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algebraic operations. Xu et al. [18] defined the weighted geometric (IVIFWG) oper-
ator, and provided an algorithm for decision-making with IVIF numbers (IVIFNs).
Various IVIF aggregation operators were proposed to capture the interrelationships
of dependent attributes, including the IVIF power average operators [4] and the
Bonferroni mean operators [8]. (2) IVIF aggregation operators based on Einstein
operations. Wei and Liu [16] introduced Einstein operations and proposed the IVIF
Einstein weighted geometric (IVIFEWG) operator utilizing Einstein sum and prod-
uct for smooth approximations. Jmail [9] further developed the induced generalized
Einstein geometric aggregation operators. (3) IVIF aggregation operators based on
Hamacher operations. Some IVIF Hamacher ordered weighted operators are ap-
plied evaluate new rural development level in China [11]. Zhu et al. [20] introduced
several linguistic IVIF Hamacher aggregation operators and used them to solve the
supplier selection problem.

It is worth noting that the above methods assume that experts have the same
level of proficiency in all evaluation criteria. However, different experts have differ-
ent professional academic backgrounds, and it is unreasonable to assume that all
experts have the same level of proficiency in evaluation criteria. To ensure the ra-
tionality and impartiality of the ratings provided by decision experts, scholars have
introduced several aggregation operators with confidence levels. It is used to reflect
the different professional knowledge levels of experts, for the sake of enhancing the
reliability of results. To address this issue, Garg [6] investigated several Pythageo-
rean fuzzy aggregation operators with confidence levels. Yu [19] constructed several
confidence IF weighted aggregations and applied them to evaluate the dissertation.
Later, some new confidence aggregations operators are developed, such as the confi-
dence IF Einstein hybrid aggregations [13], the confidence Pythagorean fuzzy aggre-
gations [12], and confidence IF Dombi aggregations [3]. It is evident from the extant
research that confidence levels have not been applied to aggregation operators on
IVIFNs. Moreover, the aggregated result obtained by the confidence Pythageorean
fuzzy geometric operators [6] and confidence IF geometric operators [19] may de-
crease as the confidence levels of experts increase from 0 to 1, which is inconsistent
with reality. Therefore, the aim of this work is to develop some confidence IVIF
weighted geometric (CIVIFWG) aggregation operators.

In summary, most IVIF aggregation operators are based on specific t-norm and
t-conorm (TTnorm), lacking a generalized IVIF aggregation operator and not con-
sidering the differences in expert confidence levels. The Archimedean TTnorm can
generalize TTnorm [14] and hence have greatly contributed to aggregation operators
with IFSs [17] and Pythagorean fuzzy sets [6]. Therefore, this study first presents
the IVIF operations based on Archimedean TTnorm and investigate the opera-
tional law theory. Then, we propose the Archimedean TTnorm based confidence
interval-valued intuitionistic fuzzy weighted geometric (ATT-CIVIFWG) operator
and it desirable properties. Moreover, based on three common additive generator g,
the corresponding specific CIVIFWG operators are given to solve decision problem.
Finally, a group decision-making method with IVIFNs is also developed based on
these operators and applied to deal with dissertation evaluation problem.

The structure of this paper is designed as following: In Section 2, we introduce
some concepts and operational laws of IVIFSs based on Archimedean TTnorm. In
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Section 3, the confidence aggregation operators for IVIFNs are presented, and three
properties of the ATT-CIVIFWG operators are investigated. In Section 4, we gave
an MAGDM approach with IVIF under confidence levels. In Section 5, a numerical
example about doctoral thesis evaluation is provided to verify the effectiveness and
practicality of the proposed approach. Finally, we conclude and remark the paper.

2. Preliminaries

2.1. t-norm and t-conorm.

Definition 2.1 ([14]). A t-norm function τ(p, q) is a mapping τ : [0, 1]2 → [0, 1]
satisfying the following properties:

(1) Neutrality: τ(1, p) = p, for ∀p.
(2) Commutativity: τ(p, q) = τ(q, p).
(3) Monotonicity: τ(p, q) = τ(p′, q′) if p ≤ p′ and q ≤ q′.
(4) Associativity: τ(p, τ(q, z)) = τ(τ(p, q), z).

Definition 2.2 ([14]). A t-conorm function ς(p, q) is a mapping ς : [0, 1]2 → [0, 1]
satisfying the following properties:

(1) Neutrality: ς(0, p) = p, for ∀p.
(2) Commutativity: ς(p, q) = ς(q, p).
(3) Monotonicity: ς(p, q) = ς(p′, q′) if p ≤ p′ and q ≤ q′.
(4) Associativity: ς(p, ς(q, z)) = ς(ς(p, q), z).

Theorem 2.3 (Representation Theorem). Suppose τ : [0, 1]2 → [0, 1] satisfies the
following conditions:

(1) τ(p, q) is a t-norm function,
(2) τ(p, q) is Archimedean, i.e., pn < q ∃n > 0,
(3) τ(p, q) is continuous and strictly increasing. Then τ(p, q) admits the repre-

sentation

τ(p, q) = h−1(h(p) + h(q))(2.1)

where additive generator h is a monotone increasing function from [0, 1] to [0,∞],
with h(1) = 0.

In the same way, its dual t-conorm ς(p, q) allows for representation

ς(p, q) = s−1(s(p) + s(q))(2.2)

where s(t) = h(1− t) is a monotone increasing function, and s(0) = 0.

2.2. Interval-valued intuitionistic fuzzy set.

Definition 2.4 ( [2]). The concept of IVIF set Γ in X is presented as Γ = {<
x, µΓ(x), vΓ(x) > |x ∈ X}, where µΓ(x) = [µl

Γ(x), µ
h
Γ(x)] : X → [0, 1] and vΓ(x) =

[vlΓ(x), v
h
Γ(x)] : X → [0, 1], such that µh

Γ(x) + vhΓ(x) ∈ [0, 1], for any x ∈ X. The
interval numbers µΓ(x) and vΓ(x) indicate the membership and non-membership
degree of x in Γ.
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Definition 2.5 ([18]). Let α̃ = ([µl, µh], [vl, vh]) be an interval-valued intuitionistic
fuzzy number (IVIFN), the score and accuracy degrees of α̃ can be formulated as

S(α̃) =
1

2
(µl + µh − vl − vh),(2.3)

H(α̃) =
1

2
(µl + µh + vl + vh)(2.4)

where S(α̃) ∈ [−1, 1], H(α̃) ∈ [0, 1]. An IVIFN is considered larger if it has a
higher score value; in cases of equal scores, the IVIFN with greater accuracy takes
precedence.

2.3. Interval-valued intuitionistic fuzzy operations based on t-norm and
t-conorm. Recently, Beliakov et al. [3] utilized TTnorm to build some arithmetic
operations on two intuitionistic fuzzy numbers. After that, Wang and liu [16] men-
tioned some analogous operations on IVIFSs. Through the above-mentioned anal-
ysis, some interval-valued intuitionistic fuzzy operations based on TTnorm can be
also formulated as follows:

Definition 2.6. Given three IVIFNs denoted as α1 = ([a1, b1], [c1, d1]), α2 =
([a2, b2], [c2, d2]), and α = ([a, b], [c, d]), the following holds.

(1) α1 ⊕ α2 = ([s−1(s(a1) + s(a2)), s
−1(s(b1) + s(b2))],

[h−1(h(c1) + h(c2)), h
−1(h(d1) + h(d2))]).

(2) α1 ⊗ α2 = ([h−1(h(a1) + h(a2)), h
−1(h(b1) + h(b2))],

[s−1(s(c1) + s(c2)), s
−1(s(d1) + s(d2))]).

(3) λα = ([s−1(λs(a)), s−1(λs(b))], [h−1(λh(c)), h−1(λh(d))]), λ⟩0.
(4) αλ = ([h−1(λh(a)), h−1(λh(b))], [s−1(λs(c)), s−1(λs(d))]), λ⟩0.

Theorem 2.7. Let λ, λ1, λ2 ≥ 0. Then

(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) λ(α1 ⊕ α2) = λα1 ⊕ λα2;
(3) λ1α⊕ λ2α = (λ1 + λ2)α;
(4) α1 ⊗ α2 = α2 ⊗ α1;
(5) (α1 ⊗ α2)

λ = αλ
1 ⊗ αλ

2 ;
(6) αλ1 ⊗ αλ2 = αλ1+λ2.

Proof. Eveidently, according to the Commutativity of τ(p, q) and ς(p, q), (1) and
(4) are correct. The others are proved as follows:

For (2):

λ(α1 ⊕ α2) = λ([s−1(s(a1) + s(a2)), s
−1(s(b1) + s(b2))],

[h−1(h(c1) + h(c2)), h
−1(h(d1) + h(d2))])

= ([s−1(λs(s−1(s(a1) + s(a2)))), s
−1(λs(s−1(s(b1) + s(b2))))],

[h−1(λh(h−1(h(c1) + h(c2)))), h
−1(λh(h−1(h(d1) + h(d2))))])

= ([s−1(λ(s(a1) + s(a2)))), s
−1(λ(s(b1) + s(b2))))],

[h−1(λ(h(c1) + h(c2))), h
−1(λ(h(d1) + h(d2)))])

and

λα1 ⊕ λα2 = ([s−1(λs(a1)), s
−1(λs(b1))],
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[h−1(λh(c1)), h
−1(λh(d1))])

⊕ ([s−1(λs(a2)), s
−1(λs(b2))],

[h−1(λh(c2)), h
−1(λh(d2))])

= ([s−1(s(s−1(λs(a1))) + s(s−1(λs(a2)))),

s−1(s(s−1(λs(b1))) + s(s−1(λs(b2))))],

[h−1(h(h−1(λh(c1))) + h(h−1(λh(c2)))),

h−1(h(h−1(λh(d1))) + h(h−1(λh(d2))))])

= ([s−1(λs(a1) + λs(a2)), s
−1(λs(b1) + λs(b2))],

[h−1(λh(c1) + λh(c2)),

h−1(λh(d1) + λh(d2))])

∴ λα1 ⊕ λα2 = λ(α1 ⊕ α2)

The proof of (3) is as follows:

λ1α⊕ λ2α = ([s−1(λ1s(a)), s
−1(λ1s(b))], [h

−1(λ1h(c)), h
−1(λ1h(d))])

⊕ ([s−1(λ2s(a)), s
−1(λ2s(b))], [h

−1(λ2h(c)), h
−1(λ2h(d))])

= ([s−1(s(s−1(λ1s(a))) + s(s−1(λ2s(a)))),

s−1(s(s−1(λ1s(b))) + s(s−1(λ2s(b))))],

[h−1(h(h−1(λ1h(c))) + h(h−1(λ2h(c)))),

h−1(h(h−1(λ1h(d))) + h(h−1(λ2h(d))))])

= ([s−1(λ1s(a) + λ2s(a)), s
−1(λ1s(b) + λ2s(b))],

[h−1(λ1h(c) + λ2h(c)),

h−1(λ1h(d) + λ2h(d))])

= ([s−1((λ1 + λ2)s(a)), s
−1((λ1 + λ2)s(b))],

[h−1((λ1 + λ2)h(c)), h
−1((λ1 + λ2)h(d))])

= (λ1 + λ2)α

Similarly, it is easy to complete the proof of rules (5) and (6). □

3. Confidence interval-valued intuitionistic fuzzy weighted
geometric aggregation operator based on TTnorm

It is common for DMs to specify their expertise in the evaluation domains (also
called confidence levels) [12, 15]. This section emphasizes the application of the
previous operational laws to aggregate IVIF information with confidence levels.



2226 Y. F. ZHENG AND J. XU

Definition 3.1. For a set of IVIFNs αj (j = 1, 2, . . . , n), σj ∈ [0, 1] are the corre-
sponding confidence levels, the ATT-CIVIFWG operator can be defined as

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αn, σn⟩)

=
n
⊗
j=1

(α
(1−σj)
j )wj ,

(3.1)

where wj is the weight of αj .
Specifically, if aj is IF numbers and σj = 0, for all j, then the ATT-CIVIFWA

operator will be simplified to the Archimedean TTnorm based IF weighted geometric
(ATT-IFWG) operator, which is coincident with Xia et al. [17].

Theorem 3.2. For a set of IVIFNs αj = ([aj , bj ], [cj , dj ]) (j = 1, 2, . . . , n), σj ∈
[0, 1] and wj ∈ [0, 1] are the corresponding confidence level and weight of αj sat-
isfying

∑n
j=1wj = 1. The result obtained through the ATT-CIVIFWG operator

remains an IVIFN and

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αn, σn⟩) =
n
⊗
j=1

(α
(1−σj)
j )wj

= ([h−1(
∑n

j=1wj(1− σj)h(aj)), h
−1(
∑n

j=1wj(1− σj)h(bj))],

[s−1(
∑n

j=1wj(1− σj)s(cj)), s
−1(
∑n

j=1wj(1− σj)s(dj))])(3.2)

Proof. First, since

α
(1−σj)
j = ([h−1((1− σj)h(aj)), h

−1((1− σj)h(bj))],

[s−1((1− σj)s(cj)), s
−1((1− σj)s(dj))])

(α
(1−σj)
j )wj = ([h−1(wjh(h

−1((1− σj)h(aj)))), h
−1(wjh(h

−1((1− σj)h(bj))))],

[s−1(wjs(s
−1((1− σj)s(cj)))), s

−1(wjs(s
−1((1− σj)s(dj))))])

= ([h−1(wj(1− σj)h(aj)), h
−1(wj(1− σj)h(bj))],

[s−1(wj(1− σj)s(cj)), s
−1(wj(1− σj)s(dj))])

And

(αj)
wj(1−σj) = ([h−1(wj(1− σj)h(aj)), h

−1(wj(1− σj)h(bj))],

[s−1(wj(1− σj)s(cj)), s
−1(wj(1− σj)s(dj))])

Thus,

(α
(1−σj)
j )wj = (αj)

wj(1−σj).

Then we prove

ATT-CIVIFWG =
n
⊗
j=1

(α
(1−σj)
j )wj =

n
⊗
j=1

(αj)
wj(1−σj)

= ([h−1(
∑n

j=1wj(1− σj)h(aj)), h
−1(
∑n

j=1wj(1− σj)h(bj))],

[s−1(
∑n

j=1wj(1− σj)s(cj)), s
−1(
∑n

j=1wj(1− σj)s(dj))])(3.3)

By using mathematical induction on n:
(1) For n = 2, we have

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩) = (α1)
w1(1−σ1) ⊗ (α2)

w2(1−σ2)
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= ([h−1(h(h−1(w1(1− σ1)(a1))) + h(h−1(w2σ2h(a2)))),

h−1(h(h−1(w1(1− σ1)h(b1))) + h(h−1(w2σ2h(b2))))],

[s−1(s(s−1(w1(1− σ1)s(c1))) + s(s−1(w2(1− σ2)s(c2)))),

s−1(s(s−1(w1(1− σ1)s(d1))) + s(s−1(w2(1− σ2)s(d2))))])

= ([h−1(w1(1− σ1)h(a1) + w2(1− σ2)h(a2)),

h−1(w1(1− σ1)h(b1) + w2(1− σ2)h(b2))],

[s−1(w1(1− σ1)s(c1) + w2σ2s(c2)),

s−1(w1σ1s(d1) + w2σ2s(d2))])

= ([h−1(
∑2

j=1wj(1− σj)h(aj)), h
−1(
∑2

j=1wj(1− σj)h(bj))],

[s−1(
∑2

j=1wj(1− σj)s(cj)), s
−1(
∑2

j=1wj(1− σj)s(dj))])

Hence, Eq. (3.3) is correct.
(2) Suppose Eq. (3.3) holds for n = k, that is

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αk, σk⟩)

=
k
⊗
j=1

(αj)
wj(1−σj) = (α1)

w1(1−σ1) ⊗ (α2)
w2(1−σ2) ⊗ · · · ⊗ (αk)

wk(1−σk)

= ([h−1(
∑k

j=1wj(1− σj)h(aj)), h
−1(
∑k

j=1wj(1− σj)h(bj))],

[s−1(
∑k

j=1wj(1− σj)s(cj)), s
−1(
∑k

j=1wj(1− σj)s(dj))])

then, when n = k + 1, we have

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αk, σk⟩, ⟨αk+1, σk+1⟩)

=
k
⊗
j=1

(αj)
wj(1−σj) ⊗ (αk+1)

wk+1(1−σk+1)

= ([h−1(
∑k

j=1wj(1− σj)h(ai)), h
−1(
∑k

j=1wj(1− σj)h(bi))],

[s−1(
∑k

j=1wj(1− σj)s(ci)), s
−1(
∑k

j=1wj(1− σj)s(di))])

⊗ ([h−1(wk+1(1− σk+1)h(ak+1)), h
−1(wk+1(1− σk+1)h(bk+1))],

[s−1(wk+1(1− σk+1)s(ck+1)), s
−1(wk+1(1− σk+1)s(dk+1))])

= ([h−1(h(h−1(
∑k

j=1wj(1− σj)h(ai))) + h(h−1(wk+1(1− σk+1)h(ak+1)))),

h−1(h(h−1(
∑k

j=1wj(1− σj)h(bi))) + h(h−1(wk+1(1− σk+1)h(bk+1))))],

[s−1(s(s−1(
∑k

j=1wj(1− σj)s(ci))) + s(s−1(wk+1(1− σk+1)s(ck+1)))),

s−1(s(s−1(
∑k

j=1wj(1− σj)s(di))) + s(s−1(wk+1(1− σk+1)s(dk+1))))])

= ([h−1(
∑k

j=1wj(1− σj)h(ai) + wk+1(1− σk+1)s(ak+1)),

h−1(
∑k

j=1wj(1− σj)h(bi) + wk+1(1− σk+1)s(bk+1))],

[s−1(
∑k

j=1wj(1− σj)s(ci) + wk+1(1− σk+1)s(ck+1)),

s−1(
∑k

j=1wj(1− σj)s(di) + wk+1(1− σk+1)s(dk+1))])
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= ([h−1(
∑k

j=1wj(1− σj)h(ai)), h
−1(
∑k

j=1wj(1− σj)h(bi))],

[s−1(
∑k+1

j=1 wj(1− σj)s(ci)), s
−1(
∑k+1

j=1 wj(1− σj)s(di))])

i.e. Eq. (3.3) holds for n = k + 1. Thus, Eq. (3.3) is correct for all n.
Apparently, the aggregated value by the ATT-CIVIFWG operator satisfies the

conditions in Definition 2.4 Thus it is also an IVIFN. □

It is easy to prove that ATT-CIVIFWG operator has the following properties:
(1) (Boundness):

min
j

(α
1−σj

j ) ≤ ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αn, σn⟩) ≤ max
j

(α
1−σj

j )

(2) (Monotonicity):
For two set of IVIFs αj = ([aj , bj ], [cj , dj ]) and α′

j = ([a′j , b
′
j ], [c

′
j , d

′
j ]), if αj ≤ α′

j ,

i.e., aj ≤ a′j , bj ≤ b′j , cj ≥ c′j and dj ≥ d′j , for all j, then

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αn, σn⟩)
≤ ATT-CIVIFWG(⟨α′

1, σ1 >, ⟨α′
2, σ2⟩, . . . , ⟨α′

n, σn⟩)

(3) (Idempotency): For all j αj = α and σj = σ , then

ATT-CIVIFWG(⟨α1, σ1⟩, ⟨α2, σ2⟩, . . . , ⟨αn, σn⟩) = α1−σ

It is generally known that the additive generator h can be given by different forms.
We investigate some specific confidence IVIF weighted geometric operators in the
following formula.

Case 1. When h(t) = − log(t), the Algebraic TTnorm functions are derived as
τ(p, q) = pq and ς(p, q) = p + q − pq [17]. By Definition 2.6 and Eq. (3.2), the
ATT-CIVIFWG operator will be simplified to the following

CIVIFWG = ([
∏n

j=1 (aj)
(1−lj)wj ,

∏n
j=1 (bj)

(1−lj)wj ],

[1−
∏n

j=1 (1− cj)
(1−lj)wj , 1−

∏n
j=1 (1− dj)

(1−lj)wj ])(3.4)

which is the CIVIFWG operator.
Case 2. When h(t) = log

(
2−t
t

)
, the Einstein TTnorm functions are derived

as τ(p, q) = pq
1+(1−p)(1−q) and ς(p, q) = p+q

1+pq [17]. Similarly, the ATT-CIVIFWG

operator will be simplified to the following

(3.5)

CEIVIFWG =

([
2
∏n

j=1 a
∆j

j∏n
j=1 (2− aj)

∆j +
∏n

j=1 a
∆j

j

,
2
∏n

j=1 b
∆j

j∏n
j=1 (2− bj)∆j +

∏n
j=1 b

∆j

j

]
,[∏n

j=1 (1 + cj)
∆j −

∏n
j=1 (1− cj)

∆j∏n
j=1 (1 + cj)∆j +

∏n
j=1 (1− cj)∆j

,

∏n
j=1 (1 + dj)

∆j −
∏n

j=1 (1− dj)
∆j∏n

j=1 (1 + dj)∆j +
∏n

j=1 (1− dj)∆j

])
which is defined the confidence Einstein IVIF weighted geometric (CEIVIFWG)
operator. Where ∆j = (1 − σj)wj . Especially, when σj = 0, it further reduces to
the Einstein IVIF weighted geometric (EIVIFWG) operator developed in [16].
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Case 3. When h(t) = log
(
ϵ+(1−ϵ)t

t

)
, ϵ⟩0, the Hammer TTnorm functions are

derived as τ(p, q) = pq
ϵ+(1−ϵ)(p+q−pq) and ς(p, q) = p+q−pq−(1−ϵ)pq

1−(1−ϵ)pq [17]. Similarly, the

ATT-CIVIFWG operator will be simplified to the following

(3.6)

CHIVIFWG

=

([
ϵ
∏n

j=1 a
∆j

j∏n
j=1 (1 + (ϵ− 1)(1− aj))∆j + (ϵ− 1)

∏n
j=1 a

∆j

j

,

ϵ
∏n

j=1 b
∆j

j∏n
j=1 (1 + (ϵ− 1)(1− bj))∆j + (ϵ− 1)

∏n
j=1 b

∆j

j

]
,[∏n

j=1

(
(1 + (ϵ− 1)cj)

(1−σj)wj
)
−
∏n

j=1

(
(1− cj)

(1−σj)wj
)∏n

j=1

(
(1 + (ϵ− 1)cj)(1−σj)wj

)
+
∏n

j=1

(
(1− cj)(1−σj)wj

) ,∏n
j=1

(
(1 + (ϵ− 1)dj)

(1−σj)wj
)
−
∏n

j=1

(
(1− dj)

(1−σj)wj
)∏n

j=1

(
(1 + (ϵ− 1)dj)(1−σj)wj

)
+
∏n

j=1

(
(1− dj)(1−σj)wj

)])
which is defined the confidence Hammer IVIF weighted geometric (CHIVIFWG)
operator. Especially, Setting ϵ = 1, results in the CIVIFWG operator, while ϵ = 2
generates the CEIVIFWG operator.

4. An approach for interval-value intuitionistic fuzzy MAGDM under
confidence levels

Consider a MAGDM problem with confidence levels under interval-value intu-
itionistic fuzzy environment. Assume A = {A1, A2, . . . An} is a collection of alter-
natives regard to the attribute set C = {C1, C2, . . . Cm} whose weighted vector is
φ = (φ1, φ2, . . . , φn)

T. Let E = {e1, e2, . . . ep} be the DMs and their weighted vec-
tor is w = (w1, w2, . . . , wn)

T. Let lk = (lk1, lk2, . . . , lkm)T be the confidence level
vector of the DM ek, which denotes the degrees that ek is familiar with the evalu-
ation attribute set C, then the assessment of alternative Ai regarding attribute Cj

is characterized by an IVIFN αk
ij . Thus, the MAGDM problem can be expressed as

Dk = (αk
ij)m×n.

Step 1. Collect the evaluation information and confidence levels of each expert,
and form the GDM matrices Dk = (αk

ij)m×n.

Step 2. Convert the matrices Dk = (αk
ij)m×n into the Normalized IVIF GDM

matrices Rk = (rkij)m×n. If Cj is benefit attribute, then rkij = αk
ij .

Step 3. Aggregate the GDM matrices Rk = (rkij)m×n into a collective matrix

R = (rij)m×n by utilized the ATT-CIVIFWG operators.
Step 4. Obtain the comprehensive collective rating ri of Ai by IVIFWA operator.
Step 5. Rank the alternatives by Definition 2.5.

5. An illustrative example

5.1. Dissertation evaluation example. We invited three experts with different
professional familiarity to evaluate five candidate dissertations Di (i = 1, 2, . . . 5)
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according to five evaluation attributes (For more details regarding attributes, refer
to [19]): (1) C1: Topic selection and literature review; (2) C2: Innovation; (3)
C3: Theory basis and special knowledge; (4) C4: Capacity of scientific research;
(5) C5: Dissertation standardization. The attribute weight vector is denoted using
φ = (0.15, 0.3, 0.2, 0.2, 0.15)T. Suppose three experts, denoted as ek and assigned
equal weighting, employ IVIFNs to characterize the aforementioned attributes. The
ratings and confidence levels of the three experts are shown in Table 1.

Table 1. The ratings and confidence levels of three experts

DM Dissertations C1 C2 C3 C4 C5

e1, d1 ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.0, 0.2]) ([0.6, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.5], [0.3, 0.4])
0.7 d2 ([0.6, 0.7], [0.1, 0.3]) ([0.5, 0.6], [0.3, 0.4]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.0, 0.2])

d3 ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.5], [0.3, 0.4]) ([0.6, 0.7], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.8], [0.0, 0.2])
d4 ([0.5, 0.8], [0.0, 0.2]) ([0.5, 0.6], [0.1, 0.3]) ([0.4, 0.6], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([0.5, 0.8], [0.0, 0.2])
d5 ([0.5, 0.6], [0.3, 0.4]) ([0.4, 0.5], [0.4, 0.5]) ([0.5, 0.5], [0.4, 0.5]) ([0.3, 0.6], [0.2, 0.4]) ([0.6, 0.7], [0.1, 0.2])

e2 d1 ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.3, 0.3]) ([0.4, 0.5], [0.4, 0.5])
0.9 d2 ([0.5, 0.6], [0.3, 0.4]) ([0.5, 0.5], [0.3, 0.4]) ([0.6, 0.8], [0.1, 0.2]) ([0.6, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.0, 0.2])

d3 ([0.5, 0.6], [0.3, 0.4]) ([0.4, 0.5], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2]) ([0.5, 0.8], [0.2, 0.2]) ([0.4, 0.7], [0.1, 0.3])
d4 ([0.4, 0.7], [0.1, 0.3]) ([0.4, 0.6], [0.1, 0.3]) ([0.4, 0.5], [0.1, 0.3]) ([0.5, 0.6], [0.2, 0.4]) ([0.4, 0.7], [0.1, 0.2])
d5 ([0.4, 0.6], [0.2, 0.4]) ([0.3, 0.5], [0.3, 0.4]) ([0.4, 0.5], [0.3, 0.5]) ([0.3, 0.5], [0.3, 0.4]) ([0.5, 0.6], [0.2, 0.3])

e3 d1 ([0.7, 0.8], [0.2, 0.2]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.8], [0.1, 0.2]) ([0.5, 0.7], [0.2, 0.3]) ([0.4, 0.5], [0.3, 0.4])
0.7 d2 ([0.5, 0.7], [0.1, 0.3]) ([0.4, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.0, 0.1])

d3 ([0.5, 0.7], [0.2, 0.3]) ([0.4, 0.5], [0.3, 0.4]) ([0.5, 0.7], [0.2, 0.3]) ([0.6, 0.8], [0.1, 0.2]) ([0.4, 0.8], [0.1, 0.2])
d4 ([0.5, 0.7], [0.1, 0.3]) ([0.5, 0.5], [0.2, 0.3]) ([0.3, 0.5], [0.1, 0.2]) ([0.4, 0.6], [0.2, 0.4]) ([0.5, 0.6], [0.0, 0.2])
d5 ([0.4, 0.6], [0.3, 0.4]) ([0.4, 0.4], [0.4, 0.5]) ([0.4, 0.5], [0.4, 0.5]) ([0.4, 0.5], [0.2, 0.4]) ([0.5, 0.7], [0.2, 0.2])

Step 1. The GDM matrices Dk = (αk
ij)5×5 (k = 1, 2, 3) can be constructed in

Table 1.
Step 2. Given that Cj corresponds to advantageous characteristics, we can get

the normalized GDM matrices Rk == (rkij)5×5 = (αk
ij)5×5(k = 1, 2, 3).

Step 3. We employ the special case CEIVIFWG operator among ATT-CIVIFWG
operators to aggregate Rk containing confidence levels to a collective matrix R.

Step 4. Through the IVIFWA operator, the overall collective evaluation vi of dis-
sertations can be derived as follows: v1 = ([0.89, 0.93], [0.04, 0.07]), v2 = ([0.87, 0.91],
[0.03, 0.07]), v3 = ([0.85, 0.91], [0.04, 0.08]), v4 = ([0.71, 0.86], [0.03, 0.10]) and v5 =
([0.77, 0.82], [0.1, 0.14]).

Step 5. According to Eq. (2.3), we have S(v1) = 0.851, S(v2) = 0.838,
S(v3) = 0.821, S(v4) = 0.725 and S(v5) = 0.677. Therefore, the ranking order
of dissertations is d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5 and the best one is d2.

5.2. Sensitivity analysis. We conduct a sensitivity analysis with the confidence
level of e2, shown as in Table 2. When σj = 0, the CEIVIFWG operator reduces to
the traditional methods [16]. From Table 2, if σj = 0, 1, 3, then the ranking order of
dissertations is d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5, aligning with the computational outcomes
reported in [16]. The analysis reveals that the proposed method is a generalized
form of traditional methods. If σj = 5, 7, 9, the ranking order of dissertations is
d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5. Obviously, when the expert’s confidence level is different,
the corresponding ranking of dissertations are not quite identical. This suggests
that the confidence level of experts influences the decision-making outcomes for
the alternatives. From the above-mentioned computing process, the key features of
confidence IVIF aggregation operators over traditional ones are due not only to the
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adaptability of IVIF environment but also to the consideration of DMs’ confidence
levels. This makes the proposed MAGDM approaches more practical & feasible.

Table 2. The ranking with different confidence levels of experts

σ2 S(v1) S(v2) S(v3) S(v4) S(v5) Ranking Best

0 0.663 0.683 0.634 0.481 0.246 d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5 d2
0.1 0.686 0.702 0.657 0.509 0.294 d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5 d2
0.3 0.732 0.740 0.683 0.666 0.562 d2 ≻ d1 ≻ d3 ≻ d4 ≻ d5 d2
0.5 0.779 0.778 0.749 0.628 0.519 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 d1
0.7 0.830 0.810 0.796 0.692 0.618 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 d1
0.9 0.873 0.851 0.845 0.759 0.738 d1 ≻ d2 ≻ d3 ≻ d4 ≻ d5 d1

5.3. Comparison with existing methods. This section conducts a comparative
analysis between our proposed MAGDM methods and two similarity approaches
[19] [6]. The main merits of our technique are presented below.

(1) When aj = bj and cj = dj are satisfied for every j, the proposed aggregation
operator will reduce to confidence IF geometric operator, which can be applied to
evaluate the doctoral dissertation presented in [19]. It can be seen that the scores of
five dissertations increase with the confidence level increase which is consistent with
reality. However, when the confidence levels of experts increase from 0 to 1, the
scores of the five dissertations decrease by the confidence IF geometric operators [12],
which is inconsistent with reality. Therefore, the proposed CWG-GDM is more
reasonable than the confidence IF geometric operators based GDM in [19].

(2) The proposed confidence IVIF aggregation operators are based on Archimedean
TTnorm, which include algebraic, Einstein and Hamacher TTnorms etc. Whereas
the confidence Pythageorean fuzzy aggregations [6] and confidence IF aggrega-
tions [19] are both based on the algebraic norm operations, a specialized form of
Archimedean TTnorm. Hence, the developed aggregations are more general and
flexible for decision situation.

6. Conclusion

Motivated by the characteristics of Archimedean TTnorm, this study establishes
some new operational laws for IVIFNs and discusses the properties. The confidence
IVIF weighted geometric aggregation operator is developed based on Archimedean
TTnorm. Some key conclusions are also drawn. A series of specific confidence
IVIF aggregation operators are deduced by assigning different additive generators,
such as confidence algebraic, Einstein, and Hamacher IVIF aggregation operators.
Additionally, the proposed aggregation operators generalize existing confidence IF
aggregation techniques, making them suitable for addressing IVIF MAGDM prob-
lems with diverse confidence levels. An example centered on doctoral dissertation
evaluation highlights the method’s effectiveness and practical applicability.

But the expert confidence level of the proposed method is given subjectively,
which is not suitable for solving online Intelligent MAGDM problems [7]. In the
future, we can objectively calculate the confidence level of experts according to their
reputation and the proportion of successful review papers.
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