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FAULT DETECTION OF ELECTRICAL SYSTEM IN TREE
BARRIER CLEANING EQUIPMENT BASED ON COMPRESSED
PERCEPTION MODEL

QINZHU CHEN, HAILONG ZHAO, KANG LI, YICHENG OU, AND ZHENFENG HAN*

ABSTRACT. A detection method based on compressed sensing model is proposed
for the fault diagnosis of electrical systems in tree obstacle cleaning equipment.
Firstly, the electrical system faults of the tree obstacle cleaning equipment are
divided into three categories: circuit faults, control faults, and aging faults. Sec-
ondly, balance the imbalance of various fault data. Again, based on the com-
pressed sensing model, sparse representation and reconstruction of fault data
are performed, followed by clustering analysis of fault types using the KNN al-
gorithm. The experimental results show that our proposed method has higher
detection accuracy for 9 types of faults in the electrical system of tree obstacle
cleaning equipment.

1. INTRODUCTION

Tree obstacle cleaning equipment is a specialized electromechanical equipment.
To ensure the safe and stable operation of tree obstacle cleaning equipment to the
greatest extent possible, it is necessary to detect and diagnose electrical equipment
faults as early as possible [5,10, 14]. Electrical equipment fault diagnosis is an im-
portant research branch in the field of electrical technology, with research methods
including traditional physical model analysis, statistical analysis, machine learning,
and intelligent diagnostic techniques [3,6,12].

With the development of intelligence and digitization, many research focuses on
intelligent diagnosis, deep learning, and big data analysis. These methods identify
the characteristics and patterns of electrical equipment faults by analyzing a large
amount of historical data, thereby achieving rapid diagnosis of faults [4,13]. The
numerical data comes from infrared detection, ultraviolet detection, ultrasonic de-
tection, oil chromatography monitoring, and partial discharge monitoring, including
dissolved gas content in oil, discharge amount, temperature and other data, pro-
viding quantitative basis for fault diagnosis [2]. The power text information comes
from fault case reports, inspection records, test records, etc., including equipment
ledger data, fault phenomena, fault types, diagnostic criteria, etc., providing qual-
itative basis for fault diagnosis and playing an important guiding role [7]. Expert
systems simulate the knowledge, skills, and processing experience of domain experts,
usually using a series of rules and reasoning techniques to analyze data and make
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decisions, improving diagnostic efficiency and accuracy. They are a manifestation
of early artificial intelligence, but there are problems such as insufficient reasoning
ability and difficulty in development [11]. Traditional machine learning based di-
agnostic methods include support vector machines, K-nearest neighbor algorithm
KNN, etc. [1]. The principle of SVM text classification is to extract text feature
vectors through word bag models or TF-IDF models, and then classify them. It
requires manual construction of rule templates or dictionaries, which has problems
such as incomplete feature coverage and limited sentence meaning extraction abil-
ity [9]. There are diagnostic methods based on deep learning, such as Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), BERT, etc. Choudhary
proposed a CNN based transformer fault diagnosis method based on characteristic
gases, which has strong feature extraction ability, and the CNN itself has a simple
structure and short model training time [8,15,16].

On the basis of previous research results, this article fully considers the issue
of imbalanced electrical fault data and conducts fault diagnosis analysis based on
compressed sensing models after balancing processing, in order to improve the safety
of the electrical system of tree obstacle cleaning equipment.

2. PROPOSED METHOD

2.1. Fault classification of electrical systems for tree obstacle cleaning
equipment. Tree obstacle cleaning equipment is a large-scale electromechanical
equipment with a very complex internal structure and system composition. Various
functional units such as mechanical, electrical, control, and sensing are interlocked
and combined together, making it very difficult to identify the cause of faults once
they occur.

The common faults in the electrical system of tree obstacle cleaning equipment
can be divided into two categories: one is mechanical faults, which are purely caused
by mechanical parts, mechanisms, etc; Another type is electrical faults, which in-
clude faults in the electrical, control, and sensing parts. In this article, the main
focus is on the category of electrical faults. The common classification of electrical
faults in tree obstacle cleaning equipment is shown in Figure 1.

From Figure 1, it can be seen that in order to facilitate the sorting of faults in the
electrical system of the tree obstacle cleaning equipment, they are further divided
into three categories: the first category is electrical line faults, the second category
is control faults, and the third category is aging faults. In electrical circuit faults,
they can be further divided into open circuit faults of electrical circuits, open circuit
faults of electrical circuits, and misconnection faults of electrical circuits; In control
failures, they can be further divided into system controller failures, system critical
component failures, and various sensor failures; In aging faults, they can be divided
into circuit paint aging faults, circuit core aging faults, component aging faults, etc.
The specific category of a fault can vary depending on the situation. For example,
if there is a malfunction in the CPU or RAM of the electronic control system, it is
considered as a system controller malfunction and a critical component malfunction,
respectively; If there is a malfunction in the indicator light, travel switch, etc., it is
considered a sensor failure; If the circuit is short circuited due to aging of the paint,
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it is considered a fault of aging of the paint; If there is an open circuit due to aging
of the inner core, it belongs to an aging fault of the inner core of the circuit.

2.2. Balanced processing of electrical system fault data for tree obstacle
cleaning equipment. In order to achieve accurate diagnosis of electrical system
faults in tree obstacle cleaning equipment, it is necessary to iteratively train the
diagnostic model based on a large amount of raw fault data. The probabilities of
various types of faults shown in Figure 1 are different, and a small number of data
samples for a certain type of fault can lead to an imbalance in the training process.
Therefore, this article uses interpolation algorithm to balance the data of electrical
system faults in tree obstacle cleaning equipment, as shown in Figure 2.

As shown in Figure 1, the tree obstacle cleaning equipment’s electrical system
fault data balance processing steps are as follows:

The first step, set the set consisting of a small number of data as X, which
contains a total of n samples.

The second step, select sample z;(i € [1,n]) from a small dataset as the root
sample for synthesizing new samples.

The third step, based on the upsampling rate n , select an odd number k (for
example, k& = 3 ), and use k neighboring samples z;; as auxiliary samples for
synthesizing new samples, where z;; € X, j =1,2,... k.

The fourth step, generate a new sample by interpolation between the root sample
x; and the auxiliary sample z;;. The execution Equation for interpolation processing
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is shown in Equation (2.1):
(2.1) Tnew = Ti + 7" |Tij — @4 -

Here, xpew represents the new sample, v A random number that represents a
value in the 0 — 1 interval.

2.3. Fault data analysis based on compressive sensing model. In the field of
signal transmission, the Shannon Nyquist sampling theorem is a universal theorem.
According to this theorem, the frequency of the sampled signal must reach twice or
even higher times the frequency of the original signal in order to obtain meaningful
sampling, and the resulting sampled signal can reproduce the original signal.

However, the Shannon Nyquist sampling theorem also brings a prominent prob-
lem, as the amount of data obtained by sampling at high frequencies is relatively
large. For the fault diagnosis of the electrical system of tree obstacle cleaning equip-
ment, it is not only necessary to monitor multiple types of information at the same
time, but also to monitor for a long time, and then sample and extract signals ac-
cording to the Shannon Nyquist sampling theorem, which will result in a very large
amount of information. The collection of electrical fault related information for
tree obstacle cleaning equipment is too large, which not only leads to information
redundancy, but also brings huge computational burden to the fault diagnosis algo-
rithm and the generation of diagnostic results, resulting in a decrease in diagnostic
efficiency. Therefore, this article adopts the Compressed Sensing Model (CS model
for short), which uses a smaller amount of data to represent the original electrical
signals of tree obstacle cleaning equipment.
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Compared to the Shannon Nyquist sampling theorem, the biggest advantage of
the CS model is that it samples at a lower frequency. After obtaining relatively
sparse data information, the CS model is reconstructed according to certain rules
and can also reproduce the original signal, greatly reducing the storage of data and
subsequent calculations, diagnosis, and other processing.

It can be seen that sparse representation is the prerequisite and foundation for
CS models to process large-scale data. The condition that sparse representation can
be achieved is that if there are only a few non-zero values observed along the time
axis of the electrical system state, then the observed signal can be compressed, that
is, sparse representation. However, this sparse representation cannot be performed
in the normal signal domain. CS models generally need to change the signal or
observation data to other expression domains, such as the Fourier transform domain,
frequency domain, wavelet transform domain, and so on. In the transformation
domain, the redundancy of signals or observation data can be removed on a large
scale, achieving compression and sparse representation of signals or observations.

After sparse representation of signals or observation data, how to reconstruct the
original signal from this sparse signal is the core task of the CS model. This involves
the transformation from sparse data to dense data, and from low dimensional space
to high-dimensional space. This paper adopts an approximation solution method
of two norm processing to achieve the reconstruction of sparse signals by the CS
model. The core Equation for reconstruction is shown in Equation (2.2):

& = argmin ||z||o

2.2
(2:2) st. y=opx

Here, x represents the electrical system signal of the tree obstacle cleaning equip-
ment (represented by the sparse expression of the CS model), & represents the
electrical system signal that is approximated and solved according to the 0 norm,
argmin ||||p represents the approximation and solution operation of the 0 norm on
the data inside, y represents the observation values of the electrical system signal,
and ¢ represents the observation matrix.

The core Equation for reconstruction based on norm 1 is shown in Equation (2.3):

& = argmin ||z1

2.
(2:3) st.y=opx

Here, x represents the electrical system signal of the tree obstacle cleaning equip-
ment (represented by the sparse expression of the CS model), & represents the elec-
trical system signal reproduced by approximating and solving according to the norm
0,arg min ||||; represents the approximation and solving operation of the norm 1 on
the data inside, y represents the observation values of the electrical system signal,
and ¢ represents the observation matrix.

According to the approximation processing of norm 1, sparsely express the orig-
inal signal and then reconstruct it. Compared to the original signal, although the
reconstructed signal is based on sparse data, most of the effective waveforms in the
original signal are preserved and reproduced.

After compression processing of the CS model, a sparse representation of the
electrical system signal of the tree obstacle cleaning equipment can be obtained.
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In this way, the amount of data obtained through continuous observation will not
be very large, which can improve the efficiency of fault diagnosis. In further fault
diagnosis, perform KNN clustering diagnosis on the CS signals that have already
been obtained.

The execution strategy of the KNN method is very clear. By setting the data
values that are determined as faults, prior information that can be used as criteria
for fault type judgment is obtained. Afterwards, for the reconstructed CS signal,
the distance is calculated and compared with various fault standard values, and the
closest distance is the most reliable fault type discrimination result. It can be seen
that the key to the CS-KNN fault diagnosis method lies in the calculation of the
distance between the reconstructed signal value and the fault standard value. The
following methods are generally used here:

(1) Reconstruct the Euclidean distance between the signal value and the fault
standard value Euclidean distance is a commonly used distance calculation method
in the field of mathematics, which is also applicable to the fault diagnosis of the
electrical system of the tree obstacle cleaning equipment to be solved in this article.
Its form is shown in Equation (2.4):

(2.4) d(a,b) =

Here, a represents the reconstructed signal value, b represents the fault standard
value, a; represents the i-th coordinate of the reconstructed signal value in Euclidean
space, b; represents the i-th coordinate of the fault standard value in Euclidean
space, and d(a, b) represents the Euclidean distance between the reconstructed signal
value and the fault standard value.

(2) Manhattan distance between reconstructed signal value and fault standard
value

The calculation method of Manhattan distance is somewhat different from the
calculation method of Euclidean distance, one is to use the absolute difference value,
and the other is to use the difference square and then open the root sign, but its
connotation is basically the same.

3. EXPERIMENTAL RESULTS AND ANALYSIS

During the experiment, 10000 sets of actual data on electrical system faults of
tree obstacle cleaning equipment were selected as the experimental objects. These
10000 sets of data contain over 300 fault data, which are used to train the method
proposed in this article. During the training process, first observe the iterative
training effect before and after using data balance, as shown in Figure 3.

From Figure 4, it can be seen that without using data balancing, the peak and
valley fluctuations during the iterative training process are severe and strong. After
using data balancing, the iteration process becomes smooth. This is because there
is no negative impact caused by data with significant differences.

The following experiment will examine the performance comparison of the train-
ing process before and after CS-KNN fusion, as shown in Figure 4.
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FIGURE 4. Performance comparison before and after CS-KNN com-
bination

From Figure 4, it can be seen that the iterative training process of the entire
algorithm before CS-KNN fusion has a slow convergence speed and low convergence
accuracy. The iterative training process of the entire algorithm after CS-KNN fusion
has fast convergence speed and high convergence accuracy.
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In the previous work, a CS compression method and a CS-KNN fault diagnosis
method were constructed for the electrical system of tree obstacle cleaning equip-
ment. The effectiveness of the proposed method was verified through fault diagnosis
experiments. According to the three common types of faults and nine minor types
of faults in the electrical system of the tree obstacle cleaning equipment shown in
Figure 1, a fault variable mapping table is set up, as shown in Table 1.

TABLE 1. Variable Mapping of Various Faults

Fault type Primary variable Fault type Secondary variable
Circuit fault A Open circuit fault Al
Circuit fault A Short circuit fault A2
Circuit fault A Misconnection fault A3
Control fault B Controller fault B1
Control fault B Component failure B2
Control fault B Sensor fault B3
Aging fault C Circuit paint age C1
Aging fault C Circuit cores age C2
Aging fault C Component aging C3

Next, based on the fault variable mapping relationship in Table 1, 30000 data
were continuously collected from the electrical system of the tree obstacle cleaning
equipment, and fault diagnosis was carried out using the CS-KNN method proposed
in this paper. In order to compare the diagnostic performance with the method
proposed in this article, KNN and RNN methods were selected as reference methods.
The accuracy of three methods for diagnosing various types of faults is shown in
Table 2.

TABLE 2. Comparison of Closed Solutions and Proposed Method
Numerical Solutions

. Accuracy
Variable Fault type RNN KNN Ours
Al Open circuit fault 90.3% 83.2% 95.9%
A2 Short circuit fault 89.2% 85.4% 97.1%
A3 Misconnection fault 88.1% 84.3% 98.4%
B1 Controller fault 89.8% 86.7% 97.7%
B2 Component failure 90.7% 82.9% 96.5%
B3 Sensor fault 87.5% 85.4% 98.2%
C1 Circuit paint age 89.3% 88.6% 97.4%
C2 Circuit cores age 88.9% 86.6% 95.6%
C3 Component aging 87.4% 85.5% 97.9%

From the comparison of the fault diagnosis accuracy of the three methods in
Table 2, it can be intuitively seen that the CS-KNN method proposed in this paper
achieves the highest fault diagnosis accuracy, all reaching over 95%; Next is the
RNN method, with an average fault diagnosis accuracy of over 88.5%; The KNN
method is relatively poor. This comparative result fully confirms the advantage of
our method in terms of fault diagnosis accuracy.
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Further comparing the speed of three methods for fault diagnosis, this method
took 51.2 seconds, KNN method took 135.8 seconds, and RNN method took 146.7
seconds for fault diagnosis of 30000 test data. It can be seen that the fault diagnosis
speed of the method in this article is the fastest, and the time consumption is
much lower than the other two methods. To investigate the reason, this article
compressed the electrical system data of the tree obstacle cleaning equipment before
fault diagnosis, creating conditions for reducing the time required for subsequent
fault diagnosis.

4. CONCLUSIONS

Tree obstacle cleaning equipment is a complex electromechanical equipment, and
the safety of its electrical system directly affects the overall work efficiency of the
equipment. Based on this, a compressed sensing model based electrical fault de-
tection method is proposed. Divide the electrical system faults of the tree obstacle
cleaning equipment into three categories and nine subcategories: line faults, control
faults, and aging faults, and then balance the processing of different fault data.
Based on the compressed sensing model, sparse representation and reconstruction
of fault data are performed, followed by clustering analysis of fault types using the
KNN algorithm. The experimental results show that data balancing and CS-KNN
processing improve the performance of iterative training. Meanwhile, our proposed
method has higher detection accuracy for 9 types of faults in the electrical system
of tree obstacle cleaning equipment.
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