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problems. It has also grown from addressing static equilibrium problems to tack-
ling stability problems, dynamic problems and wave propagation problems. FEM
scope has further broadened from solid mechanics to fluid mechanics, heat con-
duction, electromagnetic issues, and other continuous media domains [22, 11, 18,
4, 9]. It can be predicted that with the development of modern science, computa-
tional mathematics and computer technology, finite element method, as a numerical
analysis tool with solid theoretical foundation and widely applied effectiveness, will
play a greater role in economic construction and the development of science and
technology, and will be further developed and improved[16, 3, 19, 12, 20, 10].

The numerical methods for solving linear algebraic equations can be classified
into two categories: direct methods and iterative methods. The disadvantage of
the direct methods is that they do not always guarantee accurate results, this is
mainly because the accumulation and propagation of errors in the arithmetic op-
erations cannot be controlled in the process of multiple elimination unknowns and
back substitutions. For high-order equations, the calculation accuracy is signifi-
cantly reduced due to the continuous accumulation of round-off errors. Although
higher-order equations with sparse coefficient matrices can be solved using direct
methods, maintaining matrix sparsity in operation is challenging. Additionally,
direct methods have certain shortcomings, such as complex calculation formulas,
complex procedures, and the requirement for more storage units. These methods
are commonly used to solve small to medium-sized linear equation systems. In con-
trast, the iterative methods preserve matrix sparsity and offer simple computations
and easier programming. These methods do not require storing zero elements of the
coefficient matrix, which allows them to occupy less storage space. Hence, iterative
methods are highly effective for solving large linear algebraic equations, especially
for large, sparse matrices. However, the success of these methods depends on their
convergence and the speed of convergence [6, 1].

The finite element analysis of large-scale and complex engineering problems can
have hundreds of thousands or even millions of degrees of freedom. Linear algebraic
equations can be obtained after discretizing a complex continuum. Ensuring the
convergence and stability of these numerical solutions is the main focus of finite
element theory.

In conventional FEM, a polynomial function, using the coordinate values of each
node in mesh elements as parameters, is used as an interpolation function, approx-
imating the field function piecewise to complete the discretization process. The
present study used the orthogonal step function group (OSFG)-based FEM to im-
prove the convergence of linear algebraic equations. It took the linear combination
of a set of orthogonal step functions as the approximation function of the partition
element. It could improve the convergence, mitigate the shortcomings of the con-
ventional FEM in solving singularity problems, and reduce the amount of numerical
integration operations.

2. Orthogonal step function group

2.1. Defining the OSFG. First, let us divide the interval [a, b] into n equal
parts, assuming that a function exists whose value is 1 in one of these parts and
0 in the remaining ones. Such a function is called the unit pulse basis function
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in n equally divided intervals. For example, the unit pulse basis function, which
is equal to 1 in the ith part and 0 in other parts, is denoted as pi. The linear
combination of the unit impulse basis functions pi(i = 1, 2, . . . , n) has the form of
α (x) =

∑n
i=1 αipi where αi is a real coefficient. It is called a step function on the

interval of n equal partitions. The unit impulse basis function pi, i = 1, 2, . . . , n is
considered the n-dimensional space base. All step functions in the interval of n equal
partitions constitute the entire linear space as α (x) =

∑n
i=1 αipi. If n individual

of functions on the interval of n equal partitions are orthogonal, they are called
“n-order orthogonal step function group”(hereinafter referred to as n-order OSFG).
These functions correspond one-to-one with an n-order row orthogonal matrix. For
example, the Walsh matrix corresponds to the Walsh OSFG, and the discrete cosine
transform matrix corresponds to the discrete cosine OSFG. Similarly, 2D and 3D
OSFG can be constructed. The interval [a, b] in 1D becomes a bounded and closed
region in the multidimensional condition. At this time, the region Ω is divided into
basic graphs. The two-dimensional basic graphs can be triangles or parallelograms.
The 3D basic graphs can be cubes or other geometric shapes. A function that is
equal to 1 on a basic graph and is equal to 0 on any other basic graphs is called unit
pulse basis function, and a function that is constant on each basic graph is also a
step function. Our research was initially limited to region that could only be divided
into basic graphs. As long as the number of orthogonal step functions in the region
Ω was equal to the number of basic graphs into which the region Ω was divided,
the orthogonal step functions on the region Ω and the unit pulse basis functions
on the basic graphs can linearly represent each other. 2D or 3D n orthogonal step
functions on n basic graphs are also referred to as n-order orthogonal step function
groups, or n-order OSFGs.

2.2. Two-dimensional OSFG examples. In Figure 1, (1, 1) and (1, -1) are
two orthogonal vectors. The product of the orthogonal vector components in the
horizontal and vertical directions forms a 2D vector. The number in the small block
in Figure 1(a) is the product of the orthogonal vector components in the horizontal
and vertical directions outside the corresponding large block in the row and column.

Figure 1. (a)Formation of 2D vectors (b)The method of segmentation.

Figure 1(a) is divided into four small blocks according to Figure 1(b), forming a
square-shape basis of four 2D orthogonal systems, as shown in Figure 2. The basis
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Figure 2. The square-shape base of a 2 D orthogonal system.

Figure 3. Basis of the 2D function group of parallelograms and triangles.

of the 2D function group of parallelograms and triangles is shown in Figure 3. Each
graph of parallelograms (including squares) and triangles is called the basic graph.

The length, width, and height of a cube are each divided into two equal parts,
resulting in the cube being divided into eight smaller, equal parts.

The basis of the orthogonal function group in 3D space can be derived by imi-
tating the construction method of the orthogonal function group in 2D space.

3. Orthogonal approximate eigenfunction group

Let pi be a sequence of unit pulse basis functions with equal width connected
at the beginning and end. Their linear combination α (x) =

∑+∞
i=−∞ αipi forms a

step function on an infinite interval, where αi is called the strength of the pulse
basis function. The interval occupied by the unit pulse basis function pi is ∆i, and
the length is h. When using the Galerkin method to solve the differential operator
equation, a difference operator LD approximately replaces the differential operator.
When the step function

∑+∞
i=−∞ uipi on the infinite interval passes through the

system LD, it becomes the step function
∑+∞

i=−∞ ripi. If the difference operator is
LDui = ui−1 − 2ui + ui+1, let the input sequence ui be. . . 0, un, un+1, un+2, un+3,
0,... [14]. We can get the output sequence ri as. . . 0, un, rn, rn+1, rn+2, rn+3, un+3,
0,..., and a fourth-order matrix relationship exists.
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(3.1)


−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2




un
un+1

un+2

un+3

 =


rn
rn+1

rn+2

rn+3

 .
Assuming the coefficient matrix of equation (3.1) is A, the characteristic equation

is | λ E− A| = 0, the eigenvalues are solved as λk, k = 1, 2, 3, 4, and the corre-

sponding orthogonal characteristic functions are
(
φk
n, φ

k
n+1, φ

k
n+2, φ

k
n+3

)T
, where T

represents transpose. The step function group φk (x) =
∑n+3

i=n φi
kpi, k = 1, 2, 3,

4 is called a fourth-order orthogonal approximation characteristic function group
of the difference operator LD, and its pulse basis function intensity sequence is
. . . 0, φk

n, φ
k
n+1, φ

k
n+2, φ

k
n+3, 0 . . . . After applying the second-order difference opera-

tor LD, we get . . . 0, φk
n, λkφ

k
n, λkφ

k
n+1, λkφ

k
n+2, λkφ

k
n+3, φ

k
n+3, 0 . . . .

Next, we take
(
0, φk

n, φ
k
n+1, φ

k
n+2, φ

k
n+3, 0

)
as the kth row of matrix U to form ma-

trix U and take
(
φk
n, λkφ

k
n, λkφ

k
n+1, λkφ

k
n+2, λkφ

k
n+3, φ

k
n+3

)
as the kth row of matrix

R to form matrix R. These matrices take the following forms:

(3.2)

U =


0 φ1

n φ1
n+1 φ1

n+2 φ1
n+3 0

0 φ2
n φ2

n+1 φ2
n+2 φ2

n+3 0
0 φ3

n φ3
n+1 φ3

n+2 φ3
n+3 0

0 φ4
n φ4

n+1 φ4
n+2 φ4

n+3 0



=


0 −1.3450 2.1763 −2.1763 1.3450 0
0 1.5747 −0.9732 −0.9732 1.5747 0
0 0.8313 0.5137 −0.5137 −0.8313 0
0 0.1420 0.2298 0.2298 0.1420 0


.

(3.3)

R =


φ1
n λ1φ

1
n λ1φ

1
n+1 λ1φ

1
n+2 λ1φ

1
n+3 φ1

n+3

φ2
n λ2φ

2
n λ2φ

2
n+1 λ2φ

2
n+2 λ2φ

2
n+3 φ2

n+3

φ3
n λ3φ

3
n λ3φ

3
n+1 λ3φ

3
n+2 λ3φ

3
n+3 φ3

n+3

φ4
n λ4φ

4
n λ4φ

4
n+1 λ4φ

4
n+2 λ4φ

4
n+3 λ4φ

4
n+3



=


−1.3450 0.3717 −0.6015 0.6015 −0.3717 1.3450
1.5747 −0.6015 0.3717 0.3717 −0.6015 1.5747
0.8313 0.6015 −0.3717 0.3717 0.6015 −0.8313
0.1420 −0.3717 −0.6015 −0.6015 −0.3717 0.1420


.

Using the orthogonality between φk (x) =
∑n+3

i=n φi
kpi, k = 1, 2, 3, 4, it is known

that U ·RT is a diagonal matrix.
Similarly, for a second-order difference operator system LDui = ui−1−2ui+ui+1,

when the input sequence is... 0, un, un+1, 0, . . . , the input and output can also
obtain the following second-order matrix relationship:

(3.4)

[
−2 1
1 −2

] [
un
un+1

]
=

[
rn
rn+1

]
.
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By obtaining the eigenvectors of the coefficient matrix, the corresponding U , R
can also be obtained.

(3.5) U =

[
0 1 1 0
0 1 −1 0

]
.

(3.6) R =

[
1 −1 −1 1
1 −3 3 −1

]
.

Here

[
0 1 1 0
0 1 −1 0

]
is a matrix representation of the second-order orthogonal

approximation eigenfunction group. It can also be simplified as

[
1 1
1 −1

]
.

When the input sequence is . . . 0, un, un+1, . . . , un+K−1, 0, . . . , the relationship
between the input and the output can be obtained as a Kth-order square matrix,
and the concept of Kth-order orthogonal approximate eigenfunction groups can also
be introduced. Generally, for a difference operator LD, if a step function φ satisfies
LDφ ≈ λφ, where λ is constant, then the step function φ is called an approximate
eigenfunction of the difference operator LD.

4. OSFG-based FEM

4.1. Related concepts. The linear combination of a set of orthogonal step func-
tions is taken as the approximation function of the subdivision element. Such OSFG-
based FEM can be used for solving partial differential and integral equations. This
study was limited to partial differential equations. In OSFG-based FEM, the co-
efficient matrix M of the linear algebraic equation transformed from the partial
differential equation is a sparse matrix close to the diagonal block matrix composed
of small matrix blocks. It is multiplied by the diagonal block matrix, in which each
small matrix block is the inverse matrix of each small matrix block in the matrix
M , to achieve a matrix close to the diagonal matrix. If the orthogonal step function
group adopts the orthogonal approximate eigenfunction group, each small matrix
block of the matrix M is a small diagonal matrix, and such FEM becomes or-
thogonal approximate eigenfunction group (OAEG) based FEM. The approximate
diagonalization of the coefficient matrix of linear algebraic equations have improved
the convergence of the iterative method. The following example illustrate the diag-
onalization method.

Example 4.1. Find the electrostatic potential between two infinite large parallel
plates Φ: A board is located at x = 0, Φ =0 V; the other is at x = 1 m, Φ =
1 V. The two parallel plates are filled with a medium with a dielectric constant ε
(F/m). The charge density varies between them ρ (x) = − (x+ 1) ε (C/m3). This
problem can be mathematically described by Poisson’s equation and reduced to a

second-order differential equation: d2φ
dx2 = x+1, 0 < x < 1. Its boundary conditions

are:

(4.1) Φ|x=0 = 0, Φ|x=1 = 1.
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Let Φ̃ = ψ (n)+
∑8

i=1 ciφi (n), where φi (n) is the basis function of the OSFG, ψ (n)
is used to satisfy boundary conditions, and ci is an undetermined coefficient. We
expand the domain of the definition of ψ (n) and φi (n) from the interval [0,1] to
the interval [−1

8 ,
9
8 ] and divide the interval [−1

8 ,
9
8 ] into 10 equal small intervals.

Within each equal small interval, ψ (n) and φi (n) are constants, and ψ (n) is 1
within a small interval [1, 98 ], taking zero values in the remaining small intervals.
Thus, interval [0,1] includes eight small intervals. Within each small interval, the
value of φi (n) is the component value of the row vector of the following matrix:

U1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗
[
1 1
1 −1

]
.

The symbol ⊗ stands for Kronecker product; outside the interval [0,1], the value

of φi (n) is zero. Besides,

[
1 1
1 −1

]
is the OAEG used to approach the function value

on each partition element of the four equal parts partitioned from the interval [0,1].
Therefore, the method is the OAEG-based FEM.

The difference equation is derived from the differential equation d2Φ
dx2 = x+1, and

the second-order derivative d2Φ(x)
dx2 is replaced by the second-order difference quotient

1
h2LDΦ (n) = 1

h2 [Φ (n− 1) +Φ (n+ 1)− 2Φ (n)]. Thus, we can obtain 1
h2LDΦ (n) =

x (n) + 1 and replace Φ (n) with Φ̃ (n) = ψ (n) +
∑8

i=1 ciφi (n) to obtain

(4.2) 1
h2LD

(
ψ (n) +

8∑
i=1

ciφi (n)

)
= x (n) + 1.

where ψ (n), φi (n), and x(n) represent the intensity sequences of pulse basis func-
tions of each step function. x(n) is taken as the value of x at the midpoint of each

small interval. For step functions α (x) =
∑n+K-1

i=n αipi and β (x) =
∑n+K-1

i=n βipi,

we define their inner product as: ⟨α (x) , β (x)⟩ =
∑n+K-1

i=n αiβi. According to the
Galerkin method, we take the dot product of both sides of formula (4.2) with φj (n)
to get

(4.3) 1
h2

8∑
i=1

ci ⟨LDφi (n) , φj (n)⟩+ 1
h2 ⟨LDψ (n) , φj (n)⟩

= ⟨x (n) + 1, φj (n)⟩ , j = 1, 2, . . . , 8.

Then, we find the inner products ⟨LDφi (n) , φj (n)⟩, ⟨LDψ (n) , φj (n)⟩, and
⟨x (n) + 1, φj (n)⟩ and substitute them into equation (4.2) to obtain
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(4.4)



−2 0
0 −6

1 1
−1 −1

0 0
0 0

0 0
0 0

1 −1
1 −1

−2 0
0 −6

1 1
−1 −1

0 0
0 0

0 0
0 0

1 −1
1 −1

−2 0
0 −6

1 1
−1 −1

0 0
0 0

0 0
0 0

1 −1
1 −1

−2 0
0 −6





c1
c2
c3
c4
c5
c6
c7
c8


=

1

64



2.25
−0.125
2.75

−0.125
3.25

−0.125
3.75

−0.125


−



0
0
0
0
0
0
1
−1


.

Using the matrix notation, equation (4.4) is expressed as M1 • c = 1
64I-H, where

c = [c1,c2,c3,c4,c5,c6,c7,c8]
T, M1 is the coefficient matrix of the equation, and its el-

ements are ⟨LDφi (n) , φj (n)⟩ = m1
ij , because [φi (1) φi (2)...φi (8)] is the row vector

of matrix U1, the difference operator LD acts on each row of matrix U1 to obtain ma-
trix R1. Let R1

T be the transposed matrix of R1; thenM1 = U1 ·R1
T. Assume that

M1 = X + D + S, where X is the lower triangular matrix, D is the diagonal matrix,
and S is the upper triangular matrix. Taking A1 = −D−1 (X + S), we can trans-
form equation (4.4) into c=A1c+ f1 and derive the spectral radius ρ (A1) = 0.8851.
Therefore, the equations are convergent using the iterative method [21, 2], yielding
= [0.0480, -0.0215, 0.1723, -0.0411, 0.3824, -0.0645, 0.6942, -0.0919]T. The calcu-

lated values of Φ̃ (n) are listed in Table 1.

Table 1. Calculated values of Φ̃ (n)

4.2. Improvement in the OSFG-based FEM convergence.
Method 4.2. Equation (4.4) M1 •c = 1

64I-H can be solved by the iterative method,
and its convergence performance can be improved. It can be achieved using the

matrix row transformation method:


−16 2 −9 −3
−2 4 −3 −1
−9 3 −16 −2
−3 1 −2 −4

×

−2 0 1 1
0 −6 −1 −1
1 −1 −2 0
1 −1 0 −6

 =


20

−20
20

20

. Let Ñ =


−16 2
−2 4

−9 −3
−3 −1

−9 3
−3 1

−16 −2
−2 −4

 and

(
Ñ 0

0 Ñ

)
= K, M2 =

(
Ñ 0

0 Ñ

)
M1 =



20 0 0 0
0 −20 0 0
0 0 20 0
0 0 0 20

−6 −6 0 0
−2 −2 0 0
−14 −14 0 0
2 2 0 0

0 0 −14 14
0 0 2 −2
0 0 −6 6
0 0 −2 2

20 0 0 0
0 −20 0 0
0 0 20 0
0 0 0 20


.
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M2 •c = K
(

1
64I-H

)
is obtained by multiplying the two ends of equation (4.4) with

matrix K; it is written in a form that is easy to iterate as c=A2c+f2. Thus, we
can calculate the corresponding spectral radius ρ (A2) = 0.8. The method combines
two small pieces of the M1 matrix into one large piece and then diagonalizes it.
This method can be used for the general OSFG-based FEM and repeated until the
spectral radius satisfies the requirements.

Method 4.3. We divide the [a, b] interval into P equal parts, each being a partition
element. The OSFG-based FEM approach implies taking a linear combination of
the members of N -order OSFG as the approximation function of each partition
element, where P × N orthogonal step functions are called a P -arrangement of
N -order OSFG. As the whole-domain functions on interval [a, b], they take the
values of orthogonal functions in their respective partition units and zero outside
their respective partition units.

First, we take the second-order OAEG

[
0 1 1 0
0 1 −1 0

]
to form four independent

orthogonal functions with more zero elements, thus obtaining the following fourth-

order OSFG:


1 0 0 0
0 1 1 0
0 1 −1 0
0 0 0 1

.

This fourth-order OSFG is the extended group of the second-order OAEG, which
is treated as the approximating function in the FEM partition unit. The second-
order arrangement of the extended group of the second-order OAEG is

(4.5) U3 =

(
1 0
0 1

)
⊗


1 0 0 0
0 1 1 0
0 1 −1 0
0 0 0 1

 .

We use the difference operator LDΦ (n) = Φ (n− 1) + Φ (n+ 1) − 2Φ (n), which
acts on each row of U3, to obtain matrix R3. Then, we derive matrix R3

T as the
transpose of R3. Finally, we calculate M3 = U3 ·R3

T, which is the coefficient matrix
of a system of linear algebraic equations transformed by an operator equation when
the row vectors of U3 are the basis functions, as follows:

(4.6) M3 = U3 ·R3
T =



−2 1 1 0 0 0
1 −2 0 1 0
1 0 −6 −1 0
0 1 −1 −2 1 0
0 0 1 −2 1 1 0
0 0 1 −2 0 1
0 0 1 0 −6 −1
0 0 0 1 −1 −2


.

The spectral radius corresponding to matrix M3 is ρ (A3) = = 0.9207. The
spectral radius corresponding to the matrix M5 is still large, and hence the further
diagonalization of matrix M3 is required. This can be achieved by the following two
methods.
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(1) Let N =


−2 1 1 0
1 −2 0 1
1 0 −6 −1
0 1 −1 −2

, and the inverse matrix of N is N-1. Let

(
N-1 0
0 N-1

)
M3 = M4, and the spectral radius corresponding toM4 can be obtained

as ρ (A4) = 0.8.
(2) Alternatively, we perform row transformation on

−2 1 1 0
1 −2 0 1
1 0 −6 −1
0 1 −1 −2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and get 

10 0 0 0
0 2 0 0
0 0 −10 0
0 0 0 10

−8 −5 −1 −2
−1 −2 0 −1
1 0 2 −1
−2 −5 1 −8

 .

If Ñ =


−8 −5 −1 −2
−1 −2 0 −1
1 0 2 −1
−2 −5 1 −8

, we get M5 =

(
Ñ 0

0 Ñ

)
M3

This yields:

(4.7) M5 =



10 0 0 0 −2 0
0 2 0 0 −1
0 0 −10 −1
0 0 0 10 −8 0
0 0 −8 10 0 0 0

−1 0 2 0 0
1 0 0 −10

0 0 −2 0 0 0 10


.

The spectral radius corresponding to M5 is ρ (A5) = 0.8.

The equation Mc=B is rewritten as c=Ac+f, the initialization vector c(0) is
given arbitrarily, and we can get a vector sequence

(
c(0)c(1)c(2) . . . c(k) . . .

)
using the

iterative formula c(k) = Ac(k−1)+f (k = 1, 2, . . .), ∥A∥ is the norm of matrix A, and
∥c(k)−c∗∥
∥c(0)−c∗∥ ≤

∥∥Ak
∥∥ is obtained by c(k) − c∗ = Ak

(
c(0) − c∗

)
.

To make
∥c(k)−c∗∥
∥c(0)−c∗∥ ≤ µ, as long as

∥∥Ak
∥∥ ≤ µ, we can get k ≥ − log µ

− 1
k
log∥Ak∥ .

It was proven in previous studies [21, 2] that lim
k→∞

∥∥Ak
∥∥ 1

k = ρ (A). For large k

values, we can use the following approximation of k to achieve the solution accuracy
µ :

(4.8) k ≈ − log µ

− log ρ (A)
.
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As shown in equation (4.8), the smaller the value of ρ (A), the smaller the required
k is. For example, usingM5 as the coefficient matrix of the system of linear equations
in the aforementioned example, when the number of iterations is k5, the precision
drops to 0.0001 times the initial error, that is µ = 0.0001, and we get k5 = 41.2754.
If one ignores the number of addition operations and only considers the number of
multiplication and division operations, the matrix M5 needs to multiply and divide
eight times per iteration. For matrix M5, when

∥∥c(k) − c∗
∥∥ drops to 0.0001 times of

the initial distance
∥∥c(0) − c(∗)

∥∥, a total of 336 (=42×8) multiplication or division
operations are required.

It can be seen that c(k) is convergent to c∗, and the descending speed of distance∥∥c(k) − c∗
∥∥ between them is related to two factors. Smaller ρ(A) values and more

zero elements of matrix A correspond to faster convergence.
In actual calculations, the following methods can be used due to the unknown∥∥c(0) − c(∗)

∥∥: it is known from the discipline of computational methods,
∥∥c(k) − c∗

∥∥
≤ ∥A∥k

1−∥A∥
∥∥c(1) − c(0)

∥∥ we get
∥c(k)−c∗∥
∥c(1)−c(0)∥ ≤ ∥A∥k

1−∥A∥ when ∥A∥ < 1, c(k) is convergent

to c∗. The distance
∥∥c(k) − c∗

∥∥ between them decreases to ε multiple of the initial

distance
∥∥c(1) − c(0)

∥∥ and is less than ∥A∥k
1−∥A∥ . (Let c = (c1, c2, c3, . . . cn), the 2-norm

of vector C is ∥c∥2 =
√∑n

i=1 c
2
i and λmax

(
ATA

)
is the largest eigenvalue of ATA.)

It can be obtained by taking the vector norm ∥•∥ as ∥•∥2 and the matrix norm ∥A∥
as ∥A∥2 =

√
λmax (ATA) to get

(4.9) ε =
∥c(k)−c(∗)∥

2

∥c(1)−c(0)∥
2

≤
∥A∥k2

1− ∥A∥2
.

We can use equation (4.9) to obtain an estimation formula for the convergence
number k after reaching a certain accuracy ε. The benefit of using an extended
group of orthogonal approximate eigenfunction group is that the matrix M5 has
more zero elements when the matrix M3 becomes the matrix M5.

4.3. Two-dimensional example. The FEM of the OSFG can also be used in two
and three dimensions, as discussed in the following example.

Example 4.4. In a long, straight rectangular metal slot, the side wall and bottom
surface potentials are zero, and the head cover potential is 100 (relative). As shown
in Figure 4, inside the electrolytic cell, the potential φ meets the condition of ∆φ
= 0 ( ∆ is the Laplace operator).

(4.10) φ =

{
φ1 = 100 head cover potential

φ2 = 0 the potential of the side wall and bottom surface.

We use the squares in Figure 2 as the OSFG, put φ0, φ1, φ2, φ3 to the position of
each block 1,2,3,4 in Figure 4, and distinguish their locations by the subscript of
φ0, φ1, φ2, φ3, the value on the outside of each block is zero.

Thus, we can get a group of 16 functions orthogonal to each other: φ0
1, φ

1
1, φ

2
1, φ

3
1

; φ0
2, φ

1
2, φ

2
2, φ

3
2; φ

0
3, φ

1
3, φ

2
3, φ

3
3; φ

0
4, φ

1
4, φ

2
4, φ

3
4, where each superscript represents the
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Figure 4. Long, straight rectangular metal slot.

Figure 5. Function graph of ψ.

type of function. Let ψ be the function in Figure 5. It takes zero values in the blank
space, satisfies the boundary conditions, and is orthogonal to φi

j , where i = 0, 1, 2, 3,
j = 1, 2, 3, 4. Let the solution that satisfies both the equation and the boundary
conditions be φ ≈

∑4
j=1

∑3
i=0 c

i
jφ

i
j+ψ. Next, we substitute it into equation ∆φ = 0

to generate the remainder:

(4.11) ε = ∆

 4∑
j=1

3∑
i=0

cijφ
i
j + ψ

 =
4∑

j=1

3∑
i=0

cij∆φ
i
j +∆ψ.

Using the Galerkin method ⟨ε, φm
n ⟩ = 0, m = 0, 1, 2, 3, n = 1, 2, 3, 4, we can get

the equation for cij :

(4.12)
4∑

j=1

3∑
i=0

〈
∆φi

j , φ
m
n

〉
cij + ⟨∆ψ,φm

n ⟩ = 0.
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So, let us solve ∆φi
j and ∆ψ. Due to ∂2

∂z2
φ = 0, ∴ ∆ = ∂2

∂x2 + ∂2

∂y2
the difference

quotient is used instead of differential. The midpoint of each small box is the
sampling point, and the value of the sampling point is the value of the entire small
box. The distance between the midpoints is the step size h. If a sampling point
is marked as (r, s), the coordinates of the four adjacent sampling points are (r +
1, s),(r − 1, s),(r, s+ 1), and (r, s− 1), where r, s are integers.

(4.13)
∆φ ≈ 1

h2
[φ (r + 1, s) + φ (r − 1, s) + φ (r, s+ 1) + φ (r, s− 1)− 4φ (r, s)] = ∆Dφ.

From equation (4.13), we get h2∆Dψ, h
2∆Dφ

0, h2∆Dφ
1, h2∆Dφ

2, and h2∆Dφ
3,

as shown in Figure 6. It is clear that φ0, φ1, φ2 and φ3 form the orthogonal ap-
proximation characteristic function group of the operator h2∆D ( φ0, φ1, φ2 and
φ3 all satisfy approximate equations h2∆Dφ ≈ λφ ). If the 1D difference operator

Figure 6. Difference substitution after h2∆ operator action.

is LD, LDui = ui−1 − 2ui + ui+1. The orthogonal approximate characteristic func-
tions of the operator LD are φ1 (x) and φ2 (x), which satisfy LDφ

1 (x) ≈ λ1φ
1 (x).

LDφ
2 (x) ≈ λ2φ

2 (x), wherein λ1 and λ2 are eigenvalues. Then, the tensor product
φ (x, y) of φ1 (x) and φ2 (y) is the orthogonal approximate characteristic function
of the 2D difference operator h2∆D. The corresponding eigenvalue is λ1 + λ2.

In fact, the 2D difference operator h2∆Dφ
= [φ (r + 1, s) + φ (r − 1, s) + φ (r, s+ 1) + φ (r, s− 1)− 4φ (r, s)]
= [φ (r + 1, s)− 2φ (r, s) + φ (r − 1, s)]+[φ (r, s+ 1)− 2φ (r, s) + φ (r, s− 1)]. If

the φ (x,y) is tensor product of φ1 (x) and φ2 (y), then h2∆Dφ (x,y) is approximately
transformed into λ1φ (x,y) + λ2φ (x,y) = (λ1 + λ2)φ (x,y).
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Using the difference operator to obtain the approximate values of the inner prod-

uct
〈
h2∆φi

j,φ
m
n

〉
and inner product

〈
h2∆ψ,φm

n

〉
and substituting them into equation

(4.12), the following equation can be obtained:

(4.14) Mc+B = 0.

where B = [200, 200, 0, 0, 200, 200, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T. c = [c01, c
1
1, c

2
1, c

3
1, c

0
2, c

1
2,

c22, c
3
2, c

0
3, c

1
3, c

2
3, c

3
3, c

0
4, c

1
4, c

2
4, c

3
4]
T. M =

[
M11 M12

M21 M22

]
, thereinto

M11 =



−8 0 0 0 2 0 2 0
0 −16 0 0 0 2 0 2
0 0 −16 0 −2 0 −2 0
0 0 0 −24 0 −2 0 −2
2 0 −2 0 −8 0 0 0
0 2 0 −2 0 −16 0 0
2 0 −2 0 0 0 −16 0
0 2 0 −2 0 0 0 −24



M12 =



2 2 0 0 0 0 0 0
−2 −2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 −2 −2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 − 2 −2 0 0
0 0 0 0 0 0 2 2
0 0 0 0 0 0 − 2 −2



M21 =



2 − 2 0 0 0 0 0 0
2 − 2 0 0 0 0 0 0
0 0 2 − 2 0 0 0 0
0 0 2 − 2 0 0 0 0
0 0 0 0 2 − 2 0 0
0 0 0 0 2 − 2 0 0
0 0 0 0 0 0 2 − 2
0 0 0 0 0 0 2 − 2



M22 =



−8 0 0 0 2 0 2 0
0 −16 0 0 0 2 0 2
0 0 −16 0 −2 0 −2 0
0 0 0 −24 0 −2 0 −2
2 0 −2 0 −8 0 0 0
0 2 0 −2 0 −16 0 0
2 0 −2 0 0 0 −16 0
0 2 0 −2 0 0 0 −24


Using the iterative method, formula (4.14) takes the form of c = Ac+ f , yielding

the spectral radius of matrix A, ρ (A) = 0.6667 < 1. The iterative method con-
verges, and the solution is as follows: c = [c01, c

1
1, c

2
1, c

3
1, c

0
2, c

1
2, c

2
2, c

3
2, c

0
3, c

1
3, c

2
3,
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c33, c
0
4, c

1
4, c

2
4, c

3
4]
T = [40.0567, 12.4053, -6.1553, -0.8523, 40.0567, 12.4053, 6.1553,

0.8523, 9.9431, 4.0719, -2.1780, -0.8523, 9.9431, 4.0719, 2.1780,0.8523]T. Then, we

calculate φ ≈
∑4

j=1

∑3
i=0 c

i
jφ

i
j + ψ and get the distribution of internal potential

inside the electrolytic cell shown in Figure 7:

Figure 7. Graphical function φ ≈
∑4

j=1

∑3
i=0 c

i
jφ

i
j + ψ

5. Completeness of the basis function for the OSFG-based FEM

When using the weighted residual method to solve operator equations, the basis
function family and the weight function family should form a complete system.
Now, let us demonstrate the completeness of the OSFG-based finite element basis
function.

First, it is limited to the region Ω that can only be divided into basic graphs; a
Lebesgue square-integrable function is defined on region Ω. The real variable func-
tion theory shows that a continuous function always exists for a Lebesgue square-
integrable function defined on a bounded closed region Ω, and the distance between
them can be arbitrarily small, As long as the diameter of the support domain of
the impulse basis function is sufficiently small, the distance between the continuous
function and the linear combination of the impulse basis functions on the bounded
closed region Ω is arbitrarily small according to the uniform continuity of the con-
tinuous function on the bounded closed region. The OSFG-based finite element
basis functions and the impulse basis functions can linearly represent each other.
Therefore, the linear combination of the OSFG-based finite element basis function
is dense everywhere in the Lebesgue square-integrable function space. This proves
the completeness of the basis function of the FEM of the orthogonal step functions
group [13, 15, 17, 7, 5, 8].

We consider the Lebesgue square-integrable function on a general bounded closed
region Ω′. A bounded closed region Ω′ can always be covered by a graph concate-
nated by basic graphs. Among these basic shapes, only the following two types
are considered: the entire graph falls inside the region Ω′ or the graph falls on the
boundary of the region Ω′. They are called internal and boundary basic graphs,
respectively. The region where the internal and boundary basic graphs are com-
bined is denoted as Ω, and the region Ω covers the bounded closed region Ω′. We
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define a function on a region Ω as the function that is the original Lebesgue square-
integrable function on the region Ω′ and a function whose value is defined as zero on
the difference set between Ω and Ω′. This defines a new Lebesgue square-integrable
function on Ω, which can be approximated by a linear combinations of OSFG-based
finite element basis functions on Ω. The linear combinations also approximate the
original Lebesgue square-integrable function on Ω′. Such is proved the completeness
of the OSFG-based finite element basis function.

6. Differential operator equations on bounded closed regions

Considering that the differential operator equation on the bounded closed region
Ω′ : Lφ = f (inside the region Ω′ ) and meeting the boundary conditions (on the
boundary Γ ), we expand the bounded closed region Ω′ into a union Ω of basic
graphs using the method described in Section 5 and use the linear combination of
the members of orthogonal step functions groups on each internal basic graph as
the approximate value of the desired function inside the region. The selection of
OSFGs should be conducive to faster convergence when using the iterative method.
Then, the difference operator LD is used to replace the differential operator L; the
Galerkin method is used to find the solution of the PDE. The following describes
the processing of boundary points using a square as an example of the basic graph:

The first boundary value problem: At this point, the boundary condition is φ = g
on the boundary Γ , and the value of the center point on each basic graph of the
boundary is the value of the boundary point closest to the center point that falls
on the basic graph.

The second and third boundary value problems: At this point, the boundary
condition on the boundary Γ is as follows:

(6.1)
∂φ

∂n
+ aφ = g.

The boundary curve Γ passes through a square with a center point P (as shown
in Fig. 8), where S is the closest point on the boundary curve Γ to point P , with
its outer normal vector being n .

(6.2)
∂φ
∂n |P =

{
∂φ
∂x cos(n, x) +

∂φ
∂y cos(n, y)

}
P
≈ φ(Q)−φ(P )

h cos(n, x) + φ(R)−φ(P )
h cos(n, y).

Therefore, at point P , the following approximate equation can be obtained:

(6.3) φ(Q)−φ(P)
h cos(n, x) + φ(R)−φ(P)

h cos(n, y) + aφ (P ) = g (S) .

7. Conclusions

The FEM of the OSFG involves taking a linear combination of orthogonal step
functions as the approximation function for the partition elements, thereby approx-
imating the field function in segments. The differential operator equations should
be differenced first, and then the Galerkin method should be used to transform the
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Figure 8. Processing of the boundary condition of square basic figure.

differential operator equations into a system of linear algebraic equations. The coef-
ficient matrix of the system of linear algebraic equations is a sparse matrix. It is an
approximate diagonal block matrix composed of many small block matrices, which
can be approximately diagonalized by diagonalizing each small block or each con-
solidation block to reduce the spectral radius of the corresponding iteration matrix.
Therefore, the number of iterations required to achieve a certain accuracy for the
solution of the equation system is reduced, and consolidation block diagonalization
can be reused until the spectral radius is satisfactory. This study introduced the
concept and the construction method of OAEG of a given operator. If an orthogo-
nal step function system adopted an orthogonal approximate characteristic function
system and used it as the basis function in the Galerkin method, the differential
operator equation was transformed into a linear algebraic equation system, in the
coefficient matrix of the linear algebraic equation system, each small matrix itself
was a small diagonal matrix. The OSFG adopted an extended group of orthog-
onal approximate characteristic function groups to reduce the number of nonzero
elements in the corresponding iteration matrix. The OSFG was composed of jump-
ing constant-valued functions and was equivalent to a set of pulse basis functions.
Therefore, it simplified integration operations and helped to approximate singular
points of the function being solved.
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