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this recognition serves as a pivotal technology across various commercial sectors,
including food, beverages, and perfumes, driving the innovation of new products,
enhancing quality control measures, and strengthening market competitiveness. In
addition to empirical investigations, researchers have actively pursued the elucida-
tion of the structure-odor relationship through theoretical calculations and simula-
tions, aiming to refine odor recognition methodologies. Despite advancements in un-
derstanding the expression patterns of olfactory receptors, their signaling pathways,
and the projection profiles of associated neurons, the precise matching relationship
between olfactory receptors and odorant molecules remains largely elusive.

In recent years, the rapid advancement of AI technology, fueled by extensive
datasets, has profoundly reshaped the landscape across various industries. Lever-
aging the sophisticated feature learning capabilities of machine learning algorithms,
the field of odor recognition using machine learning has emerged as a pivotal re-
search area. For instance, Saini et al. utilized the Random Forest algorithm to infer
odorant molecules based on their structures [11]. Similarly, Chacko et al. pioneered
data-driven odor prediction, employing algorithms such as Random Forest and XG-
Boost [3]. However, it is imperative acknowledge the significant imbalance present
within the existing odorant molecule datasets. Taking the OlfactionBase dataset
as an example [14], the distribution remains significantly imbalanced even among
the top seven odor categories. Specifically, the ‘floral’ category encompasses 210
samples, ‘fruity’ is represented by 417 samples, ‘minty’, ‘nutty’, ‘pungent’, ‘sweet’
and ‘woody’ includes only 87, 130, 50, 187, and 191 samples, respectively. The
Goodscents dataset also exhibits significant imbalance. The ‘fruity’ label appears
in 2507 molecules, marking it the most prevalent label. In contrast, ‘malty’, the
least frequent label, is observed in only 19 samples (less than 1% to ‘fruity’).

The impact of data imbalance on machine learning classification is significant.
It can lead classifiers to excessively favor frequent classes during training, thereby
affecting their performance on minority classes. In order to investigate the impact
of imbalanced distribution in odorant molecule datasets, this paper systematically
studies odor recognition using machine learning techniques with molecular finger-
prints and graphs. Specifically, we utilize three molecular fingerprints to character-
ize odorant molecules. Six machine learning models are employed to predict odors
based on molecular fingerprints. Additionally, we represent odor molecules using
molecular graphs and utilize four distinct graph neuron networks to capture the
intricate relationships between nodes and edges for odor predictions from graphs.

2. Materials and methods

2.1. The Leffingwell dataset. The Leffingwell odor dataset, curated exclusively
for olfaction research, consists of 3523 odorant molecules. Each molecule is rep-
resented in the SMILES format, and is associated with corresponding odor labels.
These odor labels are annotated by olfactory experts and categorized as either sin-
gular or composite. The dataset encompasses 113 distinct odor categories, revealing
a pronounced imbalance in odor distribution, as illustrated in Figure 1. Due to the
exponential decline in distribution, particularly evident after the sixth ranked odor
label, which corresponds to significantly fewer odorant molecules, we constructed
a subset by selecting the top N odors with the highest frequency of occurrence
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from 113 odor labels (referred to as ‘TOP-N’). By varying the value of N , we can
systematically investigate the effect of imbalanced distribution on machine learning
recognition of odor molecules. The Top-N subsets, with N = 2, 3, 4, 6, and 8,
contain 1875, 2237, 2356, 2595, and 2759 molecules, respectively. All subsets were
randomly divided into training and test sets using 4:1 ratio.

Figure 1. Odor distribution in the Leffingwell dataset

2.2. Molecular fingerprints. Molecular fingerprinting delineates the distinct iden-
tity of a molecule by translating its structural attributes into an array of binary or
numerical codes. The MACCS key operates as a binary vector derived from chemi-
cal structures, comprising 166 binary bits [5]. Each bit indicates a specific structure
or substructure within the molecule. ECFP fingerprint is also a binary vector,
encoding various molecular fragments obtained by iteratively sampling all possible
central atoms in the molecule and the radii up to the specified maximum radius [10].
While the prediction of molecular properties based on ECFP fingerprints usually
depends on the selection of the maximum radius and vector length, we specifi-
cally focus on the default settings of ECFP fingerprints for this study. In addition,
PaDEL-descriptor, a software for computing chemical molecular descriptors, sup-
ports the computation of 1875 molecular features, including 431 three-dimensional
features and 1444 two- and one-dimensional features [21]. These descriptors pro-
vide a broader spectrum of chemical and physical properties such as atomic num-
ber, molecular mass, electron distribution, molecular shape and surface properties.
The RDkit package (https://www.rdkit.org) is used to generate both MACCS and
ECFP fingerprints. The PaDEL-descriptor is calculated using a Python package
(https://github.com/ecrl/padelpy).

2.3. Molecular graphs. The graphical representation of molecules plays a crucial
role in visualizing the atomic components and their connections, effectively depict-
ing the molecule’s topology through nodes and edges. As outlined in Table 1 [9,19],
node attributes extend beyond elemental atom types to encompass chemical prop-
erties such as atom count, hybridization state, and aromaticity. Meanwhile, edge
attributes include chemical bond type, conjugation status, bond stereochemistry,
and interactions between atom pairs. Leveraging graph neural network models
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with molecular graphs allows us to capture intricate relationships between nodes
and edges, providing a more nuanced representation for molecule recognition.

Table 1. Description of node and edge features

Node features Description
Atom types One-hot (C, N, O, S, other)
Atom degree One-hot (0, 1, 2, 3, 4, 5, others)
Atom hybridization One-hot (SP, SP2, SP3, SP3D, SP3D2, other)
Hydrogen One-hot (0, 1, 2, 3, 4)
Aromatic One-hot (0/1)
Formal charge Int
Radical charge Int
Atom chirality One-hot (0/1)
Chirality type One-hot (R, S)

Edge features Description
Bond types One-hot (single, double ,triple, aromatic)
Conjugation One-hot (0/1)
Ring One-hot (0/1)
Stereo One-hot (StereoNone, StereoAny, StereoZ, StereoE)

Int ([‘CC’], [‘CN’, ‘NC’], [‘ON’, ‘NO’], [‘CO’,
Atom pair ‘OC’], [‘CS’, ‘SC’], [‘SO’, ‘OS’], [‘NN’], [‘SN’,

‘NS’], [‘others’])

2.4. Machine learning algorithms. Various machine learning algorithms exhibit
different capabilities in learning features. For molecular fingerprints, four machine
learning models — Random Forest (RF), Decision Trees (DT), Extra Trees (ET),
and Support Vector Machines (SVM) — are utilized for odor recognition based on
molecular fingerprints [6]. Additionally, densely-connected neural networks (DNN)
and recurrent neural networks (RNN) are employed for the same purpose. For
ECFP and PaDEL-descriptor, the DNN architecture comprises two hidden layers,
with 256 and 16 neurons, respectively [20, 22]. Since MACCS only consists of 166
bits, the DNN architecture features a single hidden layer with 32 neurons. The RNN
architecture incorporates one layer of bidirectional gated recurrent units, enabling
the model to capture sequential correlations within the input features effectively.

For graphs, four distinct GNN models — Graph Convolutional Network (GCN)
[15, 24], Graph Attention Network (GAT) [24, 25], Relational Graph Convolutional
Network (RGCN) [17,24] and Gated Graph Neural Network (GGNN) [4,24] — are
employed for odor recognition based on molecular graphs. GCN excels in recogniz-
ing local connectivity patterns, while GAT introduces an attention mechanism for
dynamic weighting of neighboring nodes during feature aggregation. RGCN extends
the framework of GCN to accommodate multiple relationship types in a graph, and
GGNN incorporates Gated Recursive Units (GRUs) to modulate information flow
across the graph. These diverse GNN architectures offer distinct approaches to
capturing intricate relationships within molecular graphs.

For the multi-label classification task of odor recognition, we employ metrics
such as accuracy, precision, recall, and the F1-score to provide a comprehensive
assessment of the model performance in identifying odorant molecules.
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3. Results and discussion

As depicted in Figure 2, odor molecules undergo featurization using molecular
fingerprints and graphs. Various machine learning models are employed to extract
features for odor recognition. This comprehensive approach facilitates exploration
of diverse feature representations and learning architectures, thereby enhancing the
accuracy and robustness. All calculations were performed on an Intel Xeon Platinum
8255C 2.5GHZ PC with a single NVIDIA GeForce RTX 3070 GPU.

Figure 2. Schematic of odor recognition using molecular finger-
prints and graphs

3.1. Odor recognition using molecular fingerprints. Figure 3 illustrates the
performance comparison of various machine learning algorithms using three dif-
ferent molecular fingerprints. The results demonstrate a noticeable decline in the
performance of the multi-label odor recognition model as the value of N increases.
This decline suggests that the model’s performance is influenced by the incorpora-
tion of more frequently occurring odor types. Specifically, as N increases, there is a
corresponding escalation in the imbalance of odor types within the dataset. Such an
imbalance may lead to better performance of the model on more common odor types
but poorer performance on rare odor types, resulting in an overall decrease in per-
formance. Therefore, for multi-label classification tasks, addressing the imbalanced
distribution is crucial to avoid detrimental effects on model performance.

Regarding the performance of different machine learning algorithms with molec-
ular fingerprints, the results indicates that MACCS and ECFP fingerprints exhibit
similar performance across various machine learning models in odor recognition,
with RNN slightly outperforming other models. Notably, ET performs weakest
with MACCS, while RF shows the weakest performance with ECFP. SVM and
DT fall between these two extremes. Conversely, for PaDEL-descriptor, RNN no-
tably underperforms compared to the other four algorithms. These discrepancies in
performance could be attributed to the diverse structural information captured by
different fingerprint data and the varying feature learning capabilities of different al-
gorithms. Further investigation into the specific structural characteristics captured
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Figure 3. Performance comparison of machine learning algorithms
using MACCS (A), ECFP (B), and PaDEL (C) fingerprints

by each fingerprint and the inherent strengths and weaknesses of different algorithms
could provide deeper insights into these observed performance differences.

The PaDEL-descriptor comprises multiple descriptors, leading to potential redun-
dancy in the encoded information. To address this, we employ Principal Compo-
nent Analysis to reduce the dimensionality of the original 1875-dimensional PaDEL
data [23]. This reduction effectively condenses the PaDEL data to 250 dimensions,
with cumulative variance exceeding 95%. As shown in Figure 3C, regarding the
performance of six models based on the 1875-D PaDEL data, we observe variations
in the dimensionality reduction effects across different models. Both DT and ET
experience performance degradation across different N values, with DT showing the
highest degradation by approximately 17%. Conversely, RF, SVM, and DNN ex-
hibit fluctuations in performance across different N values, with some improvements
and declines, though not significant. In contrast, the RNN model exhibit notable
performance improvement. Across tests at five N values, RNN demonstrates an
improvement exceeding 10%, particularly for Top-6, where its accuracy increased
by approximately 17%. These outcomes underscore the effectiveness of RNN in
feature learning following dimensionality reduction of high-dimensional data.

3.2. Odor recognition using molecular graphs. Figure 4 illustrates the per-
formance comparison of different GNN models in odor recognition tasks. Observing
the trend with the change of N values, it aligns with the testing results of molecu-
lar fingerprints shown in Figure 3, indicating that as N increases, the classification
accuracy of GNN decreases. Evidently, this phenomenon is closely related to the
imbalance in the data distribution. Further investigation into methods for mitigat-
ing the effects of data imbalance, such as oversampling, undersampling, or utilizing
appropriate evaluation metrics, may be warranted to enhance the robustness of
GNN models in odor recognition tasks.

Comparing the performance across various GNN models, it is observed that for
N values ranging from 2 to 8, GCN consistently exhibits the weakest performance,
followed by GAT.While GGNN slightly surpasses GAT, RGCN notably outperforms
all other GNN models. Particularly noteworthy is the significant improvement in
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Figure 4. Performance comparison of GNN models using molecular graphs

accuracy, especially in tasks such as Top-2 and Top-3, where RGCN achieves up to
15% performance increase over GGNN, the second-ranked model. This comparative
analysis underscores the importance of selecting an appropriate GNN model for
odor recognition tasks, as different models exhibit varying degrees of effectiveness
in capturing the intricate relationships within molecular graphs.

RGCN has demonstrated a significant advantage in accuracy, attributed to its
ability to effectively manage multiple types of relationships within graphs. It
proficiently distinguishes between various interatomic bonds by assigning distinct
weights to each. This capability enables RGCN to provide an accurate portrayal
of the intricate interactions within molecules. In contrast, while the GGNN model
excels in handling dynamic or sequential data due to its gating mechanism, it strug-
gles to capture the static nature of molecular structures, resulting in lower accuracy
compared to RGCN. The GAT model, although not consistently outperforming in
all datasets, maintains relatively stable results across different datasets, bolstered
by its attention mechanism. This mechanism allows GAT to prioritize and inte-
grate critical structural attributes that influence molecular characteristics, assigning
weighted significance to pivotal nodes and edges within the molecular graph. This
approach holds promise for enhancing the representation of structural details in
molecular graphs, indicating that further exploration and refinement of the atten-
tion mechanism within GAT are warranted for complex molecular recognition tasks.
Meanwhile, the performance of the GCN model is suboptimal, hindered by its uni-
form convolutional processing method, which lacks the adaptive tuning capability
needed to effectively handle the data.
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3.3. Odor recognition using a multimodal model. Multimodal models gen-
erally outperform single-modal approaches. We combine two single-modal models
based on molecular fingerprints and one based on molecular graphs for multimodal
fusion, as depicted in Figure 5A. Specifically, we fuse the outputs of ECFP+RNN,
PaDEL+DNN and RGCN models and feed these fused features into a single fully
connected layer to predict the multi-label odor types. Figure 5B illustrates a com-
parison between multimodal and single-modal models in odor recognition. Over-
all, the multimodal model demonstrates superior predictive accuracy compared
to single-modal models across odor multi-label classification tasks for N ranging
from 2 to 8, highlighting the complementarity of features extracted from different
modalities. However, the extent of enhancement is only marginally superior to that
achieved by RGCN. Specifically, the improvements in prediction accuracy for Top-
2, Top-3, Top-4, Top-6 and Top-8 tasks are 0.012%, 0.007%, 0.002%, 0.047% and
0.064%, respectively. This slight improvement suggests that the features learned
by RGCN might already encompass much of the structural information encoded
in ECFP and PaDEL molecular fingerprints. Thus, the additional fusion of multi-
modal features offers only marginal benefits at this stage.

Here, focusing on the Top-8 dataset, we present a comprehensive analysis of
the eight odor categories, detailed in Table 2. Across accuracy metrics, all labels
surpass 0.73, with two achieving predictive accuracies exceeding 0.9. Similarly,
the single-modal models also exhibit high accuracy for individual labels (data not
shown), although slightly lower than the multimodal model. For example, the
RGCN model demonstrates an accuracy ranges of 0.66 to 0.94. However, despite
achieving high accuracies for individual labels, the overall predictive accuracy for
multi-label classification, as depicted in Figure 5, remains approximately 0.4 (Top-
8). This disparity stems from the stringent evaluation criteria of multi-label classi-
fication, which demands precise identification of all associated labels for a sample
to be deemed correctly classified. Moreover, the variation in performance across
different odor categories sheds light on the model’s strengths and weaknesses in
distinguishing between specific types of odors. For instance, labels such as ‘fruity’
and ‘sulfurous’ exhibit higher precision and recall, indicating the model’s capability
to accurately identify samples containing these odors. Conversely, labels like ‘floral’
and ‘sweet’ demonstrate lower performance, especially in recall, suggesting that the
model struggles to accurately recognize these specific odors.

Table 2. Multimodal model performance for Top-8 odors

Odor Precision Recall F1-score Accuracy TP TN FP FN

fruity 0.797 0.723 0.759 0.759 209 210 53 80
green 0.742 0.285 0.413 0.732 52 352 18 130
sweet 0.729 0.172 0.278 0.746 27 385 10 130
floral 0.591 0.121 0.202 0.813 13 436 9 94
fatty 0.842 0.511 0.636 0.901 48 449 9 46
herbal 0.606 0.225 0.328 0.851 20 450 13 69

sulfurous 0.782 0.632 0.699 0.944 36 485 10 21
waxy 0.738 0.449 0.559 0.911 31 472 11 38
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Figure 5. (A) Multimodal model for odor recognition. (B) Perfor-
mance comparison between the multimodal and single-modal models

4. Conclusions

In this study, we conduct odor recognition using machine learning based on molec-
ular fingerprints and graphs, and specifically investigate the impact of imbalanced
distribution on machine learning-base odor recognition. For molecular fingerprints,
the results suggest that odor recognition using MACCS and ECFP shows similar
performance, implying that their encoded structural information plays a compara-
ble role in odor recognition. However, there is some variance in the performance
of the PaDEL-descriptor across the tested algorithms compared to the other two
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fingerprints. This suggests that the structural information gathered by PaDEL-
descriptor contributes slightly differently to odor recognition. For molecular graphs,
the results demonstrate that RGCN exhibits a clear performance advantage over
the other tested models in odor recognition. This superiority can be attributed to
its proficiency in managing multiple relationship types within graphs and its capac-
ity to assign specific weights to different edge types enhancing the granularity of
representation in molecular graphs. Compared to single-modal models, the multi-
modal model enhances odor recognition although the improvement margin is less
pronounced compared to RGCN. This implies that the features learned by RGCN
might already capture a significant portion of the structural information encoded
in fingerprints. Further analysis of predictions for individual odors reveals that,
while the overall accuracy of multi-label odor recognition declines noticeably across
different models as the imbalance increases, the predictive accuracy for individual
labels remains robust. Therefore, addressing these imbalances through specialized
techniques becomes crucial to ensure equitable and comprehensive odor recognition
across all categories in multi-label classification tasks.
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