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buildings, rather than integrating for the sake of integration. Intelligent integration
is only a means rather than the ultimate goal.

Ramamurthi pointed out that smart buildings are composite systems that rely
on buildings as the supporting space and comprehensively consider multiple condi-
tions. The intelligence attribute of smart buildings is reflected in the autonomous
decision-making and adaptive control of various subsystems [10]. Fang believes that
the intelligence attribute of architecture is set by human standards. The decision-
making system in smart buildings will actively adjust and improve the temperature
and air quality in the environment based on human livability[5]. Iqbal pointed out
that smart buildings must first have the ability to perceive complex environments,
such as temperature, humidity, oxygen content, and hazards within the building
space. So to achieve intelligent design of buildings, it is necessary to first build an
IoT system that includes multiple sensor nodes [6]. Tinhinane believes that the
Internet of Things system is the core and framework of smart buildings. It obtains
data on the building environment through bottom end sensors, extracts and pro-
cesses this data to obtain effective information, and then integrates this information
through decision-making modules to form new control and adjustment instructions,
ultimately achieving real-time changes to the building environment to meet human
requirements such as safety and comfort[14]. Vilares believes that the key differ-
ence between intelligent buildings and smart buildings is that smart buildings can
not only passively collect environmental information, but also adjust various sub-
systems attached to the building platform to make changes that are beneficial to
human needs. Intelligent buildings are limited to the functional level, while smart
buildings have reached the decision-making level [15]. Djenouri has developed a
framework for smart buildings using the Internet of Things system architecture,
and designed multiple subsystems within it. Based on the decision tree method,
the framework forms the core control unit of the entire building, giving it some
intelligent attributes [4]. Kuttichira uses the Kalman filter model to predict and es-
timate multi-sensor control information within the Internet of Things, providing an
automated control solution for smart buildings [7]. Northardt conducted research
on energy consumption in Pakistan and pointed out that buildings have the greatest
potential for energy conservation. Based on this, he concluded that using efficient
light-emitting diodes and sunlight for lighting and heating can significantly reduce
building energy consumption [9].

From the previous research work, it can be seen that smart buildings have higher
decision-making level attributes compared to smart buildings. Smart buildings can-
not do without the framework of the Internet of Things system, and decision models
are the core of realizing their intelligent attributes. In this article, an IoT frame-
work for smart buildings is constructed, and twin deep learning networks are used
to achieve intelligent control of buildings, thus achieving the architecture design of
smart buildings.

2. Architecture design and decision-making method design for smart
buildings

2.1. Architecture Design of Smart Buildings. Smart buildings are complex
systems. In order for a building to have intelligent attributes, it should contain
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at least 5 levels: first, the building level, which includes various building units,
equipment, and environments. Secondly, the sensor layer is responsible for collect-
ing status information from devices and the environment. Common sensors include
temperature sensors, humidity sensors, oxygen sensors, and carbon dioxide sensors,
but are not limited to these. Thirdly, the network layer is responsible for connecting
sensors at various locations into a network. It is precisely through this layer that
smart buildings form an Internet of Things in the physical dimension. Fourthly, the
knowledge layer analyzes and organizes various data and information transmitted
from the network layer to form knowledge that can be used by the decision-making
layer. Fifth, the decision-making layer utilizes intelligent algorithms to form au-
tonomous decisions based on the knowledge transmitted from the knowledge layer.
Based on this, the architecture design of smart buildings is presented as shown in
Figure 1.

Figure 1. Architecture Design of Smart Buildings

From Figure 1, it can be seen that the key to realizing the intelligent attributes
of architecture lies in the decision-making level. The decision-making level needs
to have the ability of intelligence. Without human intervention, it can form au-
tonomous decisions based on sensor information and self built knowledge base, ad-
just equipment parameters autonomously, and achieve the effect of changing build-
ing and environmental characteristics, improving building livability and safety. Ob-
viously, in order for decision-makers to achieve their expected goals, they need to
process a large amount of data and conduct effective analysis and processing of this
data in order to obtain the best decisions. Therefore, the algorithm configured by
the decision-making level is the core content of smart building design. In this article,
twin deep learning networks are used as the core algorithm for the decision-making
layer.

2.2. Design of Deep Learning Method for Smart Building Decision mak-
ing Layer. Deep learning networks can learn complex data with multiple variables
and achieve a stable internal structure through a large number of iterative processes.
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At this point, deep learning networks can generate reasonable outputs or decisions
based on new inputs. In the design of smart buildings, building information, equip-
ment information, and environmental information are all collected through various
sensors, which become inputs for deep learning. The goal of deep learning networks
is to determine whether a building is safe and livable based on this data. If the ideal
values of safety and livability are not achieved, autonomous adjustments need to be
made to provide adjustment values at the output of the deep learning network. It
can be seen that this process should fully refer to human judgment standards for
safety and livability.

In the deep learning network we construct, we need to consider not only the
various information collected by sensors, but also the reference information of human
standards. Therefore, we designed a twin network with two channels, as shown in
Figure 2.

Figure 2. Deep Learning Framework of Twin Networks

From Figure 2, it can be seen that the twin deep learning network contains
two learning channels. This structure is significantly different from single channel
deep learning networks. For example, general deep networks such as CNN and
RNN are single channel structures that learn and train directly based on input to
obtain output. The dual channel structure in Figure 2 is responsible for inputting
and processing human standard reference information, which corresponds to the
reasonable values of sensors at various nodes of the smart building. The following
channel is responsible for inputting and processing the true values measured by
the sensors. The mutual reference and borrowing between the two channels greatly
increases the credibility of the output results. The module units and structures
of the two channels are exactly the same, both containing multiple convolutional
layers, attention mechanism layers, and so on. The processing results of the two
channels provide a basis for the final adjustment and decision generation of smart
buildings.

In twin deep learning networks, the only difference between the two channels is
that human standard reference information is fed into the channel attention module
for processing. And the true value of the sensor is sent to the spatial attention
module for processing. Firstly, let’s observe the structure of the channel attention
module, as shown in Figure 3.

In Figure 3, the keywords extracted from the human standard reference informa-
tion are represented A ∈ RC×H×W and it can be reshaped RC×N , N = H × W .
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Figure 3. Structure of Channel Attention Module

The further operation is to perform a multiplication operation on RC×N and the
transpose of A, which is fed into the Softmax function to generate an attention map
X ∈ RC×N , as shown in Equation (2.1):

(2.1) Xji =
exp (Ai ·Aj)∑N
i=1 exp (Ai ·Aj)

Here, Ai is the variable at the i-th position in the channel module, Aj is the
variable at j-th position in the channel module, N is the total number of variables,
and Xji is the mutual influence between the two channels.

Furthermore, A and the transpose of X is performed multiplication, followed by
β scaling. Finally, E ∈ RC×H×W can be obtained by Equation (2.2).

(2.2) Ej = β

N∑
i=1

(xijAi) +Aj

At this point, all the features of the human standard reference information have
been associated and assigned different weights, improving the reliability of subse-
quent learning.

The structure of the spatial attention module in the processing channel of the
sensor’s real information is shown in Figure 4.

Figure 4. Structural Design of Spatial Self Attention Network

In Figure 4 , the keywords A ∈ RC×H×W extracted from the sensor’s real infor-
mation are convolved to feature maps B,C, and D. Feature map B correspond to
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query features Q ∈ RC×N . Feature map C corresponds to key features K ∈ RC×N .
Perform multiplication processing between Q and K, and send the result to Softmax
to generate an attention map S ∈ RC×N , as shown in Equation (2.3):

(2.3) Sji =
exp (Bi · Cj)∑N
i=1 exp (Bi · Cj)

Here, Bi is the variable at the i-th position in the spatial module, Cj is the variable
at the j-th position in the spatial module, N is the total number of variables, and
Sji is the impact between the two channels.

Furthermore, the transpose of S is multiplied with the eigenvalues, then scaled
by α. Finally Ej can be obtained by Equation (2.4).

(2.4) Ej = α

N∑
i=1

(SijDi) +Aj

Here, α is the scaling factor, Di is the i-th eigenvalue in the module.

3. Experimental results and analysis

In the previous work, the architecture of smart buildings was designed and an al-
gorithm based on twin deep networks was constructed for their autonomous decision-
making. To verify the effectiveness of the aforementioned research work, further
experimental studies will be conducted.

The scene in the experiment is set on a certain floor inside the building. This
floor contains a total of 10 rooms, distributed on both sides of the hallway, with
5 rooms on each side. The planar structure diagram of the experimental scene is
shown in Figure 5.

Figure 5. Plan structure diagram of experimental scene
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In Figure 5, sensor nodes are arranged in each room, which can carry temperature
sensors, humidity sensors, carbon dioxide sensors, carbon monoxide sensors, etc., to
collect environmental information in the room. Here, the selection of sensors should
match their coverage capability. For example, if the room area is large, sensors with
a larger coverage range should be selected. If a sensor cannot cover the room area,
it is necessary to increase the number of sensors. Taking temperature sensors as
an example, we have chosen the PT1000 temperature sensor, which has a large
coverage area, high sensitivity, and low power consumption.

Meanwhile, the sensor nodes are equipped with wireless communication modules
that can communicate with network nodes in the hallway. The wireless communi-
cation mode here has chosen the ZigBee wireless communication protocol. ZigBee
wireless communication has low power consumption and also has a good auxiliary
effect on building energy conservation.The network nodes in the hallway then trans-
mit the information to the decision computer nodes. A decision algorithm based on
twin deep learning networks, running on a decision computer. The decision com-
puter can control the air conditioning equipment, alarm devices, etc. in each room
based on information from sensor nodes. For example, when the temperature is
not suitable, the decision computer can control the air conditioning in the room
to automatically adjust the temperature; When a fire occurs in the room and the
concentration of carbon monoxide increases, the decision computer can control the
alarm equipment in the room to emit an alarm sound.

Sensor data has a significant impact on the decision-making process of the entire
system, and selecting sensors with high sensitivity and reliability can increase the
credibility of the decision-making process. Of course, unexpected environmental
conditions or force majeure may result in inaccurate or variable sensor data. Due
to space limitations, a detailed explanation of the calibration and error checking
mechanisms for sensors will be provided in an additional submission. Here, only
the normal operation of the sensor is considered.

The first experiment is to automatically adjust the temperature of different rooms
in the experimental scene. In the experiment, room 1 and room 6 were selected
respectively. These two rooms are located on both sides of the hallway, with room
1 having better lighting and room 6 having relatively poorer lighting. After the
twin deep learning network algorithm on the decision-making computer of the smart
building has been trained, it will be used for temperature monitoring and automatic
adjustment in these two rooms. The temperature variation curves of two rooms over
time are shown in Figure 6.

From Figure 6, it can be seen that the temperature curve of Room 1 is generally
higher than that of Room 6. There is a certain temperature difference between
room 1 and room 6 because room 1 is located on the sunny side with sufficient
sunlight, resulting in a higher temperature. And Room 6 is located on the shaded
side, with insufficient lighting and therefore a lower temperature.

This is because the two rooms have set different suitable temperatures according
to the needs of different people. As time passed, the temperature in both rooms
reached its peak between 11 and 12 o’clock. At this point, the temperature informa-
tion collected by the sensor nodes in the two rooms will be transmitted back to the
decision layer through the network nodes. The decision-making layer automatically
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Figure 6. Temperature variation curves of two rooms over time

adjusts the air conditioning equipment in the room based on the algorithm of the
twin deep learning network, referring to the suitable temperatures already set for
the two rooms. The temperature in room 1 gradually adjusted to 25.8 degrees, and
the temperature in room 6 gradually adjusted to 25 degrees. It can be seen that
after the adjustment of the twin deep learning network, the building has reached a
better suitable temperature, demonstrating the attributes of a smart building.

The second set of experiments will be conducted from a safety perspective for
verification. Set up a fire source in room 9 to simulate the situation when a fire
occurs. The sensor nodes in the room simultaneously monitor the oxygen content
and carbon monoxide gas content in the room, and the concentration change curves
of the two gases are shown in Figure 7.

From Figure 7, it can be seen that at the initial monitoring moment, the oxygen
content in room 9 is at a normal level. Afterwards, the fire source in the room was
ignited, and oxygen gradually decreased as it participated in the combustion. At
first, the trend of oxygen reduction was relatively slow, but as the fire continued to
intensify, the trend of oxygen reduction became more intense. The concentration of
carbon monoxide gas in the room increased significantly after 40 seconds, and then
gradually expanded with a more obvious increasing trend. After the sensor nodes
in the room effectively capture this information, the deep learning algorithm on the
decision computer can already determine that a fire has occurred in the room and
control the alarms in the room and hallway to beep. The above experiment confirms
that the smart building we designed has the ability to autonomously judge safety.

However, this research is still in its early stages and has not been thoroughly
considered for some complex situations. For example, there may be deviations
in the adaptability of different users to high and low temperatures. After different
users enter the same room, they need to manually adjust the input data of the upper
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Figure 7. Concentration variation curves of two gases

channel in the deep network in order to enable the autonomous decision-making of
smart buildings to meet their needs. These will be further analyzed and discussed
in subsequent research. In future research, the autonomous perception capability of
smart buildings can be further expanded to include the ability to control and solve
problems, such as autonomously extinguishing fires after detecting them.

4. Conclusions

Smart buildings have become the future development trend of the construction
industry. Smart building is a further improvement on the basis of smart building,
with better intelligent attribute characteristics. In this article, the architecture of
smart buildings was first designed. According to the five levels of division, the
design of the Internet of Things hierarchy has been carried out for smart buildings.
In the design of intelligent algorithms at the decision-making level, a deep learning
architecture based on twin networks was adopted, and detailed designs were made
for spatial attention mechanism and channel attention mechanism. During the
experiment, a scene consisting of 10 rooms was set up. Experiments were conducted
from two aspects: temperature adjustment and fire alarm, and the experimental
results proved that the proposed deep learning algorithm endows buildings with
intelligent attributes.
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