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ABSTRACT. The original semi-supervised learning method has several limita-
tions, such as a small number of labeled samples, high labeling cost, and difficulty
in obtaining labels, which restrict the performance and application range of image
classification models. Therefore, this study proposed a semi-supervised learning
method using multiscale filter convolutional neural network with unlabeled image
data to enhance the model performance. A convolutional neural network model
was constructed using labeled data for model training and parameter optimiza-
tion. The trained model was used to predict the unlabeled image data, and the
pseudo-labels were generated based on the prediction results. Then, labeled and
pseudo-labeled data were amplified and spliced to form a larger training set. The
amplified training set was used to retrain the model, and the semi-supervised
learning was carried out by combining the labeled and the pseudo-labeled data.
The experimental results showed that the proposed method improved the accu-
racy and robustness of image classification by iterating the process of generating
false labels and training models when the number of labeled samples was ex-
tremely limited.

1. INTRODUCTION

Image classification is a widely used technology in various fields, including fa-
cial recognition, medical image analysis, and autonomous driving [30]. The further
development of deep learning technology, especially convolutional neural network
(CNN), has significantly improved the accuracy of image classification, thus signif-
icantly optimizing the performance of image classification tasks. At present, for
improving the accuracy of image classification, most supervised learning methods
rely on large amounts of labeled data for training. However, data annotation is still
predominantly a manual process, making it time-consuming, prone to errors, and
ultimately reducing the algorithm’s performance.
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Accurate labeling of image data in large quantities is not only costly but also time-
consuming and labor-intensive, especially in some specialized or rare categories of
image data, such as military, industrial, and other confidential environmental data.
In 2019, Berthelot et al. proposed the ReMixMatch algorithm [2], which mainly
improved the semi-supervised learning performance through distribution alignment
and enhanced anchoring. However, its disadvantage was that the recognition per-
formance was unstable when dealing with highly unbalanced dataset. Qizhe Xie et
al. proposed the Noisy Student algorithm in 2020 [33]. However, its disadvantage
was that when the quality of labeled data was poor, the training performance of
the model was reduced. This occurred because of the presence of noisy or incor-
rect labels in the initial labeled data during the model’s self-training stage. These
errors were amplified in the algorithm iteration, reducing the overall performance
of the classifier. Yassine Ouali et al. proposed the SimPLE algorithm in 2021 [9],
which mainly enhanced the performance of semi-supervised learning through simi-
lar pseudo-label generation. However, its disadvantage was that it relied on high-
quality pseudo-label generation, which, in practical engineering applications, led to
a decline in recognition accuracy due to the complexity and diversity of the data.

A single semi-supervised method can no longer address the challenge of gener-
ating high-quality false labels. Consequently, it fails to improve recognition ac-
curacy, especially in emerging physical layer fields, such as new complex nano-
composites, thermal conductivity of polymeric nano-composites (PNCs), carbon
nanotube-reinforced polymer composites [15,18,20,22,22], and so on. Carlos Quin-
tero Gull et al. (2024) proposed an algorithm based on the learning algorithm for
multivariate data analysis), which calculated the degree of membership between
data and groups/classes [7]. This study defined a membership threshold, enabling
the assignment of individuals to classes or clusters with membership values exceed-
ing the threshold. However, a limitation of this approach was that determining
the appropriate membership threshold could be problematic due to data scarcity in
datasets with low-dimensional data or descriptors. Leixin Qi et al. (2024) proposed
a new method combining class-incremental learning and semi-supervised learning to
accurately identify loads from large streams of unlabeled data [25]. It also prevented
catastrophic forgetting by retaining samples, extracting knowledge, and adjusting
the weights of incremental tasks with unlabeled data, addressing semi-supervised
problems in incremental learning. Zechen Liang et al. (2024) proposed a semi-
supervised learning method combining double-threshold screening and similarity
learning. The threshold of another adaptive class was extracted from the labeled
data. This class-adaptive threshold could screen many unlabeled data whose pre-
dictions were below 0.95 but above the extracted threshold for model training. The
method also improved the effectiveness of the overall loss function. However, it was
unsuitable for experimental settings with sparse labeled data. This was because the
class-adaptive threshold was extracted from the labeled data during model train-
ing. When the number of labeled data was too small, the extracted class-adaptive
threshold was not representative, leading to the inclusion of many noisy unlabeled
data in model training [14].

Therefore, in cases where annotation data are limited, the method to improve the
classification performance of image classification still has room for optimization. In
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this study, a semi-supervised learning image classification method based on CNNs
of multiscale filters was proposed to improve the accuracy of image classification
and reduce the dependency on large amounts of labeled data. The generalization
performance of the model was enhanced by efficiently using the unlabeled data,
thereby maintaining or improving classification accuracy while reducing the need

for labeled data.

2. IMAGE CLASSIFICATION TECHNIQUE

Image classification tasks are classified into supervised and unsupervised tasks
according to whether the training data are labeled or not [34]. Figure 1(a) shows a
supervised learning dataset with complete labels. In unsupervised learning, samples
are unlabeled and no clear boundary exists between data. The network learns
the regularity between data through training to complete the classification task
[5]. Figure 1(b) shows the semi-supervised learning dataset, combining supervised
and unsupervised learning, with a small number of samples undergoing supervised
learning and the remaining samples undergoing unsupervised learning.

Semi supervised image

Supervised image classification task classification task

labeled unlabeled
labeled samples samples samples
Dataset Dataset
(a) (B)

FIGURE 1. Dataset distribution diagram: (A) supervised image clas-
sification tasks and (B) unsupervised image classification tasks.

The traditional supervised image classification method uses manual feature ex-
traction algorithm and statistical classifier to classify images into predefined cat-
egories. The main steps include data preprocessing, feature extraction, screening
and dimensionalization reduction, classifier training, and performance evaluation.
When the algorithm is preprocessed, the classification effect of the image data is
improved in steps such as grayscale, normalization, enhancement, and de-noising.
SVM, decision trees, and other methods train the classifier, evaluated by accuracy,
recall, F1 score, and confusion matrix.

Semi-supervised image classification combines supervised and unsupervised learn-
ing using a small number of labeled samples for supervised learning and the re-
maining unlabeled data for unsupervised learning. This method lowers the dataset
requirements and is suitable for tasks where obtaining a high-quality dataset is
more difficult. For the image classification tasks, a small amount of annotated data
helps the network layer to define data boundaries, improving classification accuracy,
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FI1GURE 2. Structure diagram of the MF-CNN model

reducing the application standard, and enhancing the flexibility and feasibility of
classification tasks [13].

3. SEMI-SUPERVISED CLASSIFICATION ALGORITHM FOR CNNS OF MULTISCALE
FILTERS

3.1. Multiscale filter CNNs. The limited number of samples in real-world ap-
plications often restricts the accuracy of image classification because the feature
information obtained from an image is insufficient, so the accuracy of the image
classification has great room for improvement [33]. In this study, we proposed an
optimization scheme for CNNs by incorporating multiscale filter banks and resid-
ual learning modules into traditional CNNs to obtain more image-related feature
information. As shown in Figure 2, the multiscale filter CNN (MF-CNN) model is
mainly composed of multiscale filter banks, convolutional layers, residual learning
modules, Softmax classifiers, and so forth.

In the convolutional layer of the MF-CNN network model, a 5 x 5 convolution
kernel is used to perform convolutional operations. This involves multiplying the
convolution kernel with elements of the input, and then summing the results to
obtain an output feature [28]. By learning the parameters in the convolution kernel,
the network can extract the local image features. The convolution layer adopts
multiple matrices to maximize the capture of image content, allowing the extraction
of the image information more effectively.

(3.1) Z =g (En: w;x; + b> .
=1

Where w; — w,, represents the weight, x; — z,, represents the component of the
input vector, b represents the bias, and g(z) represents the activation function [24].
The filter size is mxn, which can be regarded as a matrix, and its role is to accurately
extract feature information from the image. This process involves selecting an area
of the image that matches the filter size and performing product and accumulation
operations within this area. Each element of the filter is multiplied by the pixel
values in the corresponding area of the image, and the product results are then
added to arrive at a single value. The matrix moves from the left side of the image
to the right based on a specific step size, repeating the product and accumulation
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FiGURE 4. Convolutional operation diagram of the MF-CNN model
filter.

operations described earlier with each move. As the filter moves, it traverses every
region of the image and adds up all the data results. When the filter traverses the
entire image, it completes the filtering operation of the entire image. Such product
and summation operations between matrices are consistent with the convolution
operations in CNN. The MF-CNN model uses a multiscale filter bank, which has
three filters of different sizes, and each filter can extract features of different scales
and details from the image so as to obtain the feature information of the image from
multiple angles. Figure 3 shows the multiscale filter bank of the MF-CNN model.

The feature maps generated by the three filters adopt a unified size, ensuring
consistency in size and enabling them to merge into a joint feature map. Zero-
padding is applied around the image, with the filter bank producing feature maps
of sizes (H + 4, W + 4), (H + 2, W + 2).

where H the matrix height and W is the width. For example, if the MF-CNN
input is a 32 x 32 matrix, three 5 x5 filters convolve with it. Through the convolution
operation of the filter, the generated image feature information forms a matrix a
28 x 28 matrix. The specific calculation process is shown in Figure 4.
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FicURE 5. Data processing of the convolutional layer in the MF-
CCN model.

FIGURE 6. Residual learning cross-layer transmission process.

Figure 5 shows the data processing flow in the convolutional layer. Once the
feature map passes through the filter, it is passed onto the next layer as input; the
number of cores is set to 128, and 128 feature maps are finally obtained, all of which
are 28 x 28 in size.

In multilayer neural network structures, the control of values plays a crucial role
in the stability and overall performance of the network. When the gradient exceeds
1 during layer propagation, especially in deep networks, it can grow exponentially,
causing gradient explosion. Conversely, when the gradient value is less than 1,
as the information is transmitted layer by layer, the gradient gradually decreases,
potentially leading to gradient disappearance. The output of the previous layer is
directly transmitted to deeper network layers. This way, even in deep networks, the
gradient maintains a certain value, which is not too large to cause the gradient to
explode, nor too small to cause the gradient to disappear. Through this approach,
the neural network in the algorithm better learns the features of the data and
improves the performance of the model [1]. Equation (3.2) defines this process:

(3.2) y=F(zAWi}) +=

where x is the input of the convolutional layer, and y is the output. The function
F = y—x is the residual mapping from the convolutional filter input to the residual
output y — x. The residual learning process across layers is shown in Figure 6.
The classifier plays a crucial role in image recognition tasks and performs de-
tailed classification operations on each input image. After complex calculations and
processing, the classifier generates an output vector that represents the probabil-
ity of each sample corresponding to each category. The cross-entropy loss function
is a commonly used evaluation metric in classification problems, which intuitively
reflects the difference between the predicted and true values of the model. As the
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difference gradually decreases, the predictive ability of the model constantly im-
proves, achieving more accurate classification results, as shown in equation (3.3):

(3.3) H(p,q) =~ p(zi)log(q ().
i=1

Where p(z;) is expected probability distribution and ¢(z;) is the actual proba-
bility distribution [27]. Cross entropy is used to evaluate the difference between
two different probability distributions under the same variable. In the classification
task, Softmax processes the output results to sum the predicted values of multiple
classifications to 1 and then uses cross-entropy to determine the loss value.

If the network output is, z; — 2z, then formula (3.4) is the formula of Softmax
function. Where z; represents the output value of the first node, c is the number of
output nodes, that is ¢, the number of categories of the classification, e represents
the constant.

e

(3.4) Softmax (z;) = ST

3.2. Implementation of self-training algorithms. This study used a self-training
algorithm to effectively reduce the cost of image labeling using unlabeled image data.
During the algorithm operation, the confidence level of each category was calculated
and used as a basis to filter the unlabeled data predicted by the model, as shown
in equation (3.5).

(3.5) Confidence (x;) = Rankr (p (y|z:)) -

Where x and y are used to represent the unlabeled images and the labels predicted
by the model for these images, respectively, and p(y|z;) represent the posterior
probability for each image. In addition, Rank represents the ranking of posterior
probabilities for all images in each category, while T serves as the threshold for
ranking, for example, 10% represents the top 10% of posterior probabilities.

The workflow of the self-training algorithm was as follows: First, the SSL-CNN
model was trained using labeled samples. Second, the trained classification model
was used to infer unlabeled data and generate corresponding pseudo-labels for these
unlabeled samples. Third, the generated pseudo-labels were filtered based on the
confidence level of the image, retaining only those image data with higher confidence
levels and their corresponding pseudo-labels. Fourth, the filtered image data were
added to both the labeled and unlabeled datasets for subsequent model training.

Compared with other supervised learning and semi-supervised training methods,
the main advantage of self-training was the efficient use of unlabeled image samples,
which improved the robustness and generalization ability of CNN models. The
training process was simple and easy to implement [10]. Although self-training
had many advantages, identifying samples with high prediction probability was
difficult and easily misjudged. In the iterative training of the model, it caused
“error accumulation” of erroneous samples [11]. The principle of the self-training
algorithm is shown in equation (3.6). The Error_rate was used to quantify the error
impact of erroneous samples during a single training process of the model.

(3.6) Error_accum =1 — (1 — Error_rate)"
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where n represents the number of training iterations, and Error_accum represents
the accumulated error after n iterations.

When the value of Error_rate is 0.1, the error caused by incorrect samples reaches
10% in each iteration. In this scenario, after five consecutive iterations of training,
the accumulated error Error_rate significantly increases to 0.41 iterations, and the
cumulative error still increases to 0.005. This indicates that during the model
training process, errors caused by incorrect samples gradually accumulate as the
training progresses, further affecting the performance of the model. This study
minimized the error caused by incorrect samples by selecting confidence levels.

Amin Golzari Oskouei et al. (2024) proposed a semi-supervised fuzzy C-means
method based on feature weights and cluster weights learning [6]. However, using
the auxiliary information from class labels to guide clustering still presented un-
resolved issues. In most semi-supervised fuzzy clustering methods, feature weights
and cluster weight learning were often neglected, destroying the clustering algo-
rithm’s ability to form the optimal cluster structure. Qi Wei et al. (2024) proposed
a method called meta-threshold, which learned a dynamic confidence threshold for
each unlabeled instance and required no additional hyperparameters beyond the
learning rate [31]. However, this method considered only the sample-level threshold
of the pseudo-notation method in semi-supervised learning. It provided not only
a solution to reduce the training complexity but also did not really improve the
recognition accuracy. Xu Chen et al. (2024) proposed a new unified framework
called robust structure-aware semi-supervised learning [4]. This method applied
joint semi-supervised virus-reduction robust estimation and network sparse regu-
larization iterations on the Laplace matrix to address the challenging problem of
distributed robust semi-supervised learning. However, this method had some lim-
itations in generalization performance, and its advantages in imaging applications
were not obvious. Suxia Zhu et al. (2024) proposed a method for selecting federal
semi-supervised classification samples based on the changes in the predicted dis-
tribution of different data augmentation amounts [36]. The focus of this approach
was to improve model performance with fewer involved customers during training,
while also increasing the reliability of sample selection. However, this method had
advantages primarily in scenarios involving Non-independent uniformly distributed
data and a limited number of participating clients, with poor generalization per-
formance. Compared with the aforementioned fusion native methods, this study
combined the advantages of deep learning and had certain benefits in generalization
ability and clustering performance across different scenarios.

4. EXPERIMENT AND RESULT ANALYSIS

This study used six classic computer vision dataset: MNIST, Fashion MINIST,
CIFAR-10, CIFAR-~100, SVHN, and Cat-Dog, which represented image classifica-
tion tasks from simple to complex, from single to multiple categories, from grayscale
to color images, and so forth. The MNIST dataset is a commonly used entry-level
dataset containing grayscale images of handwritten digits, suitable for simple num-
ber recognition tasks [12]. The Fashion-MNIST dataset is similar to MNIST and
contains images of fashion items [29]. The CIFAR-10 dataset is a more challenging
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multiclass object recognition task that includes color object images from 10 cate-
gories [3]. CIFAR-100 is an extended version of CIFAR-10, which adds more cat-
egories and fine-grained classifications, placing higher demands on the recognition
ability of the model [35]. The SVHN dataset contains house number images from
Google Street View, which is challenging for digit recognition and object recognition
in complex backgrounds [13]. The Cat-Dog dataset is an image classification task
used to distinguish cats and dogs [26]. The selection of these datasets aims to com-
prehensively evaluate the generalization ability and performance of the proposed
method in different scenarios.

4.1. Experimental environment and platform setup. All experimental mod-
els in this study were carefully developed and designed on Linux systems to ensure
system stability and compatibility. In terms of deep learning models, TensorFlow,
an industry-leading deep learning framework, was adopted as the technical support,
and the programming language used was Python 3.7. The CPU used was Intel Core
i7-7820X with 64 GB memory, and the GPU used was GeForce GTX 2080Ti. CUDA
10.0 and CUDNN were specially configured to fully leverage the advantages of the
GPU in deep learning model training.

4.2. Analysis of experimental results. As shown in Tables 1 — 6, the MF-CNN
model achieved the best classification performance on the MNIST and CIFAR-10
datasets, with values of 99.20% and 82.23%, respectively. In the MNIST dataset,
compared with other image classification algorithms SAE, DBN, MLP, MLELM,
and HELM, MF-CNN improved the image classification accuracy by 0.6%, 0.33%,
1.81%, 0.16%, and 0.07%, respectively. In the CIFAR-10 dataset, compared with
other image classification algorithms such as Tiled CNN, Improved LCC, KDES-
A, and PCA Net Network, MF-CNN improved the image classification accuracy
by 9.13%, 7.73%, 6.23%, and 5.09%, respectively. Based on the aforementioned
analysis, it was concluded that using the network model proposed in this study for
image classification could effectively improve the accuracy of image classification.

TABLE 1. Accuracy of the MF-CNN network model on the MNIST
dataset

Model  Accuracy rate (%)

SAE 98.60
DBN 98.87
MLP 97.39
MLELM 99.04
HELM 99.13
MF-CNN 91.34

Six datasets such as MNIST, Fashion MINIST, CIFAR-10, CIFAR-100, SVHN,
and Cat-Dog were used to train the MF-CNN network model. The accuracy and
loss function curves were drawn using the classification results of the test images.
Meanwhile, the confusion matrix for image classification was also generated. The di-
agonal of the confusion matrix represented the number of models whose predictions
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TABLE 2. Accuracy of the MF-CNN network model on the Fashion-
MNIST dataset

Model Accuracy rate (%)
Random Forest 81.60
Logistic Circuit 87.62
Gradient Boosting Classifier 88.03
4-NearestNeighbour 85.40
MF-CNN 91.34

TABLE 3. Accuracy of the MF-CNN network model on the Fashion-
MNIST dataset

Model Accuracy rate (%)
Tiled CNN 73.10
Improved LCC 74.50
KDES-A 76.00
PCA Net Network 77.14
MF-CNN 82.23

TABLE 4. Accuracy of the MF-CNN network model on the CIFAR-
100 dataset

Model Accuracy rate (%)
Spatial Pyramids 54.23
Stochastic Pooling 57.49
Maxout Networks 61.43

Network in Network 64.32
MF-CNN 52.14

TABLE 5. Accuracy of the MF-CNN network model on the SVHN

dataset
Model Accuracy rate (%)
Spatial Pyramids 63.98
Stochastic Pooling 82.30
Maxout Networks 75.37
Network in Network 85.52
MF-CNN 85.40

were consistent with data labels. The larger the value and the better, indicating
higher prediction accuracy of the model for this specific particular category.
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TABLE 6. Accuracy of the MF-CNN network model on the Cat-Dog

dataset
Model Accuracy rate (%)
Full fine-tuning 82.20
Residual adapters dim = 512 82.28
muNet 92.98
MF-CNN 87.42
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F1aure 7. Classification accuracy and loss function value curves of
the MF-CNN network model on the MNIST dataset.

This is because the multiscale filter bank of the MF-CNN model preserved im-
age feature information to the greatest extent, avoiding excessive resource iterations,
while residual learning effectively managed gradient issues with feature information.
Accuracy and loss value are key indicators, with accuracy measuring performance in
recognition and classification. The loss value accurately describes the gap between
the predicted results of the model and the actual label value [1]. By comprehensively
considering both indicators, we evaluated the model’s performance more compre-
hensively and accurately, offering strong data support for subsequent optimization
and improvement [8], as shown in Figures 7-12.

As shown in Figure 8, the classification accuracy and loss function curves of
the MF-CNN model were comprehensively analyzed using the MNIST and CIFAR-
10 datasets as illustrative examples. During MNIST training, the model achieved
99.03% accuracy on the training set by the 20th iteration and then gradually stabi-
lized effectively. In the first 20 iterations, the accuracy increased rapidly to 99.03%,
after which the growth slowed significantly, though it continued to improve slightly.
In the 020 iterations of the MF-CNN model, the accuracy rate increased rapidly
t0 99.03%, and then, although it continued to rise, the rate of increase slowed down
significantly. Meanwhile, the change trend of the loss function value was the oppo-
site; it declined rapidly at first and then gradually slowed down. In 20-30 iterations,
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the accuracy and loss values changed very little. After 30 iterations of training, the
MF-CNN network model showed excellent performance, with an accuracy of 99.20%

(a)

F1GURE 9. Classification accuracy and loss function value curves of
the MF-CNN network model on the CIFAR-10 dataset.

and a reduced loss value of 0.023.

On the CIFAR-10 dataset, when the network was trained through 30 iterations,
the accuracy of the training set reached 80% and then remained relatively stable
over time. Between 30 and 40 iterations, the accuracy rate gradually increased,
whereas the loss value slowly decreased, as shown in the Figure 9 below over time.
By the 40th iteration, the accuracy reached 80.39%, and the loss value was 0.73. In
the 40-50 iteration range, the accuracy and loss values fluctuated relatively little.
After 50 iterations, the accuracy of the MF-CNN model further improved to 82.23%,

with a reduced loss value of 0.59.
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Ficure 11. Classification accuracy and loss function value curves
of the MF-CNN network model on the SVHN dataset.

80

These results showed that as training progressed, the accuracy and robustness of

the model continued to improve, whereas the loss value continued to decrease, indi-
cating that the model’s learning and generalization abilities continuously improved,
along with its predictive accuracy. The same performance was also displayed on
CIFAR-100, svhn, and Cat-Dog datasets, as shown in Figures 10-12.

The confusion matrix diagrams in Figures 13 and 14 show the excellent per-

formance of the MF-CNN model on the classification tasks using the MNIST and
CIFAR-10 datasets. Confusion commonly evaluate classification. Providing a com-
prehensive insight into classifier performance by showing the statistical relationships
between actual categories and model predictions [32].
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Ficure 12. Classification accuracy and loss function value curves
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FIGURE 13. Confusion matrix of the MF-CNN model on the MNIST

dataset.

Figure 13 shows that the handwritten digit “9” in the single classification results
of the MNIST dataset had the lowest accuracy (only 98.81%), whereas the hand-
written digit “2” had the highest accuracy, accounting for 99.70%. A total of five
samples of the number “4” were classified as number “9”; the number “4” relative
to the number “9” had a confusion rate of 0.5%, and the number “9” classified as
the number “5” had a confusion rate of 0.3%. Under the MNIST dataset image
classification, the final test set accuracy of the MF-CNN network was 99.20%.
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FIGURE 14. Confusion matrix of the MF-CNN model on the CIFAR-
10 dataset.

Figure 14 shows that among the single classification results of the CIFAR-10
dataset, the “automobile” category performed the best, with a classification accu-
racy of 92.60%. In contrast, the “cat” category had the lowest classification accu-
racy of 62.80%. In the CIFAR-10 image classification task, the “automobile “features
were distinct, allowing the neural network to easily identify them.

While the “cat” features were unclear and more difficult to distinguish. A total
of 163 “cat” samples were incorrectly classified as “dog”, and 111 “dog” samples
were incorrectly classified as “cat”. These cases of misclassification indicated a
certain degree of similarity between “cat” and “dog”, which may be reflected in
their color, texture, shape, and other aspects, and these common characteristics led
to the misjudgment of the model.

The model had a high classification accuracy among different categories. The
classification results of each category were distributed near the diagonal of the
corresponding category label, indicating that the model successfully classified most
images correctly into their respective categories.

5. CONCLUSIONS AND DISCUSSION

The image classification method proposed in this study combined deep learning
and semi-supervised learning technologies to improve the performance of the image
classification model in the case of scarce annotation data. In the experiment, a
series of classical image classification datasets were used to verify and compare with
other image classification methods. The results showed that the proposed method
could maintain high classification accuracy while reducing dependency on the la-
beled data, verifying its effectiveness and feasibility in addressing real-world image
classification problems. The method proposed in this study can be more suitable for
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generalized semi-supervised learning scenarios and has higher recognition accuracy
than traditional semi-supervised load identification methods for the following rea-
sons: (1) The multiscale filter convolutional network of deep learning is used to ob-
tain image feature information from multiple angles, addressing the issue of limited
storage space by maximizing the image feature information generated by the model.
(2) The residual learning method is introduced, which not only retains the model’s
classification ability for a small number of samples but also addresses the problem
of data feature loss caused by the increase or disappearance of gradient values in
multilayer neural network structures. (3) The adaptability of semi-supervised load
recognition under scene generalization is realized through the organic integration
of semi-supervised learning architecture and deep learning methods. Although this
study performs well on classical image datasets, we have not yet proposed experi-
mental methods targeted at some special application scenarios to address the issue.
Also, the performance may decline when handling more complex datasets, such as
the prediction of macroscopic thermal conductivity of polymer graphene-reinforced
composites, thermal conductivity of clay-reinforced PNCs, and so forth [16,17,19].
Therefore, in future studies, we aim to propose a combination of other artificial in-
telligence methods, introduce multiscale models at different levels, and use physical
information neural networks to conduct experiments [23]. Future experiments will
be conducted on real-world datasets to verify the validity and generalization of the
method.
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