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such as meteorological data and soil characteristics, to establish prediction mod-
els [1, 2]. These models can provide a certain degree of predictive accuracy but are
often limited by data constraints and model assumptions. In recent years, with the
rapid development of machine learning and artificial intelligence technologies, more
and more research has begun to explore the use of these advanced technologies to
improve the accuracy and efficiency of crop yield predictions. Machine learning
algorithms such as Support Vector Machines (SVM), Random Forests, and neu-
ral networks are widely used in crop yield prediction. These algorithms can learn
complex patterns and relationships from large amounts of data, thereby improving
predictive accuracy. Khaki et al. [6] combined CNN and Recurrent Neural Networks
(RNN) to design a network that predicted soybean and corn yields in 13 states of
the United States. Romero et al. [12] applied decision trees and association rule
mining to classify the factors constituting durum wheat yield. Zeng et al. [18]
used Support Vector Regression to predict winter wheat yield in the Guanzhong
Plain of Shanxi Province. Lin et al. [9] utilized the Random Forest algorithm to
predict winter wheat yield in Henan Province using remote sensing, climate, and
soil data. In recent years, with the development of deep learning theory and the
enhancement of GPU performance, CNN [7] and LSTM [4, 14] have achieved sig-
nificant success in the field of time series prediction due to their powerful ability
to capture spatial features. Kolmogorov-Arnold Network (KAN) [10] can efficiently
approximate complex multivariate functions and have important applications in
neural networks, especially for tasks requiring efficient approximation and handling
of high-dimensional data, fully leveraging their advantages in processing multivari-
ate inputs and complex nonlinear relationships. Russello [13] used CNN to predict
grain yield based on satellite images. Nevavuori et al. [11] proposed a CNN model
to predict crop yield using NDVI and RGB data obtained from drones. Since crop
growth is a typical time series accumulation process, the LSTM model is more suit-
able for extracting time series features to solve the crop yield prediction problem. In
summary, using environmental factors and other multi-source data to predict crop
yield is an important direction in current agricultural research. This paper aims
to address the shortcomings of different methods and models in existing research
and proposes a CLKA-NET model based on LSTM networks and KAN to provide
new ideas and methods for crop yield prediction. Specifically, we will explore the
potential and application of this method in crop yield prediction. Through this
research, we hope to provide agricultural producers and policymakers with more
accurate and reliable crop yield prediction tools, thus contributing to food security
and sustainable agricultural development.

2. Materials and methods

2.1. Principles of LSTM Networks. LSTM is a special type of Recurrent Neural
Network (RNN) that has a stronger memory capacity compared to standard RNN,
making it better suited for handling long-term dependencies. The key innovation
in LSTM networks is the introduction of a triple gating mechanism, which includes
the forget gate, input gate, and output gate. This gating mechanism effectively
addresses the issues of gradient vanishing and gradient explosion that occur during
the training of long sequences, thus enabling LSTM to perform better on tasks
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involving long sequences. The structure is illustrated in Figure 1. The operational
principles of an LSTM network can be described by the following set of equations:

(1)Forget Gate Mechanism: As a regulatory component in the memory retention
process, the forget gate modulates the retention degree of historical cellular state
information across temporal sequences. This gate processes the concatenated vec-
tor composed of the preceding hidden state ht−1 and current input xt, subsequently
generating retention coefficients through nonlinear transformation. These coeffi-
cients, constrained within the interval [0,1], quantify the preservation proportion
for each cellular state element. This process can be mathematically expressed as:

(2.1) ft = σ(Wf · [ht−1, xt] + bf )

where Wf denotes the trainable weight matrix that projects the concatenated input-
hidden vector into gate space, bf represents the corresponding bias vector, and σ(·)
signifies the logistic activation function that ensures output normalization.

(2)Input Gate Mechanism: Serving as the information integration controller, this
gate regulates the integration intensity of novel information into the cellular memory
system. Through processing the concatenated vector formed by historical hidden
state ht−1 and current input xt, this mechanism generates dual outputs: an update
coefficient vector it quantifying cellular state modification weights within [0,1], and a
candidate value vector Vt for updating the cell state within [-1,1]. The mathematical
implementation involves two Equation in(2.2) and (2.3):

(2.2) it = σ(Wi · [ht−1, xt] + bi),

(2.3) Vt = tanh(Wc · [ht−1, xt] + bc)

where Wi and bi denote learnable parameter matrices for generating the update gate
control signal, while Wc and bc parameterize the nonlinear feature transformation
for candidate state generation. The σ(·) is the sigmoid function, and the hyperbolic
tangent tanh(·) ensures nonlinear feature normalization.

(3)Cell State Updating Mechanism: The cell state Ct is dynamically adjusted by
integrating historical memory and novel features through gated operations. Specif-
ically, the forget gate ft modulates the retention degree of prior cell state Ct−1,
while the input gate it controls the incorporation of candidate value Vt generated
from current inputs. This hybrid update process is mathematically defined as:

(2.4) Ct = ft ⊙ Ct−1 + it ⊙ Vt

where ⊙ denotes element-wise multiplication (Hadamard product), enabling local-
ized adjustments to memory retention and renewal.

(4)Output Gate Mechanism: The output gate regulates the exposure intensity of
long-term memory stored in the cell state to subsequent network layers. By integrat-
ing the preceding hidden state ht−1 and current input vector xt, this gate generates
a modulation coefficient ot ∈ [0, 1] through sigmoid normalization, which quantifies
the contribution of each cell state element to the final output. The operational
principle is mathematically formulated as Equation (2.5):

(2.5) ot = σ(Wo · [ht−1, xt] + bo)
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where Wo and bo denote the learnable weight matrix and bias term specific to the
output gate.

(5) Hidden State Generation: The hidden state ht acts as a gated output of
the cell state Ct, selectively propagating information to downstream layers and
subsequent time steps. This is achieved through element-wise modulation of the
hyperbolic tangent-transformed cell state by the output gate ot, as formalized in
Equation (2.6):

(2.6) ht = ot ⊙ tanh (Ct)

where,⊙ denotes Hadamard product (element-wise multiplication), enabling local-
ized feature amplification or suppression. tanh(Ct) compresses the cell state into
the range [−1, 1], stabilizing gradient flow while preserving directional information
of memory features . ot ∈ [0, 1] quantifies the exposure intensity of each cell state
element, determined by the output gate.

Figure 1. LSTM network structure diagram

The workflow of a LSTM network can be divided into the following steps: input
processing, calculating the forget gate, calculating the input gate and candidate
memory cell, updating the memory cell, calculating the output gate, and computing
the final output. The specific steps are as follows: LSTM receives the input xt at
the current time step, the hidden state ht−1 from the previous time step, and the
memory cell state Ct−1 from the previous time step. First, the forget gate outputs ft,
which determines how much information from the previous cell state Ct−1 should
be retained. Then, the input gate it determines how much new information will
be added to the memory cell. The candidate memory cell Vt represents the new
candidate information. The forget gate ft controls the extent to which the previous
memory cell Ct−1 is forgotten. The input gate it and the candidate memory cell
Vt control the update of the memory cell Ct at the current time step. The LSTM
finally outputs the hidden state ht at the current time step through the output gate.
This hidden state not only contains the processing result of the current input xt
but also retains the information passed down from the previous time steps.
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LSTM layer is primarily used to capture the key features that change over time
within the dataset. These features include climate variations during different stages
of crop growth, seasonal effects, and long-term trends. By processing these time-
dependent features, the LSTM effectively extracts hidden temporal patterns from
the data, providing more representative input data for the subsequent KAN layer.
This process ultimately enhances the accuracy of the final predictions.

2.2. KAN Theorem. KAN is a type of network model capable of approximating
any multivariate continuous function, possessing powerful nonlinear mapping capa-
bilities. Similar to MLP structures, KAN also features a fully connected structure.
While MLP sets fixed activation functions on neurons, KAN sets learnable acti-
vation functions on weights. Compared to traditional multi-layer neural networks,
KAN require fewer parameters when handling high-dimensional data, reducing both
computational complexity and the risk of overfitting. KAN achieves approximation
of high-dimensional inputs by constructing combinations of one-dimensional func-
tions. The basic principles of KANs networks are as follows: Kolmogorov-Arnold
Representation Theorem: Any continuous multivariate function f(x1, x2, . . . , xn)
can be represented as a sum of several one-dimensional functions shown in (2.7).

(2.7) f(x1, x2, . . . , xn) =
2n+1∑
q=1

Φq

( n∑
p=1

ϕq,p(xp)
)

where Φq and ϕq,p are single-variable one-dimensional continuous functions. Grain
yield prediction involves various factors, including climate data, soil information,
etc. KAN can effectively handle these multivariable inputs by leveraging the
Kolmogorov-Arnold Representation Theorem to decompose high-dimensional inputs
into combinations of one-dimensional functions, thereby achieving efficient approx-
imation of complex functions. There often exists nonlinear relationships between
grain yield and each input variable. KAN are capable of accurately capturing and
modeling these complex nonlinear relationships through the nonlinear combination
of one-dimensional functions.

2.3. Proposed CLKA-NET Network. The paper proposes a CLKA-NET net-
work. CNN have powerful feature extraction capabilities in raw data, so we incor-
porate CNN into the model to capture temporal and spatial dependencies, auto-
matically learn, and extract complex features from the data. Specifically, the CNN
layers can identify local patterns and spatial relationships in the data, extracting
high-dimensional feature representations. Next, we feed the features extracted by
the CNN into the LSTM layer. The LSTM layer excels at handling sequential data,
capturing long and short-term dependencies over time, thus outputting a hidden
state sequence containing temporal dependencies. The introduction of LSTM allows
the model to effectively deal with the gradient vanishing and exploding problems
in time series data, ensuring good performance even on data with long temporal
spans. To further enhance the model’s non-linear expression capabilities, we intro-
duce KAN. KAN, through a series of nonlinear transformation functions, can better
capture complex patterns and features. By inputting the hidden state sequence out-
put from the LSTM layer into KAN, the model can extract and integrate deep-level
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features of the data more deeply. The nonlinear transformation functions of KAN
have powerful expression capabilities, capable of handling complex relationships in
high-dimensional data, compensating for the shortcomings of the LSTM layer in
certain complex pattern recognition tasks. Finally, the model structure, combining
CNN, LSTM, and KAN layers, as shown in Figure 2, can more accurately extract
and process multi-level features in the data, improving the accuracy of crop yield
prediction.

Figure 2. CLKA-NET network architecture

2.4. Implementation Steps of the Improved Method. Step 1: Data Prepro-
cessing. Standardize the input data to ensure that all features are on the same
scale, facilitating better learning by the model.

Step 2: CNN Feature Extraction. Utilize convolutional layers and pooling layers
to extract spatial features from the input data. Convolutional layers extract local
features using filters.

Step 3: LSTM Time Series Modeling. Take the features extracted by CNN as
input and employ LSTM layers to capture the temporal dependencies of the data.
LSTM layers are effective in handling long time series data, retaining important
temporal information.

Step 4: KAN Nonlinear Mapping. Pass the output of LSTM to the KAN layer.
Through the combination of multiple one-dimensional functions, achieve approxi-
mation and nonlinear mapping of high-dimensional data.

Step 5: FCNN Output Prediction. Pass the output of KAN to the fully connected
layer for nonlinear transformation, ultimately outputting the prediction results. The
fully connected layer adjusts weights to enhance the model’s expression capability
and improve prediction accuracy.

The algorithm is described in pseudocode as Algorithm 1.

3. Results

3.1. Data Source. The dataset used in this study is sourced from Kaggle, named
Agricultural Crop Yield in Indian States Dataset [5]. This dataset contains agricul-
tural data of various crops planted in Indian states from 1997 to 2019. It provides
important features related to crop yield prediction, including crop type, crop year,
planting season, state, planting area, yield, annual rainfall, fertilizer usage, pesticide
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Algorithm 1 Training Process of CLKA-NET Model

Require: A training set X = (x1, x2, . . . , xn) and learning rate η
Ensure: A well-trained CLKA-NET model
1: Standardize the input data: Xnorm = MinMaxScaler(X)
2: Define model layers:
3: cnn layer = Conv1d(in channels = 9, out channels = 512, kernel size =

3, padding = 1)
4: lstm layer = LSTM(input size = 512, hidden size = 512, num layers =

1, dropout = 0.1)
5: kan layer = MultKAN(width = [seq dim, hidden size, pred dim], grid =

3, k = 3, seed = 1)
6: fcnn layer = Linear(in features = seq dim, out features = pred dim)
7: for epoch = 1 to N do
8: for each Xi in Xnorm do
9: Apply CNN layer: cnn out = cnn layer(Xi)

10: Apply LSTM layer: (lstm out, hidden state) = lstm layer(cnn out)
11: Apply KAN layer: kan out = kan layer(lstm out)
12: Apply FCNN layer: output = fcnn layer(kan out)
13: Compute loss: loss = LossFunction(output, yi)
14: Backpropagate loss: loss.backward()
15: Update parameters: optimizer.step()
16: end for
17: end for

usage, and yield. The focus of this dataset is to predict crop yield based on agro-
nomic factors such as weather conditions, fertilizer and pesticide usage, and other
relevant variables. The dataset is presented in tabular form, with each row repre-
senting data for a specific crop and its corresponding features. It consists of 19652
rows and 10 columns (9 features and 1 label). Figure 3 shows the distribution of
data volume across different years in the dataset. Figure 4 displays the distribution
of data volume for annual rainfall in the dataset, the unit of rainfall is milliliters.
Figure 5 illustrates the data distribution of production in the dataset, the unit of
production is metric tons.

3.2. Evaluation Metrics. The effectiveness of yield prediction model is evaluated
using Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE) and the coefficient of determination (R2). Their calculations
are shown in (3.1) - (3.4) respectively:

(3.1) MSE =
1

n

n∑
i=1

(yi − ŷi)
2

(3.2) RMSE =

√√√√ 1

n

n∑
i=1

(yi − ypi )
2
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Figure 3. Distribution of data volume across different years

Figure 4. Distribution of data volume for annual rainfall

(3.3) MAE =
1

n

n∑
i=1

|yi − ŷi|,

(3.4) R2 = 1−
n∑

i=1

(ypi − yi)
2/

n∑
i=1

(yi − y)2.

In the above equations, y represents the average statistical yield, with units of
103kg/hm2. yi and ypi respectively denote the actual yield and predicted yield
for the i − th unit. The higher the value of indicator R2, the better the model
performance is, and the lower the value of indicators MSE, RMSE, and MAE,
the better the model performance is.
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Figure 5. Distribution of yield data

3.3. Experiment Configuration. The experimental environment utilizes theWin-
dows 10 operating system, with an Intel 13th generation i5-13500HX processor and
an NVIDIA RTX 4070 graphics card with 8GB of memory. The development lan-
guage is Python, and PyCharm is used as the editor. During the model training
phase, the initial learning rate is set to 0.001, and the optimizer used is AdamW. The
error curve during model training is depicted in Figure 6. It can be observed that
the curve tends to stabilize when the number of iterations reaches 2000, indicating
model convergence.

Figure 6. Loss-Epoch curve

3.4. Comparative Experiments. To evaluate the accuracy of the CLKA-NET
crop yield prediction model proposed in this paper, the following seven benchmark
models were used for comparison on the dataset:
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1. RNN
Recurrent Neural Network are neural networks for sequence data, where each

output depends on previous computations. They are good for handling sequences
but struggle with long-term dependencies due to vanishing gradients.

2. LSTM
Long Short-Term Memory is an advanced RNN designed to handle long-term

dependencies using gating mechanisms, solving the vanishing gradient problem.
3. GRU
Gated Recurrent Unit simplifies LSTM by combining gates and reducing com-

plexity, offering similar performance with less computational cost.
4. Seq2Seq
Sequence to Sequence model converts one sequence to another, commonly used

in translation and text generation, often enhanced by attention mechanisms.
The results are shown in Table 1. Compared with RNN, LSTM, GRU and

Seq2Seq models, the CLKA-NETmodel proposed in this paper has the lowest MSE,
RMSE, MAE value, and the R2 value is slightly higher. Based on the evaluation
results of different time series prediction models, the following conclusions can be
drawn: The CLKA-NET model performs well in all evaluation indicators. Specif-
ically, The CLKA-NET model performs slightly better than Seq2Seq. In contrast,
the performance of the RNN and GRU models is at a moderate level. Although
their R2 are 0.9953 and 0.9936 respectively, showing a good fit, they are slightly
inferior in MSE, RMSE, and MAE. The LSTM model performs the weakest in
all evaluation indicators, indicating that its prediction accuracy is relatively low.
In summary, the CLKA-NET model is more suitable for high-precision time series
prediction tasks due to its superior performance in prediction accuracy. According
to the experimental data in Table 1, we can obtain the improvement percentage
of the CLKA-NET model in the four evaluation indicators compared with models
RNN, LSTM, GRU and Seq2Seq, as shown in Table 2.

Table 1. Comparative experiment of different models in yield prediction

Model MSE RMSE MAE R2

RNN 9.753× 10−6 3.123× 10−3 6.916× 10−4 0.9953
LSTM 19.78× 10−6 4.448× 10−3 9.592× 10−4 0.9905
GRU 13.20× 10−6 3.634× 10−3 7.619× 10−4 0.9936
Seq2Seq 7.878× 10−6 2.807× 10−3 5.403× 10−4 0.9962
CLKA-NET 7.566× 10−6 2.751× 10−3 4.990× 10−4 0.9964

The comparison between the proposed model the CLKA-NET and models RNN,
LSTM, GRU and Seq2Seq is shown in the histogram in Figure 7 and the line chart
in Figure 8. The CLKA-NET model has a lot of improvements over models RNN,
LSTM and GRU, and a slight improvement over model Seq2Seq. The visualization
results comparing predicted yield and actual yield are shown in Figure 9. From
Figure 9, it can be observed that the majority of data points lie along the equality
line. The overall fitting effect of the model to the actual data is good, indicating
that the model performs well for grain yield prediction tasks.
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Table 2. The improvement percentage of the CLKA-NET model

Model MSE (%) RMSE (%) MAE (%) R2 (%)

RNN 22.42 11.91 27.84 1.08
LSTM 61.74 38.15 48.00 0.60
GRU 42.70 24.27 34.52 0.28
Seq2Seq 3.96 2.00 7.64 0.02

Figure 7. Histogram comparing with other models

3.5. Ablation Experiment. In order to illustrate the effectiveness of the CLKA-
NET method proposed in this paper, an ablation experiment was conducted. The
experimental results are shown in Table 3. The descriptions of different methods
(A1–A4) are as follows:

1. A1: Model with only linear layers.
2. A2: Model without LSTM layer, only KAN layer and linear layer.
3. A3: Model without KAN layer, only LSTM layer and linear layer.
4. A4: The model proposed in this paper.

Table 3. Ablation Experiment of Different Methods

Method MSE RMSE MAE R2

A1 10.31× 10−6 3.211× 10−3 6.553× 10−4 0.9951
A2 58.76× 10−6 7.665× 10−3 14.15× 10−4 0.9719
A3 19.78× 10−6 4.448× 10−3 9.592× 10−4 0.9905
A4 7.566× 10−6 2.751× 10−3 4.990× 10−4 0.9964

In Table 3, by comparing the data of the LSTM(A3) model and the CLKA-
NET(A4) model proposed in this paper, we can conclude that combining the KAN
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Figure 8. Line chart of percentages compared to other models

Figure 9. Scatter plot comparing predicted yield and actual yield

layer and the LSTM layer can effectively enhance the model’s ability to capture
implicit features in the time series and improve the model’s ability and accuracy in
yield forecasting.

4. Discussion

Our model incorporates LSTM and KAN, enabling better capture of long-term
dependencies and crucial information in time series data. By combining climate and
soil data, our model can more accurately predict crop yields, providing better deci-
sion support for agricultural producers to enhance crop yield and quality, thereby
promoting agricultural sustainability.
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However, our method also has some limitations. Firstly, due to the complexity
of the model structure, there is a high demand for computing resources. The model
relies heavily on high-quality data, which can be challenging to obtain, especially in
the agricultural domain. Secondly, the model’s performance under extreme weather
events may not be robust enough and requires further improvement. Additionally,
the model only considers climate and soil data, overlooking other potential factors
affecting crop yield. Remote sensing data [8] is a valuable resource with signifi-
cant potential to provide comprehensive and accurate information for crop yield
prediction. Integrating remote sensing data with climate and soil data can further
enhance the model’s predictive capabilities and improve the overall understanding
of factors influencing crop yield. Therefore, one future research direction is to in-
corporate remote sensing data into crop yield prediction models to achieve more
precise and reliable predictions. Through continuous innovation and improvement,
we can leverage modern technologies to address various challenges in agricultural
production and make greater contributions to food security and agricultural sus-
tainability.

5. Conclusions

This study proposes a comprehensive model, CLKA-NET, which integrates CNN,
LSTM, KAN, and FCNN. The model utilizes CNN to extract features from input
data, followed by feeding these features into the LSTM layer to capture sequential
dependencies in the time dimension and output a sequence of hidden states. Then,
the KAN layer is employed to perform nonlinear transformations on the LSTM
outputs, extracting deep-level features, and finally, the FCNN layer integrates these
features to output the prediction results. The model is primarily used for crop yield
prediction based on climate and soil data.

Through experimental comparisons, we find that the model exhibits significant
advantages in crop yield prediction, demonstrating lower RMSE. This indicates
that the CLKA-NET model accurately captures the complex relationship between
environmental factors and crop yield, thus providing reliable prediction results.
Our research results indicate that utilizing deep learning models to handle time
series data and multidimensional environmental factors can significantly improve
the accuracy and stability of crop yield prediction. This is of great importance for
agricultural producers and decision-makers, as it can help them better formulate
agricultural management and policies, enhance crop yield and quality, and promote
sustainable agricultural development and food security. Future research can further
optimize the model structure, improve computational efficiency, and explore more
environmental factors and data sources to further enhance predictive performance
and applicability.
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