,

(5.5)

d−2 = min
i∈M

max
j∈J−

i

{
aij −

ci
yj

}
= min{0.054, 0.1, 0.415, 0.146, 0.269, 0.146}
= 0.054.

Therefore, from formulas (4.24), (5.4), and (5.5), we have d− = min(d−1 , d
−
2 ) =

0.054. Thus, the negative sensitivity of the solution y = (0.65, 0.85, 0.73, 0.74, 0.65,
0.80) is 0.054.

Note that it has been calculated in Example 5.1 that d+ = 0.063. Hence the
sensitivity of y is

d(y) = min(d+, d−) = min(0.063, 0.054) = 0.054.

6. Results and discussion

• Results for our defined sensitivity

From the previous study on the sensitivity of a given solution, the following
results can be directly derived.

(i) When system (1.4) is consistent with a given solution y, then the sensitivity
of y always exists. Moreover, the sensitivity should be unique, when it exists.

(ii) The sensitivity of a given solution could be obtained by some resolution for-
mulae. Moreover, the resolution formulae can be carried out by a detailed algorithm.

• Further discussion on the resolution algorithm for the sensitivity

In Section 4, we have developed Algorithm I for calculating the sensitivity of a
given solution. It can be seen in Examples 5.1 and 5.2 that our proposed Algorithm
I is feasible. Using Algorithm I, one is able to compute the sensitivity.

Moreover, we further find that Algorithm I is efficient, considering its computa-
tion complexity. In fact, the operations required in each step in Algorithm I can be
directly computed, as shown in Table 1. As a result, all these 8 steps will cost

mn+ 2mn+ 1 +mn+ 2mn+ 2mn+ 1 + 1 = 8mn+ 3

operations, in the worst case. Hence the computation complexity of Algorithm I is
O(mn). That is to say, Algorithm I has a polynomial computation complexity.
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7. Conclusion

The random external interference will cause the perturbations to the educational
information resources sharing system. In the existing works, such a system has
been described by the max-product FRIs system (1.4). A feasible scheme is indeed
a solution to (1.4). The perturbations caused by the random external interference
lead directly to the variation in the parameters {aij | i ∈ M, j ∈ N}. To embody
such parameter variations, we define and study three types of sensitivities, for a
given solution of system (1.4), in this work. Our main contribution is to design some
effective resolution approaches for these sensitivities. Algorithm I is designed, step
by step, for computing the sensitivity of a given solution. Our proposed Algorithm
I is verified to be feasible and efficient, through some numerical examples and its
computation complexity. Its computation complexity is polynomial.

In the future, the concept of sensitivity will be extended to more types of fuzzy
relation systems.
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