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ABSTRACT. The entity recognition process of unstructured corpus text related
to ethylene coking can be time-consuming and arduous. This study aimed to pro-
pose an entity recognition model based on self-attention and RoBERTa. First,
corpus pretraining was achieved using the RoBERTa model, which could learn
corpus with longer sequences and learn semantic expressions at the word level
better compared with BERT (Bidirectional Encoder Representations from Trans-
formers, BERT) BERT. Then, the preprocessed character feature sequence was
subjected to BiLSTM (Bidirectional Long Short-Term Memory, BiLSTM) for se-
mantic feature extraction. The self-attention mechanism was then integrated to
perform secondary feature extraction on the character sequence to explore the
correlation between entities. Finally, the prediction results were output using a
conditional random field. The experimental results demonstrated that the pro-
posed entity recognition model performed well in terms of accuracy, precision,
and recall.

1. INTRODUCTION

Ethylene is one of the most fundamental raw materials used in the petrochemical
industry. Hence its production is an essential criterion for judging the development
level of a country’s petrochemical industry. Currently, ethylene is mainly produced
using coil cracking furnaces, which indicates that cracking furnaces are the core
component of the refining system. Nevertheless, cracking the inner wall of the
furnace coil can cause carbon buildup due to a pyrolysis reaction, resulting in coking
and carburization. This phenomenon hinders the heat transfer of high-temperature
flue gases to the raw materials inside the coil, thus reducing the production efficiency
of ethylene. This incurs huge economic losses to enterprises and poses a safety
hazard. Therefore, diagnosing the coal coking accurately during the production
process is essential to increase the capacity of the ethylene cracking furnace.
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A knowledge graph has a strong ability to express things. It has been widely
used in medical, chemical, and other industries. Segler [21] established a knowledge
graph for binary chemical reactions considering the relationship between nodes in
the graph. They deduced a new set of reaction equations through knowledge infer-
ence to compensate for the missing links in the knowledge graph. Mao [16] developed
a safety knowledge graph for the delayed coking process using a combination of top-
down and bottom-up approaches to define the process safety model at the ontology
level. This approach enhanced the knowledge-based analysis capability, discovered
the hidden relationships between the possible risk causes and consequences in emer-
gency situations, and provided the basis for more process safety-related applications.

However, the entity recognition working process of unstructured corpus text re-
lated to ethylene coking requires operators to have knowledge reserves in various
aspects, and is arduous and time-consuming. This study aimed to propose an en-
tity recognition model based on self-attention and RoBERTa. First, the RoBERTa
model pretrained the corpus relative to BERT (Bidirectional Encoder Represen-
tations from Transformers). The model could learn corpus with longer sequences
and had a stronger learning ability for word-level semantic expression. The pre-
processed character sequence was subjected to BILSTM (Bidirectional Long Short-
Term Memory) for semantic feature extraction, which was fused with a self-attention
mechanism for secondary feature extraction, to explore the correlation between enti-
ties. Finally, the prediction results were output using a CRF (Conditional Random
Field). The proposed entity recognition model had better performance in accuracy,
precision, and recall.

The main contributions of this paper are as follows:

e We propose a self-attention-based RoBERTa-BiLSTM-CRF model for un-
structured corpora.

e The model first pretrains the corpus using RoBERTa to obtain vector rep-
resentations of the characters. These vector sequences are then used as in-
put parameters to extract semantic features through the BiLSTM network
model. Subsequently, the attention mechanism is employed to perform sec-
ondary feature extraction on the parameters. Finally, the CRF layer outputs
the prediction results.

e The proposed model exhibits excellent performance in terms of accuracy,
precision, and recall.

The remainder of this paper is structured as follows. Section 2 provides a compre-
hensive review of the related work on ethylene cracking furnace coking research. Sec-
tion 3 delves into the construction of the self-attention-based RoBERTa-BiLSTM-
CRF text entity recognition model, along with a detailed analysis of the model’s
implementation. Section 4 presents the experimental results, and finally, Section 5
concludes the paper and outlines the framework for our future work.

2. LITERATURE REVIEW

2.1. Modeling of ethylene cracking. Kumar [13] developed a naphtha molec-
ular kinetic model based on seven types of pyrolysis raw materials to analyze the
ethylene pyrolysis process. However, this model could not be directly applied to
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industrial production because it was highly dependent on process parameters not
directly measurable. Moreover, the computational procedure was complex, and the
calculation amount was too large. However, the ethylene pyrolysis mechanism could
be roughly simulated and the time cost for the pyrolysis process calculation could be
reduced after simplifying the complex mechanism and establishing 1D and 2D pyrol-
ysis, coking kinetic model, chamber heat transfer model, and other process models
for ethylene cracking furnace [5]. The regional method [8] was rapidly developed
in the simulation field with the development of computer technology. Nevertheless,
the model equations were extremely time-consuming and had low accuracy. Also,
obtaining the temperature solution for the full process and full coil was difficult,
making it hard to quickly reflect the change in the coil temperature with the tur-
bulence of high-temperature flue gas in the chamber. CFD(Computational Fluid
Dynamics) technology was widely used to simulate the production process of the
cracking furnace. The raw materials entering the cracking furnace in the convec-
tion section were required to be vaporized beforehand [10], and those entering the
radiation section were required to be preheated. The radiation section was the
main reaction stage of raw materials, and CFD could simulate the turbulence of
high-temperature flue gas in the chamber [18], thermal radiation and heat transfer
through the tubes [17], and the effect of chamber geometry and dimensions, the
structure of the combustor, and the distribution of the combustor [20] on the yield
and quality of the pyrolysis product. However, accurate CFD simulations require a
large number of complex iterative calculations and are extremely dependent on the
accuracy of process parameters, which are often difficult to obtain.

2.2. Application of neural networks in the cracking furnace. The deep
learning algorithm showed strong nonlinear function approximation capability with
the rapid increase in computational power. Hence, a deep learning algorithm is
gradually being applied to chemical process simulation, product yield prediction,
coil coking prediction, and so on. The obtained coil temperatures are often incor-
rect due to the spatial arrangement of the coils and the overlapping temperatures
of the coils. Zhao et al. [31] proposed an intelligent temperature measurement
device designed to measure the coil temperature. The device uses machine learning
and CNN (Convolutional Neural Networks) neural networks to identify the over-
lapping coil temperature data in the measurements. This technology, to a certain
extent, not only reduced the cost of the coil temperature measurement but also
improved the accuracy of the measured data. Xia et al. [25] identified a nonlin-
ear multivariate system using RBFNN and proposed a fuzzy C mean multiswarm
competitive particle swarm (FCMCPSO) algorithm for optimizing controlled vari-
ables of a real-time computing system. This algorithm could effectively control the
depth of ethylene pyrolysis in the ethylene plant and improve the yield of ethy-
lene and propylene. The ethylene cracking furnace chamber temperature is one of
the essential indicators of the health degree of the ethylene cracking furnace, and
the abnormal temperature data directly affects the stability and reliability of the
ethylene cracking furnace production. Chen et al. [4] established a prediction algo-
rithm and model for the trend of ethylene cracking furnace chamber temperature
data based on the Bayesian optimized SVM (Support Vector Machine) regression.
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They compared the prediction algorithm with linear regression and the random for-
est algorithm to validate the effectiveness of the model. This method could well
predict the variation trend of the ethylene cracking furnace chamber temperature,
allowing for timely monitoring the working status of the furnace. Hua et al. [11]
established a pyrolysis knowledge graph based on the naphtha pyrolysis knowledge,
and developed a novel naphtha pyrolysis model on the basis of structural features
in the CNN learning response knowledge graph. This model had a better learning
effect for kinetic, and the computational cost was lower; it could predict the yield of
key products with high accuracy compared with conventional naphtha mechanism
models. Xin et al. [23] compared the generalized regression neural networks model
and backpropagation neural network model for coke yield prediction with indus-
trial production data. They further optimized the BP (Back Propagation) neural
networks for accuracy and stability using a particle swarm optimization algorithm
to further improve model accuracy. Liu et al. [14] proposed an Adaboost-based
ethylene pyrolysis coking hybrid prediction model. They employed the Adaboost
algorithm to focus on learning the features of misclassified samples so as to improve
the model accuracy.

2.3. Diagnosis of coil coking of the ethylene cracking furnace. The diagno-
sis of coil coking of the ethylene cracking furnace was thoroughly investigated. The
first kind involved the construction of the coking model. For different pyrolysis raw
materials, a mathematical analytical equation was developed as a coking model,
with pyrolysis process parameters as inputs and coking rate and slag thickness as
outputs [1][7][12][22][24][29]. The relationship between the petroleum fraction and
the generated gas in the pyrolysis process was analyzed, and a liquid-gas two-phase
CFD method was proposed to predict the light petroleum fraction, the generated
gas composition, and the thickness of the coke generated in the tube during the
pyrolysis process [24]. Xx et al. [22] analyzed the laminar and turbulent flows of
propane and naphtha fluids, and developed a dynamic mathematical model based
on the second-order turbulence model to predict the coke generation of propane and
naphtha fluids in coils. A dynamic ethylene cracking furnace coil coking model was
developed based on the pyrolysis reaction process to predict the slag thickness un-
der various operating conditions [12]. Such methods usually require a combination
of experimental or industrial data to determine the coking kinetics and adjustable
parameters in the coking model. Additionally, some key model parameters, includ-
ing activation energy and frequency factor, can barely be measured. Hence, the
accuracy of coking inference based on the coking model is generally not high. The
second kind involved data-driven intelligent diagnosis. Data-driven methods have
gained great attention with the development of AI (Artificial Intelligence) and Big
Data technologies. Usually, the sensible variables related to coking were selected as
inputs, and Al algorithms were designed to construct a “black box” model to obtain
the relationship between slag thickness and measurable input variables. Su et al.
[23] used a backpropagation neural network model optimized by a genetic algorithm
to predict the production rate of coke in a catalytic pyrolysis plant. Chen et al. [3]
used SVM to identify the working conditions and develop a stochastic distribution
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system model for the COT (Coil Outlet Temperature) in the ethylene cracking fur-
nace burning process. They aimed to lay the foundation for advanced stochastic
distribution control of the COT in the ethylene cracking furnace burning process.
The project team proposed a diagnosis and prediction method for the coking of an
ethylene cracking furnace by integrating an artificial bee colony algorithm and an
adaptive neural fuzzy inference system [19]. Peng et al. [2] proposed a pyrolysis
optimization model combining transfer learning and heuristic algorithms. First, the
features of the slag thickness model and the product yield prediction model were
obtained through transfer learning. Then, the slag thickness and product yield were
predicted using heuristic optimization algorithms.

Overall, Al technologies, such as neural networks and transfer learning, have been
used for diagnosing coil coking in ethylene cracking furnaces, achieving great ad-
vances. Nevertheless, current intelligent diagnosis techniques focused on qualitative
analysis, while few focused on quantitative analysis. Additionally, most methods
are data-driven, resulting in poor robustness and interpretability.

3. SELF-ATTENTION-BASED ROBERTA-BILSTM-CRF TEXT ENTITY
RECOGNITION MODEL

A self-attention-based RoOBERTa-BiLSTM—-CREF model for the unstructured cor-
pus associated with ethylene coking was proposed, as shown in Figure 1. First,
the corpus was pretrained by RoBERTa [15] to obtain the vector features of the
characters. Then, the obtained vector sequences were used as input parameters to
extract semantic features through the BiLSTM network model. The parameters
were subjected to secondary feature extraction by the attention mechanism. In
addition, the prediction results were output from the CRF.

3.1. Data pretreatment. To date, BIO [9] and BIOES [26] are the most common
approaches for sequence labeling. BIO includes three labels: “B-X” indicates the
word is at the beginning of an entity, “I-X” indicates the word is inside an entity
but not at the beginning, and “O” indicates the word is outside any entity.

BIOES extends BIO by adding “E-X” to indicate the word is at the end of an
entity and “S” to indicate the word is a single-word entity. “B-X”, “I-X”, and “O”
in BIOES have the same meaning as in the BIO annotation.

3.2. RoBERTa pretraining layer. Similar to BERT [6], RoOBERTa is also com-
posed of stacked transformer structures and is trained on a large amount of text
data. However, unlike BERT, it eliminates next sentence prediction tasks and can
handle larger batches of data. More importantly, it changes the BERT static mask-
ing to a dynamic masking strategy, which includes copying the data to be trained
into 10 copies and randomly selecting 15% of each sequence to be dynamically
masked, that is, dynamically changing the masking of each input sequence.

BERT learns a priori semantic representations of words by statically masking the
words of a sentence, but it only learns word-level feature information. However,
RoBERTa can learn more semantic representations of characters and, at the same
time, learn semantic representations of words by masking the same corpus with
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random dynamic characters during the pretraining of the Chinese corpus. There-
fore, this model has a stronger semantic learning ability for Chinese characters.
Pretreatment by RoBERTa is illustrated in Figure 2.

3.3. BiLSTM network layer. LSTM (Long Short-Term Memory, LSTM) intro-
duces gating units to control the update of cell states and the flow of information,
including forget gates, input gates, and output gates. The forget gate determines
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which information from the previous cell state is retained; the input gate controls
which current input information is written into the cell state; and the output gate
determines which information from the cell state is output at the current step.

Through these gating mechanisms, LSTM can address the long-term dependency
issue of traditional RNNs to a certain extent, enabling it to better handle long-
distance dependencies in sequential data. However, LSTM is a unidirectional net-
work structure that uses past information to predict future information, but is less
effective in predicting past information from future information. To address this
issue, the network model used in this paper is BiLSTM, the network structure is
shown in Figure 3. BiLSTM consists of forward and reverse LSTMs, comprising
the input layer, forward hidden layer, reverse hidden layer, and output layer. The
input sequences x = x1, 9, ..., £, are shared by forward and reverse LSTMs, which
realize the purpose of focusing on the context information of the input sequences at
the same time.

(31) ht,f = LSTM(xt,ht_Lf),

(32) ht7b == LSTM(CL‘t, h’t—l,b)

where z; refers to the input information at moment ¢; and h;; and h; are the
information of forward and reverse hidden layers, respectively, at moment t.

By learning features from the input sequences, forward and reverse LSTMs each
output a sequence of feature information h; s and h ¢, fusing forward and reverse
feature sequences to obtain the final network output y = y1,y2, ..., Yn:

(3.3) yr = f(Wyhy y + Wiyhi—1p +b)

where W refers to the weight matrix of the network, and b refers to the bias.

At each time step, BiLSTM concatenates or fuses the forward hidden state and
the backward hidden state to obtain the final hidden state representation for that
time step. This hidden state representation thus incorporates information from
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both the forward and backward directions of the sequence, enabling it to more
comprehensively capture the sequence’s features and contextual relationships.

3.4. Attention mechanism. The entities in a sentence are related to each other
to a certain extent, but some entities are distributed far away. Meanwhile, as
the distance between entities increases, the ability of LSTM networks to obtain
the relationship between these entities decreases. The correlation between entities
can be directly evaluated without considering their distances using the attention
mechanism. Hence, in entity recognition, the discrimination model should focus
more on the feature information of the current character, increase the weight of
the character with a strong correlation, decrease the weight of the character with a
weak correlation, and finally use the feature information of the character to improve
the performance of the discrimination model.

This study employed the self-attention mechanism, which could capture associa-
tive relationships between words regardless of the distance between them. First, the
input vector x was multiplied by the attention score matrices W} and W, to obtain
two scores f(x) and g(x) of the vector, respectively. Then, the vector’s dimension
was divided by the matrix product to obtain the vector’s attention distribution.
Finally, the attention matrix s was normalized by the softmax function.

(3.4) f(z) = Wiz, g(z) = Wy,

(3.5) s(x) = ———=

exp(s(z))
> j—1 exp(s(x))

The eventual output of the attention layer was obtained by numerically summing
the normalized attention distribution matrix a; and input vector z:

n
(3'7) y" = Zai - X.
=1

Each element in the output sequence is a weighted sum of all value vectors, effec-
tively integrating information within the sequence such that the output representa-
tion of each element encapsulates the contextual information of the entire sequence.

(3.6) a; = softmax(s(x)) =

3.5. CRF layer. CRF is a probabilistic graphical model used for modeling sequen-
tial data. The fundamental idea behind CRF is that, given a set of input variables
(such as word sequences, image pixels, etc.), the joint probability distribution of the
output variables (such as label sequences, image segmentations, etc.) can be repre-
sented by an undirected graph, where each node corresponds to a variable and each
edge corresponds to a potential function that measures the correlation between vari-
ables. The goal of CRF is to learn the structure and parameters of this undirected
graph, enabling optimal prediction of output variables for new input variables.

In this paper, the label prediction was performed using the CRF model, which
took into account the global information of the label sequence. The parameter
of the CRF layer was a transfer matrix A, where A;; denotes the transfer score
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from the i, label to the j;, label, which can be used to mark a position using a
previously labeled label. Let the sentence length be n and the output label sequence
y = (y1, Y2, ---, Yn), then the prediction score of this label sequence was obtained as:

(3.8) S(X,y) = Z Ay, i + Z Piy;-
=0 =1

The conditional probability of sequence y over all possible sequences could be cal-
culated using the softmax function:

eS(Xoy)

- S(Xy)
Z@EYX e (X,y)

During the model training process, the probability P needed to be transformed into
a log function:

(3.9) Py, X)

(3.10) log(P(y, X)) = 5(X | y) —log( D ™M),

YeYx
Sentence X,Y represent all possible label sequences. The labeling sequence with
the highest conditional probability was obtained by decoding:

y* = argmaxs(X, 7).
(3.11) lazs

4. RESULTS AND DISCUSSION

4.1. Datasets. In the proposed ethylene coking knowledge graph, the corpus was
sourced from various avenues, including operational information pertaining to ethy-
lene production, details of ethylene producers from a petrochemical company in
China, published books related to ethylene technology and coking mechanisms, as
well as relevant literature retrieved from CNKI. The corpus comprises text instances
that delineate various facets of ethylene cracking furnace operations, such as types
of raw materials, process conditions, coking phenomena, and maintenance records.

Each data instance within the corpus was meticulously annotated with entity
labels utilizing the BIOES scheme. For instance, the sentence “the ethylene cracking
furnace uses naphtha as the raw material”. might be annotated as “The ethylene
[B-Entity] cracking [I-Entity] furnace [I-Entity] uses [O] naphtha [B-Entity] as [O]
the [O] raw [O] material [O]”. Here, “B-Entity” signifies the onset of an entity,
“I-Entity” denotes the continuation of an entity, and “O” indicates that the token
is not a part of any entity.

The annotated corpus was subsequently divided into training, validation, and
test sets, with respective ratios of 8:1:1. The training set was employed to train the
proposed model, the validation set was utilized to fine-tune hyperparameters, and
the test set was used to assess the model’s performance.

4.2. Indicators. Accuracy (Acc), precision (Pre), recall (Rec), and F1 score (F1)
were employed as indicators in this study. The calculation results were recorded
in a confusion matrix, which contained information about the actual classification
of the data and the model’s predicted classification. In the confusion matrix, TP
denotes the number of samples in which the model classified the actual normal data
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as normal, FN denotes the number of samples in which the model classified the
actual normal data as abnormal, FP denotes the number of samples in which the
model classified the actual abnormal data as normal, and TN denotes the number
of samples in which the model classified the actual abnormal data as abnormal.

(1) Ace = TP+§J€LZ]JZ+ FN’
(4.2) Pre = TPTfFP,
(4.3) Rec = TP};—PFN’
(4.4) F1= m.

4.3. Results. The annotated corpus was used to train the proposed model. During
the training process, each data instance in the training set was processed as follows:
- The input sentence was tokenized and converted into a sequence of character
embeddings using the RoBERTa pretraining layer. The character embeddings were
then fed into the BiLSTM network layer to extract contextual semantic features.
The self-attention mechanism was applied to the BiILSTM output to capture the
correlations between entities regardless of their distances.

Finally, the CRF layer was used to decode the sequence of labels, taking into
account the global information of the label sequence. The model was trained using
the cross-entropy loss function, which measures the difference between the predicted
label sequence and the true label sequence. The model parameters were optimized
using the Adam optimizer. Figure 4 shows the results obtained using BIO and
BIOES sequence labeling methods. Compared with the BIO labeling, the BIOES
labeling had certain advantages in all three indicators, wherein the precision, re-
call, and F1 score increased by 1.45%, 1.27%, and 1.36, respectively. Additionally,
the BIOES labeling could provide more segmentation information than the BIO
labeling, resulting in enhanced recognition efficiency. This study employed BIOES
labeling for the sequence labeling model.

ELMo-MT-BBC [28] is an earning model based on multi-task attention. This
model improves the prediction performance by incorporating a pretrained semantic
model, reduces the noise in entity recognition using a regularization mechanism, and
builds a multi-tasking mechanism to enhance the model’s perception of unknown
entities to improve the recall.

Semi-BBLC [30] is a semi-supervising and embedded entity recognition model. A
small amount of labeled data is used to train the model, the model is used to add
pseudo-labeling to the unlabeled data, and finally all the data are used to continue
to train a discriminative model with strong recognition ability.

XL-BC [27] is an XLNet-based entity recognition model. The XLNet, as a pre-
training model, solves the problem that word vectors cannot be accurately recog-
nized from small datasets.

Table 1 summarizes the experimental results of different models. The accuracy,
precision, recall, and F1 score of the proposed model were 75.61%, 90.91%, 79.37%,
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FIGURE 4. Sequence labeling results of BIO and BIOES.

and 84.75%, respectively. The F1 score of the proposed model was 1.69%, 3.11%,
and 4.47% higher than that of ELMo-MT-BBC, XL-BC, and semi-BBLC models,
respectively. The recall of the proposed model was 1.59%, 3.17%, and 6.35% higher
than that of ELMo-MT-BBC, XL-BC, and semi-BBLC models, respectively. The
precision of the proposed model was 1.82%, 3.0%, and 1.76% higher than that of
ELMo-MT-BBC, XL-BC, and semi-BBLC models, respectively. The accuracy of
the proposed model was 2.71%, 4.88%, and 6.23% higher than that of ELMo-MT-
BBC, XL-BC, and semi-BBLC models, respectively. Overall, the proposed model
exhibited advantages in all indicators involved.

TABLE 1. Experimental comparison results of the model

Model Acc(%) Pre(%) Rec(%) F1(%)
Semi-BBLC 69.38 89.15 73.02  80.28
XL-BC 70.73 87.91 76.19  81.63

ELMo-MT-BBC 72.90  89.09 77.78  83.05
The proposed model  75.61 90.91 79.37  84.75

Figure 5 shows the changes in the indicators of the proposed model during the
training process. Before the 16th round of training, all the indexes kept increasing
rapidly; in the 20th round of training, all the indexes entered into the stage of slow
increase in value; and in the 73rd round of training, all the indexes were close to
the stable and unchanged state. Therefore, the results of the 73rd round of training
were taken as the final experimental results.
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5. CONCLUSIONS

An novel self-attention-based RoBERTa-BiLSTM-CRF model for entity recog-
nition in unstructured corpora related to ethylene coking is proposed. Our work
significantly contributes to the general knowledge body of current research in the
literature by introducing a novel approach that leverages advanced deep learning
techniques to tackle the challenging task of entity recognition in the context of
ethylene cracking furnaces.

The model exhibits superior performance in terms of accuracy, precision, and
recall, as evidenced by our experimental results. The significance, originality, and
contribution of our study lie in its ability to effectively handle the complexities and
ambiguities inherent in unstructured texts related to ethylene coking, thereby filling
a critical research gap in this field. The key outcomes of our research include the de-
velopment of a robust entity recognition model and the validation of its effectiveness
through rigorous experimentation. Our findings have the potential to direct stake-
holders and the research community towards more accurate and efficient diagnosis
of ethylene cracking furnace coking, ultimately enhancing production efficiency and
safety.

In considering the methodology followed in our analysis, we acknowledge that
certain limitations exist. One such limitation is the reliance on a specific dataset
for model training and testing, which may limit the generalizability of our results.
Additionally, while our model performs well on the given tasks, there is always room
for improvement in terms of accuracy and efficiency. To address these limitations,
we propose several improvement points. Firstly, we plan to expand our dataset to
include more diverse sources of information, thereby enhancing the generalizabil-
ity of our model. Secondly, we aim to incorporate more advanced deep learning
techniques to further improve the accuracy and efficiency of our entity recognition
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model. These improvement points will guide future research in this field, enabling
other researchers to build upon our work and develop even more sophisticated mod-
els for entity recognition in unstructured corpora related to ethylene coking.

In future work, we will endeavor to extend the application of our self-attention-
based RoBERTa-BiLSTM-CRF model to a broader spectrum of domains within the
petrochemical industry, with a particular emphasis on enhancing its generalizability
and robustness. We aim to integrate domain-specific knowledge and data to further
refine the model’s accuracy and precision in recognizing entities pertinent to diverse
cracking processes and equipment fault diagnoses. Furthermore, we plan to explore
the integration of our model with real-time monitoring systems, thereby enabling
dynamic and predictive maintenance of ethylene cracking furnaces.
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