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A TWO-STAGE DEA- OLS METHOD FOR EVALUATING
AIRPORT OPERATION EFFICIENCY

WEI CONG*, YILEI WANG AND QINGYU JIAO

ABSTRACT. This paper presented a two-stage method that combines data en-
velopment analysis (DEA) and ordinary least squares (OLS) models to evaluate
comprehensive operation efficiency of twenty-eight airports in China from 2009
to 2022. At the first stage, DEA-Malmquist model was conducted to derive oper-
ational efficiency based on a combination of peak hour sorties (PHS), departure
punctuality (DP), and inbound punctuality (IP) by considering airport infrastruc-
ture, surrounding airspace, and flight volume structure. In the second stage, the
OLS model was used to analyze the DEA efficiency scores from the first stage,
incorporating explanatory factors associated with seven input variables across
these three aspects, which provides a simple and straightforward explanation of
what policies we formulate to improve airport operation efficiency. The impor-
tant findings included: (1) The EC, TC, SEC, PEC, and MI efficiency scores
of the twenty-eight airports produce different degrees of variability due to the
variability of the different input variables considered; (2) These efficiency scores
of all airports vary over time; (3) The factors affecting these efficiency scores of
each airport are different.

1. INTRODUCTION

Airport operation efficiency fundamentally measures the airport’s capability to
manage flight schedules under normal operations and unexpected conditions. This
efficiency is influenced by a range of factors related to the supply and demand of
airport infrastructure, including the number of runways, airspace level, and traf-
fic demand, etc. For policymakers and researchers, understanding the connections
between these factors and the outcomes of evaluations is vital for developing op-
timal strategies for improvement. At present, many studies have explored airport
efficiency evaluation using various input and output variables through the data en-
velopment analysis (DEA) approach. However, a comprehensive operation efficiency
of peak hour sorties (PHS), departure punctuality (DP), and inbound punctuality
(IP) in terms of airport infrastructure, surrounding airspace, and flight volume
structure has not yet been evaluated.

The primary contribution was to propose a two-stage DEA-Tobit approach that
combines DEA-Malmquist and OLS models to reveal the interrelationship between
airport comprehensive operational efficiency and its influencing factors. The pri-
mary aims of this paper are: (1) To develop the DEA-Malmquist model in stage
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I to assess overall operational efficiency by incorporating peak hour sorties (PHS),
departure punctuality (DP), and inbound punctuality (IP), while considering seven
input variables linked to airport infrastructure, surrounding airspace, and flight
volume structure. (2) In stage II, the OLS model was constructed to examine the
regression relationship between the DEA efficiency scores and these explanatory
variables. Lastly, a case study involving twenty-eight airports in China from 2009
to 2022 was conducted to demonstrate the applicability of our method. This re-
search offers a practical tool for transit authorities to evaluate airport operational
efficiency and aid in the formulation of clear and actionable management strategies
for individual airports.

The structure of this study is outlined as follows. Section 1 presents an overview of
the relevant literature. Section 2 outlines the data preparation process, while Section
3 details the methodology employed in the two-stage DEA-Tobit method. Section 4
presents the estimated operation efficiencies of twenty-eight airports in China from
2009 to 2022. Section 5 summarizes the main findings, draws conclusions, and offers
recommendations for future research.

2. LITERATURE REVIEW

In the process of airport operations, stakeholders primarily focus on maximizing
efficiency, which intensifies competition among airports and makes the measure-
ment of airport efficiency a focal point of research. Performance benchmarking is
a crucial tool for airlines, airport operators, and regulatory bodies to assess and
improve airport operational efficiency [10]. The first use of airport performance in-
dicators as a tool allowed managers to determine and evaluate the economic status
of airports, enabling more precise decision-making. As early as 1997, the Federal
Aviation Administration (FAA) defined five performance indicators for the airport
development system: infrastructure, environment, accessibility, capacity, and in-
vestment [2]. However, assessing airport operational efficiency is a complex task,
involving the application of various models and methods.

Hensher and Waters [16] proposed three major models for efficiency evaluation:
the parametric total factor productivity (TFP) model, the non-parametric TFP
model, and the Data Envelopment Analysis (DEA) model. Among these, the DEA
model is particularly favored because it does not require price and cost information
for inputs and outputs. DEA evaluates relative efficiency through the effective
combination of multiple inputs and outputs, referred to as decision-making units
(DMUs) [7]. Due to its objectivity and reduced susceptibility to human bias, DEA
has been widely applied in assessing airport efficiency [10]. In recent years, the
CCR and BCC models within the DEA framework, along with hybrid models such
as DEA combined with the Analytic Hierarchy Process (AHP) [26], have become
research hotspots.

To better understand airport operational efficiency, many scholars have conducted
studies on major airports across five continents, including regions such as East Asia
(China, North Asia, Pakistan, Turkey), South America (Colombia), Europe (Greece,
Italy), Oceania (New Zealand), and North America (the United States). These
studies provide detailed summaries of samples, periods, input variables, output
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variables, and models, illustrating the major airports’ operational efficiency across
various countries.

Airport operations are typically categorized into landside and airside activities
[34]. Gillen and Lall [13] were pioneers in employing two distinct DEA-Tobit models
to assess the airside and landside efficiency of major U.S. airports. However, Yu [34]
observed that earlier research frequently regarded the operational process as a “black
box”, focusing solely on initial inputs and final outputs, without analyzing the
internal relationships between these stages. To address this, Yu [34] studied major
airports in Taiwan, adopting free linking constraints and a two-stage DEA model,
where the capacity of runways and terminals in the first stage serving as inputs
for the second stage. This approach led to the finding that the airside service
efficiency of Taiwan’s airports was relatively high, providing valuable insights for
airport managers.

Since the mid-1990s, airport privatization has become a significant trend, prompt-
ing numerous studies on how privatization affects airport operational efficiency.
Oum [24], in their analysis of major airports across the Europe, Asia-Pacific and
North America, demonstrated that privatized airports exhibit significantly higher
operational efficiency and profitability compared to non-privately held airports.
This finding is corroborated by studies conducted by Olariaga and Moreno [23],
Adler and Liebert [1], and Marques and Barros [22]. Notably, factors such as air-
port size, runway utilization, passenger volume, and cargo volume are influential
variables affecting airport operational efficiency. To analyze these characteristics
more thoroughly, after assessing DEA efficiency, some scholars have used regression
models in the second stage of analysis, applying techniques like Simar-Wilson boot-
strapping [4], truncated regression [1,33], and Tobit regression [6,17]. Hoff [17] and
Tsui et al. [6] have shown that using the Tobit model for second-stage regression
analysis not only simplifies calculations but also provides more reliable estimates
and more accurate predictions. As a result, the DEA-Tobit two-stage model has
gradually become a mainstream approach for studying airport operational efficiency.
For example, by employing the DEA-Tobit model to examine 11 major airports in
Northeast Asia, Ha et al. [14] identified a significant correlation between airport op-
erational efficiency and airline structure.Carlucci et al. [6] studied 34 major airports
in Italy and demonstrated that factors such as airport size, the proportion of pas-
sengers served by low-cost carriers, and the ratio of cargo traffic to total workload
units (WLUs) positively influence airport operations.

Moreover, the selection of more detailed performance indicators is critical for
improving airport operational efficiency. In recent years, in addition to traditional
indicators such as the number of runways, passenger volume, aircraft movements,
terminal size, and cargo volume, scholars have increasingly incorporated factors
such as environmental impact [34], user satisfaction [15], and airport-airline agree-
ments [19]. These refined performance indicators provide airport managers with
more precise efficiency assessments, thereby optimizing airport operations. The re-
lationship between key elements of airport management and the policy environment
is essential in impacting airport operational efficiency, highlighting the importance
of detailed performance indicators under different management and policy frame-
works.
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Drawing on above studies, it is clear that these studies effectively identify vari-
ables for analyzing airport operation efficiency. However, several key areas require
further exploration:

(1) While some literature has considered output variables such as peak hour
sorties (PHS), departure punctuality (DP), and inbound punctuality (IP), they are
seldom collectively used to assess the overall efficiency of airport operations (Schultz
M et al, 2018; Sanchez J N et al, 2020).

(2) The input factors typically include airport infrastructure, surrounding airspace,
and the structure of flight volume, etc. Most research has concentrated on how parts
of these inputs affect airport operation efficiency but has overlooked the specific con-
tributions of each factor (Tsionas et al, 2017; Lemetti A et al, 2019).

(3) As far as the authors are aware, only a few studies have looked into how
supply and demand conditions at airports impact their operational efficiency. In
particular, the impact of these input factors on the outputs has not been analyzed
quantitatively. Such analysis is crucial for authorities to formulate optimal strategies
at the appropriate times (Ngo T and Tsui, 2020).

3. DATA DESCRIPTION

To assess the operational efficiency of twenty-eight Chinese airports from 2009 to
2022, this study focused on three output variables and seven input variables. The
results demonstrated the applicability of our approach. Detailed definitions of all
input and output variables are provided in Table 1. The outputs were evaluated
using three indicators: Peak hour sorties (PHS), Departure punctuality (DP), and
Inbound punctuality (IP). The seven input variables consist of Flight Zone Rating
(FZR), Number of Runways (NOR), Terminal Building (TB), Daily Average Num-
ber of Inbound Flights (DAF), Average Daily Flight Departures (ADD), Average
Number of Overnight Aircraft per Day (ANO), and the Percentage of Domestic
Flights (POF).

TABLE 1. The selected variables and their meanings of twenty-eight airports

Variable Abbreviations

Output Peak hour sorties. PHS
Variables Departure punctuality DP
Inbound punctuality 1P

Flight Zone Rating FZR

Number of runways NOR
Input . Terminal Buil(.ling . TB

Variables Daily average number of inbound flights DAF

Average daily flight departures ADD

Average number of overnight aircraft per day ANO

Percentage of domestic flights POF

The Flight Zone Rating input variable was assigned values based on airport
classification standards, with 4E set to 9 and 4F to 10. Moreover, it should be
noted that the application of the OLS model will discard the TB input variable
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due to the correlation and heterogeneity that exists between the number of runways
(NOR) and terminal building (TB) input variables.

4. METHODOLOGY

This study employed a two-stage DEA framework, combining the DEA-Malmquist
and OLS models, to assess how different factors affect airport efficiency. In the first
stage, the DEA-Malmquist model evaluated airport efficiencies. In the second stage,
the OLS model was utilized to determine the combined dynamic impact of each
input variable on efficiency, thereby confirming the influence mechanism of these
variables.

4.1. DEA-Malmgquist model of the first stage. Unlike the traditional DEA
method, the DEA-Malmquist model calculates the Malmquist total factor produc-
tivity index (MI) for decision-making units (DMUs) over different periods. In the
first stage, an airport’s efficiency is assessed by calculating the proportion of the
weighted total of its outputs to its inputs. The weights can be obtained by minimiz-
ing the bias that might arise from self-optimized weights. Using the DEA-Malmquist
model, efficiency scores for the sampled airports were estimated.

In this study, the airports were the decision-making units, and their operational
efficiency was measured across period ¢ to period ¢t + 1. For this period, the
Malmquist index, corresponding to the airports passenger and freight total factor
productivity index, can be derived as:

t( ol ] t+1, ¢4+1 ,¢4+1Y705

Dogf( Y ) .. Do tﬁ )
0 :Uay) D() (xtayt)

The (zt*1, 1) and (zf, y') are the input vector (urban economic structure) and
output vector (passenger and freight efficiency) at ¢t 4+ 1 and ¢, where D} and D(t;rl
signify the distance function at the time instants ¢ and ¢ 4 1, respectively, using the
technology in period ¢ as a benchmark.

The Malmquist index for output is computed using the technology from period ¢
as a benchmark, as shown below:

(4.1) Mlo(z",y'* 2t yt) =
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The Malmquist index for output is computed using the technology from period
t + 1 as a benchmark, as shown below:

(4.2) MIB(mt‘H, yt‘H, at, yt) =
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The index’s growth rate reflects the dynamic economic growth efficiency level,
and MI excludes the input contribution of results. Provided that returns to scale
are constant, the Malmquist index comprises the technical efficiency change index
(EC) and the technology level index (TC), following Fare’s approach. The EC is
primarily used to assess the level of technology acceptance. TC is mostly used to
assess the level of innovation.

(44) M10($t+1, yt+1’ xt’ yt) — ECQ(JItJrl, ytJrl? :Zit, yt)TCO<xt+17 yt+17 .Tt, yt)7
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When TC > 1, the production possibility frontier expands outward, signifying an
increase in efficiency; otherwise, efficiency decreases. If EC > 1, the DMU moves
closer to the frontier, resulting in greater efficiency; otherwise, efficiency declines.
Furthermore, the technical efficiency change index (EC) is obtained by combining
the pure technical efficiency change index (PEC) with the scale efficiency change
index (SEC). The purpose of PEC is to examine the input and utilization conditions,
ignoring the scale reward element effect. The effective state of production scale is
represented by SEC, which incorporates the factor of scale return into the analysis
of input variables.

(45) ECo(SCt+1, yt—O—l’ SCt, yt) —

0.5

(4.6)  TCo(z",y"* 2" y")

4.2. OLS model of the second stage. During the second stage, the DEA effi-
ciency scores from the first stage (dependent variable) were regressed against the
explanatory factors using the OLS model. Compared to the Tobit model commonly
used in earlier research, the OLS model shows superior performance in both single-
stage and two-stage stochastic frontier analysis, primarily due to its effectiveness in
capturing the dynamic influence mechanism and reducing variability among input
variables. This study structures the OLS linear regression model as follows, using
panel data from the Beijing-Tianjin-Hebei region:

K
(4.7) Yit = ai+Zﬁkz‘$kit+uit, i=1--- Ny t=1,...,T.

k=1

Here, y;; indicates the annual passenger turnover for airport ¢ in year t; Tp;

represents the observed value of the k explanatory variable for airport ¢ in year t;
Br; denotes the estimated coefficient of the k explanatory variable for airport i; c; is
the intercept for airport ; u; represents the random error term; {y;; }7_; comprises
the panel data containing all time-series data for airport ¢ during the period T'; and
{yit }I¥| refers to the cross-sectional data of all airports in period t within the panel
data.

5. EMPIRICAL TESTS

5.1. Analysis of airport operational efficiency. In this section, the DEA-
Malmquist model was utilized in the first stage using DEAP 2.1 to assess oper-
ational efficiencies. Table 2 detailed the result of MI, EC, TC, PEC and SEC of
Chinese twenty-eight airports from 2009 to 2022. Under the condition that seven
variables are used as input variables, results showed that:

(1) The EC, TC, SEC, PEC, and MI efficiency values for the twenty-eight airports
produce different degrees of variability due to the variability of the different input
variables considered.

(2) The MI for all airports averaged at a high level of 1.006, indicating that most
of these twenty-eight airports operate efficiently. However, a few airports with an
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TABLE 2. Result of operational efficiency of twenty-eight airports

Airport EC TC PEC SEC MI Airport EC TC PEC SEC MI

PEK 1.000 0.982 1.000 1.000 0.982 TAO 1.000 0.998 1.000 1.000 0.998
CAN 1.001 0.979 1.000 1.001 0.980 CGO 1.006 1.009 1.000 1.006 1.014
SHA 1.011 0.989 1.000 1.011 1.001 URC 1.003 1.018 1.000 1.003 1.021
CTU 1.004 0.995 1.000 1.004 0.999 DLC 1.000 1.013 1.000 1.000 1.013
SZX 0.997 0.991 0.998 0.999 0.987 SYX 1.009 1.001 1.000 1.009 1.010
KMG 1.002 1.001 1.000 1.002 1.002 HAK 1.000 1.017 1.000 1.000 1.017
PVG 1.000 1.010 1.000 1.000 1.010 TNA 1.000 1.011 1.000 1.000 1.011
XTIy 1.005 1.015 1.000 1.004 1.019 TSN 0.999 0.992 1.000 0.999 0.991
CKG 1.000 1.023 1.000 1.000 1.023 SHE 1.003 0.994 1.000 1.003 0.997
HGH 1.004 1.000 1.000 1.004 1.004 KWE 1.006 1.023 1.000 1.006 1.029
CSX 1.003 1.013 1.000 1.002 1.016 HRB 1.000 1.016 1.000 1.000 1.016
WUH 0997 0.958 0.997 1.000 0.955 FOC 1.006 1.024 1.000 1.006 1.030
NKG 1.002 1.010 0.999 1.003 1.012 NNG 1.007 1.046 1.000 1.007 1.053
XMN  1.001 1.000 1.000 1.001 1.001 LHW  1.000 0.976 1.000 1.000 0.976

MI below 1 fall short of DEA effectiveness and require improvements in specific
areas.

(3) The value of EC, PEC and SEC for all airports are almost equal to 1, which
indicates that the twenty-eight airports in China are at a high level in terms of
airport size and resource utilization.

(4) The average TC for all airports was 0.968, pointing to a low level of innovation
across the twenty-eight airports. Besides, TC is the efficiency that has the most
impact on the efficiency of airport operations.

Table 3 detailed the airports operational efficiency in every year from 2010 to
2022. The findings from previous years lead to the following conclusions:

(1) Input variables of the same type but with different values have different effects
on airport operational efficiency, which leads to differences in operational efficiency
for the same airport in different years and for different airports in the same year.

(2) There is significant variability in the change in operational efficiency from
2010 to 2022 across airports. Specifically, the operational efficiency of XIYh, HGH
and TSN fluctuates around 1, while the operational efficiency of SHE exhibits a
pattern of ising and then b continuously adjusting to 1.

5.2. Results on the Factors Influencing Airport Operational Efficiency.
To assess the impact of input factors on airport operational efficiency, Eviews 9 was
employed in this section. The unit root test results for the seven input variables and
one output variable in the OLS model are shown in Table 4. The results show that:
(1) EFF, FZR, NOR, ANO and POF satisfy the unit root test, and DAF and ADD
satisfy the second order single integer test results; (2) all of the above variables are
within 5% of single integer. Hence, our OLS model was explainable by analysis of
autocorrelation inherent in the principal factors.

Table 5 presented the cointegration test results for the chosen series of seven
variables. Seen from this table, we can concluded that the selected series satisfy the
KAO test results and can be used in the OLS model.
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TABLE 3. Result of operational efficiency of twenty-eight airports
from 2010 to 2022

Airport 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

PEK 0.760 1.208 0.961 1.040 1.005 0.971 0.905 0.935 1.077 0.972 0.973 0.964 1.056
CAN  0.845 1.110 0.858 0.997 1.038 1.081 0.864 0.900 1.198 0.951 0.957 1.015 0.989
SHA 1.022 1.339 1.006 1.031 0.964 0.820 1.006 0.962 1.073 1.056 0.804 1.046 0.975
CTU  0.831 1.245 0.843 1.177 1.018 0.993 0.910 0.930 1.052 1.051 1.047 0.954 1.021
SZX 0.695 1.124 1.149 0.875 1.145 1.002 0.935 0.934 1.068 1.030 0.970 1.008 1.000
KMG 0.969 0.852 1.002 1.164 0.890 0.987 1.028 1.036 1.021 0.997 1.270 0.814 1.090
PVG  0.878 1.009 0.989 0.902 1.428 0.894 0.885 0.836 1.147 1.012 1.214 0.819 1.314
XIY 0.976 0.974 0.997 1.052 1.105 0.958 1.032 0.970 1.045 0.984 1.109 0.969 1.097
CKG  0.881 1.030 0.951 0.937 0.980 1.072 0.976 0.943 1.128 1.077 1.286 0.967 1.131
HGH 0.834 1.093 0.954 1.121 0.924 1.098 1.015 0.858 1.037 0.993 1.071 1.000 1.000
CSX 0.933 0.960 1.083 1.036 1.013 1.009 0.920 0.872 1.137 0.893 1.275 0.975 1.175
WUH 0.534 1.073 0.881 0.983 1.036 0.942 0.867 0.984 1.013 1.033 1.129 0.971 1.168
NKG  0.921 1.119 0.981 0.918 1.274 0.888 0.945 0.950 1.001 1.004 1.018 0.983 1.231
XMN  0.924 0.992 0.968 1.124 1.093 0.946 0.856 0.918 1.091 0.925 1.175 0.920 1.138
TAO 0.940 1.068 0.980 0.965 0.864 1.100 0.906 0.925 1.130 1.024 0.970 1.063 1.082
CGO  0.813 1.193 0.989 0.809 1.241 1.039 0.971 0.902 1.063 1.041 1.110 0.953 1.172
URC 1.013 1.062 1.002 0.901 1.058 0.957 1.052 1.009 1.060 0.972 1.132 0.928 1.162
DLC 0.924 1.086 1.027 0.913 0.998 0.958 1.069 0.872 1.052 1.005 1.189 0.974 1.155
SYX 1.047 1.040 0.962 1.011 0.949 0.999 0.862 0.938 1.045 0.999 1.104 1.000 1.223
HAK  0.963 0.999 0.915 0.979 1.013 1.097 0.942 0.910 1.041 1.020 1.233 0.968 1.195
TNA  0.774 1.112 0.927 0.953 0.955 1.178 0.969 0.922 1.026 1.070 1.336 0.867 1.180
TSN 0.581 1.164 0.988 0.927 1.117 0.889 1.156 0.827 1.141 0.974 1.163 0.958 1.222
SHE 0.912 0.969 0.869 0.895 1.136 0.970 0.879 0.944 1.025 1.019 1.295 0.917 1.227
KWE 0.933 1.032 1.030 1.015 1.060 0.895 0.987 0.842 1.166 1.032 1.199 0.932 1.368
HRB  0.855 0.984 0.972 0.991 0.898 1.187 0.864 0.903 0.983 1.042 1.352 0.951 1.390
FOC 0.898 1.027 1.052 0.856 0.988 1.032 0.965 0.852 1.139 1.077 1.325 0.960 1.359
NNG  0.821 1.103 1.058 0.912 1.097 1.042 0.948 0.969 1.006 0.843 2.264 0.759 1.463
LHW  0.679 1.062 0.808 1.037 0.803 0.952 0.840 0.807 1.101 1.012 1.433 0.976 1.484

Table 6 reflects estimated coefficients for the impact of FZR, NOR, DAF, ADD,
ANO, and POF on airports operational efficiencies. Taking the OLS model predic-
tions for efficiencies of the PEK and CAN in the first two rows of Table 6 as an
instance, the estimated coefficients are given in the following formulas. It can been
seen from the formulas that NOR and ADD harmed the EFF of PEK. Meanwhile,
NOR, ADD, ANO and POF harmed the EFF of CAN.

EFF(PEK) = 2.265945FZR — 0.813714NOR + 2.479212DAF — 2.462004ADD
+ 0.283641ANO + 0.097712POF

EFF(CAN) = 1.605286FZR — 0.863357NOR + 0.732332DAF — 0.716297ADD
—0.722305ANO — 0.755167TPOF

Furthermore, Table 6 indicates that identical factors exerted varying degrees of
impact and significance on the operational efficiency of different airports. At the
same time, each factor demonstrated consistent effects on operational efficiency
across various airport types.
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TABLE 4. The results of unit roots test

Airport Levin, Lin  Im, Pesaran and  ADF - Fisher = PP - Fisher
& Chu t* Shin W-stat Chi-square Chi-square
EFF —14.4941 —12.866 344.457 432.023
(0.0000) (0.0000) (0.0000) (0.0000)
FZR —4.4503 —3.28468 42.7098 43.3603
(0.0000) (0.0005) (0.0009) (0.0007)
NOR —4.09511 —3.85389 53.1358 54.2141
(0.0000) (0.0005) (0.0009) (0.0007)

9 —39.3151 —29.9887 474.49 565.679
D[DAF] (0.0000) (0.0000) (0.0000) (0.0000)

5  —39.2731 —30.0554 475.155 563.531
DIADDE ¢ 6000)  (0.0000) (0.0000) (0.0000)
ANO —3.33262 —2.7421 82.0888 100.686

(0.0004) (0.0031) (0.0131) (0.0002)
POF —4.56289 —3.50388 90.2664 91.6486
(0.0000) (0.0002) (0.0025) (0.0019)

TABLE 5. The results of co-integration test

KAO test

t-statistics Prob.

ADF statistics

—0.350107 0.0005

TABLE 6. Regression results of factors influencing airport opera-
tional efficiency

Airport  FZR NOR DAF ADD ANO POF
pEK 2205945 —0813714 2479212 2462004 0.283641  0.097712
(0.0578)  (0.4426)  (0.0423)  (0.0433)  (0.7849)  (0.9249)
cAN 1005286 —0.863357 0732332  —0.716207 —0.722305 —0.755167
(0.1525)  (0.4165)  (0.4878)  (0.497) (0.4935)  (0.4748)
A 0562019 1300211  2.053073 2102218 2.075467  —0.13615
(0.5916)  (0.2318)  (0.0792)  (0.0736)  (0.0766)  (0.8955)
opy 0605149 0.861491 0389002  —0.447947 1165308  0.068882
(0.5642)  (0.4175)  (0.7088)  (0.6677)  (0.2821)  (0.9470)
gzx  —0-730143 2255258  —LT79105 178728  —1.143628 —1.50776
(0.4839)  (0.0587)  (0.1184)  (0.117) (0.2904)  (0.1753)
Kye 0588833 —0.79357  0.070146  —0.044733 —1.114935 —0.198704
(0.5745)  (0.4535)  (0.9460)  (0.9656)  (0.3017)  (0.8481)
pyq 0536643 —0.741419 1673956  —1.64805 0.647665  0.54288
(0.6081)  (0.4826)  (0.1381)  (0.1433)  (0.5379)  (0.6041)
xpy 0651696  0.914663  —0.685809 0702009  —0.451227 0.654716
(0.5354)  (0.3908)  (0.5148)  (0.5053)  (0.6655)  (0.5336)
cxg  LB09198  —0.993575 —1.339695 1.339354  0.203886  0.865169
(0.1750)  (0.3535)  (0.2222)  (0.2223)  (0.8442)  (0.4156)
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TABLE 6. (Continued)

Airport FZR NOR DAF ADD ANO POF
2.415872 —1.511751 2.209228 —2.212388 —0.985626 0.999566

HGH 00464)  (0.1744)  (0.0620)  (0.0626)  (0.3572)  (0.3508)
cgx 0856093 1418176 —0.016715 0.050714 ~ —1.43274 1499781
(0.4203)  (0.1991)  (0.9871)  (0.9610)  (0.1950)  (0.1774)
wup 2494349 —1.230238 0.179015  —0.194067 1.021993  3.335834
(0.0413)  (0.2583)  (0.8630)  (0.8516)  (0.3408)  (0.0125)
NG 0178856 —0.465021 —0.120523 0.148637  —0.739336 0.706027
(0.8631)  (0.6554)  (0.9075)  (0.8860)  (0.4838)  (0.503)
way 2041496 —3.208504 1379687 —1.38033 1193426 —0.754507
(0.0217)  (0.0131)  (0.2101)  (0.2073)  (0.2716)  (0.4752)
Ao 1503586 —0.643445 1352351 1350143 0.734154  —0.330828
(0.1764)  (0.5404)  (0.2183)  (0.2163)  (0.4867)  (0.7440)
cqo 0568843 —1.208079 1.097781  —1.061656 —1.902649 1.498093
(0.5872)  (0.2351)  (0.3086)  (0.3236)  (0.0988)  (0.1776)
URpe 0795148 1480991  —1.020231 1.013503  —1.698037 1.735576
(0.4526)  (0.1822)  (0.3416)  (0.3445)  (0.1333)  (0.1262)
prc 1363373 —1447181 —1.225580 1206814  —0.336608 —0.749774
(0.215) (0.1911)  (0.2600)  (0.2667)  (0.7463)  (0.4778)
gyx 1069664 1306562  —0.741503 0.701176  1.396545  4.219107
(0.3203)  (0.2326)  (0.4825)  (0.5058)  (0.2052)  (0.0039)
HAg  L967425  —0.165531 1154247  —1.147309 —2.035478 0.264391
(0.1610)  (0.8732)  (0.2863)  (0.2890)  (0.0813)  (0.7991)
T 0382144 1024024 1562281 1545392 0.037584  0.734994
(0.7137)  (0.3399)  (0.1622)  (0.1662)  (0.9711)  (0.4862)
Toy 0031560 0.014912  —0.246722 0.252622  0.377602  0.201205
(0.9757)  (0.9885)  (0.8122)  (0.8078)  (0.7169)  (0.8463)
qp 1028456 141182 —0.555742 0.573541  —141401 1750111
(0.3380)  (0.2009)  (0.5957)  (0.5842)  (0.2003)  (0.1220)
Kwp 1320434 —134411  0.280955  —0.206303 —1.130843 —0.575072
(0.2254)  (0.2208)  (0.7803)  (0.7756)  (0.2918)  (0.5832)
qpp  LAL2431 1098757 2.83241 2853671 2497915  —0.537736
(0.2007)  (0.0858)  (0.0253)  (0.0246)  (0.0411)  (0.6074)
poc  —L797537 1662084  —3.435883 3.420653  0.50477  2.463022
(0.1222)  (0.1403)  (0.0109)  (0.0111)  (0.6292)  (0.0433)
NG 0-250205  —0.601047 —0.071372 0.085048  —1.08473  0.278735
(0.8029)  (0.5662)  (0.9451)  (0.9346)  (0.3140)  (0.7885)
Cpyy 1644185 0150093 —0.619109 0.665424  —1.758119 —1.08686

(0.1441)  (0.8849)  (0.5554)  (0.5271)  (0.1221)  (0.3131)

6. CONCLUSION

This paper employed a two-stage method combining DEA-Malmquist and OLS
models to accurately evaluate comprehensive operation efficiency with a combina-
tion of peak hour sorties (PHS), departure punctuality (DP), inbound punctual-
ity (IP), considering airport infrastructure, surrounding airspace, and flight vol-
ume structure, and regressed the first-stage DEA efficiency scores against explana-
tory factors associated with seven input variables across these three aspects. This
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method can also be used as an effective tool to help authorities in other countries to
explain how these inputs affects DEA efficiency of a airport based on their actual
data. A real-world case of twenty-eight airports in China from 2009 to 2022 was
used to prove our applicability. The main findings are summarized as follows:

(1) The efficiency values for EC, TC, SEC, PEC, and MI may be differences
between the same airport or across different airports. While the majority of the
twenty-eight airports demonstrate high operational efficiency; however, a few air-
ports with these efficiency values less than 1 do not achieve a DEA effective and
require improvements in specific areas.

(2) The mechanisms by which different factors affect airport operational efficiency
vary considerably. While some parameters showed a significant positive impact. The
computed outcomes are consistent with the visual analysis.

There are two main limitations of this study. First, the input-output indicators of
our model is incomplete and one-sided; Second, it is impossible to process uncertain
value of these input-output indicators. Therefore, the follow-up study on airport
efficiencies should consider a wider range of time serious and influencing factor with
uncertain value.

First, input-output index is not comprehensive; Second, it is impossible to process
uncertain indicator data
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