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domains, necessitating the consideration of specific problem characteristics when se-
lecting or designing an algorithm, which explains the diversity in the metaheuristics
field. Inspired by marine predators’ foraging behavior, Marine Predator Algorithm
(MPA) [8]. Performance improvements have been achieved through the develop-
ment of hybrid algorithms that combine MPA with additional MAs. For example,
Ghoneimy et al. [11] proposed the Differential Evolution Marine Predator (DEMP)
algorithm, integrating Binary Differential Evolution (BDE) with MPA for better
clustering accuracy, while Salgotra et al. [19] proposed a hybrid model of MPA and
naked mole-rat algorithm (NMRA) to integrate the strengths inherent in each al-
gorithm. MAs are crucial for optimizing power allocation in 5G networks. Pham et
al. [17] applied Harris Hawks Optimization (HHO) algorithm with artificial neural
networks for UAV positioning and power distribution in NOMA-VLC systems. Ali
Safaa Sadiq et al. [18] introduced Nonlinear Marine Predator Algorithm (NMPA)
to optimize power allocation and user fairness in NOMA-VLC networks. Gao et
al. [10] developed the Quantum Carnivorous Plant Algorithm (QCPA) to optimize
power allocations in NOMA systems, enhancing overall performance. Additionally,
Sohail et al. [21] integrated user pairing, antenna height, and power allocation using
Cat Swarm Optimization (CSO) to achieve higher gains and lower power consump-
tion, while Hao et al. [12] employed Black Widow Enhanced Kepler Optimization
Algorithm to maximize sum rates under Quality of Service (QoS) constraints.

Despite advancements in NOMA-VLC power allocation, challenges remain, par-
ticularly with limited generalization and the inability to guarantee the Min Rate.
This study proposes a hybrid optimization method that combines multiple MAs to
enhance adaptability and performance. Compared to existing methods, it enhances
both the Log Sum Rate and Min Rate, thereby advancing NOMA-VLC applications
in the B5G era.

2. Marine predator algorithm

MPA search through three phases: initialization, prey updating, and FADs’ effect.

2.1. Initialization. MPA generates the initial prey population through the equa-
tion: xi,j = xmin + rand(xmax − xmin), i = 1, 2, . . . , N, j = 1, 2, . . . , D.

In MPA, oceanic organisms are categorized into two groups:
−−→
Elite and

−−→
Prey. This

requires defining two N × D matrices, one for
−−→
Prey, as shown in equations (2.1),

and another for
−−→
Elite, presented in equation (2.2).

(2.1)
−−→
Prey =

[−−−→
Prey1 . . .

−−−→
Preyi . . .

−−−−→
PreyN

]⊤
,

(2.2)
−−→
Elite =

[−−−→
Elite1 . . .

−−−→
Elitei . . .

−−−−→
EliteN

]⊤
.

2.2. Prey updating.
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2.2.1. Exploration phase. During the exploration phase t < T
3 , the algorithm focuses

on exploring the search space.

(2.3)


−−−−−→
stepsizei =

−→
RB ⊗

(−−−→
Elitei −

−→
RB ⊗

−−−→
Preyi

)
,

−−−→
Preyi =

−−−→
Preyi + P ·

−→
R1 ⊗

−−−−−→
stepsizei,

i = 1, 2, . . . , N.

Where
−−−−−→
stepsizei denotes the moving step vector and

−→
RB is a vector of normally

distributed random values used to represent Brownian motion, and we hold the

scalar P constant at 0.5.The symbol ⊗ represents entry-wise multiplication.
−→
R1

denotes a uniformly distributed random vector between [0, 1].

2.2.2. Transition between exploration and exploitation. WhenT
3 < t < 2

3T , the al-
gorithm is in the transition phase between exploration and exploitation, as shown
in equations (2.4) to (2.6):

(2.4)


−−−−−→
stepsizei =

−→
RL ⊗

(−−−→
Elitei −

−→
RL ⊗

−−−→
Preyi

)
,

−−−→
Preyi =

−−−→
Preyi + P ·

−→
R1 ⊗

−−−−−→
stepsizei,

i = 1, 2, . . . ,
N

2
,

(2.5)


−−−−−→
stepsizei =

−→
RL ⊗

(−→
RB ⊗

−−−→
Elitei −

−−−→
Preyi

)
,

−−−→
Preyi =

−−−→
Preyi + P × CF ⊗−−−−−→

stepsizei,
i =

N

2
+ 1, . . . , N,

(2.6) CF =

(
1− t

T

)2· t
T

.

Where: CF is a parameter control factor.
−→
RL represents the random vector gener-

ated by the Lévy distribution.

2.2.3. Exploitation phase. When the t > 2
3Tpredator uses Lévy distribution for

exploitation. Its mathematical model is shown in equation (2.7):

(2.7)


−−−−−→
stepsizei =

−→
RL ⊗

(−→
RL ⊗

−−−→
Elitei −

−−−→
Preyi

)
,

−−−→
Preyi =

−−−→
Elitei + P × CF ⊗−−−−−→

stepsizei,
i = 1, . . . , N.

2.3. Eddy formation and FADs’ effect. Marine predators are influenced by
environmental factors, including eddies and Fish Aggregating Devices (FADs). In
MPA, are identified as potential points where the algorithm might become confined
to local optima [8], and longer jumps are viewed as a way to avoid local optimal
stagnation.

(2.8)
−−−→
Preyi =


−−−→
Preyi + CF

[−−→xmin +
−→
R1 ⊗ (−−→xmax −−−→xmin)

]
⊗

−→
U , if r1 ≤ FADs,

−−−→
Preyi + [FADs (1− r1) + r1]

(−−−−→
Preyr1 −

−−−−→
Preyr2

)
, if r1 > FADs.

Where FADs represents the probability affecting the optimization process, with a

value of 0.2; The binary vector
−→
U consists of elements 0 and 1, and r1 represents a

random value drawn uniformly between [0, 1].
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3. Osprey marine predator algorithm

3.1. The position identification strategy of OOA. In MPA, the
−−→
Elite consists

solely of optimal individuals, leading to underutilization of the broader population
information. To enhance information exchange between populations and overcome
these limitations, we have incorporated the position identification strategy from
Osprey Optimization Algorithm (OOA) [7].
(3.1)
−→
F =

[
F1 . . . Fi . . . FN

]⊤
=
[
F (

−−−→
Prey1) . . . F (

−−−→
Preyi) . . . F (

−−−−→
PreyN )

]⊤
.

In this context, assuming the problem is a minimization problem, an element is
randomly selected from the {j | Fj < Fi, 1 ≤ j ≤ N, j ̸= i} and denoted as ki,

ki ∈ {j | Fj < Fi, 1 ≤ j ≤ N, j ̸= i}.
−→
F denotes a vector of fitness values. Then,

the new i-th predator can be represented
−−→
FPi as:

(3.2)
−−→
FPi =

{−−−−→
Preyki , if r2 ≥ 0.5,
−−−→
Elitei, otherwise.

Where, r2 represents a random value drawn uniformly between [0, 1].This approach

replaces the single
−−−→
Elitei population in MPA with a suitable predator for each prey

i. Any individual with a higher fitness value than the current prey can be considered

a potential predator. In this model, we replace
−−−→
Elitei in the equations. (2.3), (2.4),

(2.5), and (2.7) with
−−→
FPi:

(3.3)
−−−−−→
stepsizei =

−→
RB ⊗

(−−→
FPi −

−→
RB ⊗

−−−→
Preyi

)
, i = 1, 2, . . . , N,

(3.4)
−−−−−→
stepsizei =

−→
RL ⊗

(−−→
FPi −

−→
RL ⊗

−−−→
Preyi

)
, i = 1, 2, . . . ,

N

2
,

(3.5)
−−−−−→
stepsizei =

−→
RL ⊗

(−→
RB ⊗

−−→
FPi −

−−−→
Preyi

)
, i =

N

2
+ 1, . . . , N,

(3.6)
−−−−−→
stepsizei =

−→
RL ⊗

(−→
RL ⊗

−−→
FPi −

−−−→
Preyi

)
, i = 1, 2, . . . , N.

3.2. Nonlinear parameter control strategy. Nonlinear parameter control strat-
egy CF effectively balances exploration and exploitation [16]. Its adoption enhances
the algorithm’s ability to explore high-dimensional search spaces, significantly im-
proving optimization efficiency and search quality [9].

(3.7) CFNew = 1− sin

(
π

2
×
(

t

T

)2
)
.

3.3. The mutation strategy of OOBO. In the simulated marine ecosystem,
some less adapted prey enhance their survival chances through mutation, making it
difficult for more adapted predators to capture them.Based on this biological prin-
ciple, the mutation strategy in One-to-One-Based Optimizer (OOBO) [5] is intro-
duced, and the algorithm further incorporates a stochastic yet controlled mutation
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mechanism.

(3.8)
−−−−−→
Preynewi =

−−−→
Preyi +

−→
R2 ⊗

(−−→
FPi − I ⊗

−−−→
Preyi

)
,

(3.9) I = round(1 + r3).

Where,
−→
R2 denotes a uniformly distributed random vector between [0, 1], I is a

random factor, with round being the rounded value of I, adjusted to either 1 or
2 to aid decision-making or incorporate randomness into the calculations and r3
represents a random value drawn uniformly between [0, 1].

(3.10)
−−−→
Preyi =

{−−−−−→
Preynewi , if F new

i < Fi,−−−→
Preyi, else.

The diagrammatic representation of the Flowchart of OMPA algorithm is placed
by Figure 1.

Figure 1. Flowchart of OMPA algorithm.

3.4. Computational complexity. Complexity analysis is crucial for evaluating
an algorithm’s efficiency, focusing on repeated operations. The time complexity
(TC) of MPA is determined by N , D, and T . Specifically, initializing the population
takes O(N × D), marine memory updating O(N × T ), elite population selection
O(N × T ), and prey position updating O(N × D × T ). Thus, the overall time
complexity of MPA is O(N ×D×T ). Although OMPA introduces additional steps
like elite population selection and marine memory management, the overall time
complexity remains the same.

4. Results and discussions

To evaluate OMPA’s performance, this study uses the CEC2022 benchmark [4],
comparing it with Particle Swarm Optimization (PSO) [15], Whale Optimization
Algorithm (WOA) [23], Dung Beetle Optimizer (DBO) [18], Coati Optimization
Algorithm (COA) [5], Young’s Double-Slit Experiment optimizer (YDSE) [1] and
NMPA [18]. The results demonstrate OMPA’s superior optimization performance
across multiple scenarios. Figure 2 illustrates OMPA’s enhanced accuracy and faster
convergence. All algorithm parameters are set according to the specifications out-
lined in their respective studies and are summarized in Table 1. Table 2 presents the
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Wilcoxon rank-sum statistical test atα = 0.05, confirming that OMPA outperforms
the original MPA on CEC2022.

Table 1. Algorithms’ parameter values

Algorithm Year Parameters Values
PSO 1995 wMax = 0.9, wMin = 0.2, c1 = 2, c2 = 2
WOA 2016 The value of a linearly decreases from 2 to 0.
DBO 2022 Ppercent = 0.2
COA 2023 ―
YDSE 2023 L = 1, d = 5× 10−3, I = 0.01, Λ = 5× 10−6, ∆ = 0.38
MPA 2020 FADs = 0.2, P = 0.5
NMPA 2022 FADs = 0.2, P = 0.5

Table 2. Wilcoxon rank sum test p values of MPA

No. F1 F2 F3 F4 F5 F6
MPA 1.1E-07 8.0E-01 3.4E-07 6.8E-01 6.9E-04 1.0E-03

+/ = / − − = − = − −
No. F7 F8 F9 F10 F11 F12
MPA 3.6E-03 4.2E-05 5.2E-07 3.6E-02 1.8E-05 7.1E-01

+/ = / − − − − − − =

Figure 2. Convergence curves of OMPA and other MAs

5. Field application: Fair power distribution in NOMA-VLC systems

The illustration of a VLC network with NOMA is provided in Figure 3.
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Figure 3. llustration of a VLC network with NOMA

We implement the Line-of-Sight (LoS) propagation path and adopt the gener-
alized Lambertian emission model. The number of users is denoted by I, and the
channel gain ha for the a-th user (a ∈ [1, I]) is expressed in equation (5.1) as follows:

(5.1) ha =
Aa

d2a
Ro (φa)Ts (ϕa) g (ϕa) cos (ϕa) .

Where, Aa are the detection area, da the distance between the user and LED

transmitter, as given by da =
√
(X − xa)

2 + (Y − ya)
2 +H2. φa and the angles of

irradiance LED and incidence, respectively, Ts (ϕa) is the gain of the optical filter

to be 1, g (ϕa) =
n2

sin(ϕFoV ) 0 ≤ ϕa ≤ ϕFoV denotes the concentrator gain,R0 (φa) =
m+1
2π cosm(φa) is the Lambertian radiant intensity, where cos (φa) = cos (ϕa) =

H
da
.

With, n = 1.5 being the internal refractive index, ϕFoV is the Field of View (FoV),
φ1/2 is transmitter semiangle at half power and m = − ln 2/ ln

(
cos
(
φ1/2

))
.

According to the reference [3], the data rate for NOMA downlink is as follows:

(5.2) Ra = B log2

1 +
hapa

ha
I∑

l=a+1

pl + no

 .

Where, pa is the power obtained by the a-th user, B is the transmission bandwidth
of each channel, and n0 is defined as the noise power.

The power allocation optimization challenge within NOMA-VLC is defined by :

(5.3)

P1 : maxR =
I∑

a=1

log2(Ra),

s.t.


C1 : pa ≥ 0, ∀ I, C2 :

I∑
a=1

pa ≤ pmax,

C3 : p1 < p2 < · · · < pI , ∀ I, C4 :
I∑

a=1

√
pa ≤ min{D,C−D}

δ .

Where, pmax is the maximal transmit power, D is the DC-offset (D = 20), C is the

peak optimal density (C = 30), and δ = 3
√
5

5 is a coefficient by Pham et al. [17].
To conduct the tests, we must first establish several key system parameters which
are 5m × 5m × 3m, Aa = 0.0001m2, B = 10MHz, and n0 = −104dBm. OMPA
is compared against several established MAs using two key metrics: 1. Log Sum
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Rate, calculated by the objective function equation. (5.3) to maximize the system’s
rate performance by evaluating the Log Sum Rates of all users. 2. Min Rate, which
indicates the lowest rate among all users. The inclusion of constraints reduces the
solution space, potentially minimizing the performance disparity between OMPA
and other algorithms.

Figure 4. Log Sum Rate and Min Rate under different conditions

The first two plots of Figure 4 illustrate the effect of varying pmax on system
performance. OMPA’s Log Sum Rate outperforms MPA and other MAs due to
its efficient power allocation, maximizing the Log Sum Rate while enhancing user
fairness. The last two plots show the impact of different receivers ϕFoV on the system
rate. As ϕFoV increases, both the Log Sum Rate and Min Rate gradually decrease.
However, the OMPA maintains a high rate across various reception conditions,
demonstrating its robustness and stability.

The experiment was set with pmax = 60mW, ϕFoV = 40◦, and φ1/2 = 45◦.
Figure 5 presents the convergence plots. The first two plots related to the Log
Sum Rate demonstrate that the OMPA algorithm converges more quickly as the
number of users increases and achieves the highest Log Sum Rate. This indicates
the algorithm’s efficiency in finding optimal solutions. The last two plots focus on
the Min Rate performance.As the user count reaches 30, other algorithms tend to
fall into local optima, whereas OMPA consistently ensures the highest transmission
rate for disadvantaged users, demonstrating its superior overall performance and
fairness across varying user numbers.Table 3 presents Wilcoxon rank-sum statistical
test results at α = 0.05, confirming that OMPA outperforms MPA.

Figure 5. Log Sum Rate and Min Rate against the number of Users

Simulations demonstrate that, in the NOMA-VLC system, OMPA outperforms
other algorithms in both Log Sum Rate and Min Rate, especially with an increasing
number of users..Its rapid convergence makes it well-suited for dynamic networks
by efficiently adapting to changes in users and conditions.While OMPA performs
comparably to other algorithms at low user counts, it significantly outperforms them
at higher user counts, positioning it as a robust tool for future network optimization.
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Table 3. Wilcoxon rank sum test p-values of MPA

Log Sum Rate Min Rate
User 20 30 20 30
MPA 2.2E-04 1.8E-04 1.1E-06 1.7E-04

+/ = / − − − − −

6. Conclusion and future works

Introducing OMPA, an improved variant of MPA that overcomes challenges re-
lated to local optima and slow convergence. It achieves this by incorporating
a nonlinear parameter control strategy, OOA for elite population diversification,
and OOBO for adaptive mutations.These improvements result in faster conver-
gence, increased accuracy, and the ability to escape local optima. Benchmarking
against CEC2022 problems demonstrates OMPA’s superior performance. More-
over, OMPA’s application in optimizing power allocation and ensuring Min Rate in
NOMA-VLC systems underscores its practical effectiveness. This validation rein-
forces OMPA’s applicability in real-world scenarios and contributes to the advance-
ment of algorithmic development. Future work will focus on exploring OMPA’s
application in diverse systems to further refine and adapt the algorithm.
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