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the specificity of immunoreactions. Through colorimetric reactions with specific
reagents prepared in advance and agricultural product samples extracted, this tech-
nique allows the observation of color changes on test cards for detection. Colloidal
gold technology, requiring no expensive or complex equipment and highly skilled
operators, has made pesticide residue testing more straightforward and economical
due to its convenience.

In recent years, the rapid development of big data and artificial intelligence has
significantly advanced the application of deep learning models in various fields, par-
ticularly image classification and object recognition. Convolutional neural networks
(CNNs), which capture local information in images through convolutional kernels,
have been widely adopted in tasks such as agricultural production [8, 11]. Notable
CNNs models, such as VGGNet and ResNet, are widely employed. However, while
CNNs excel at capturing local features via their local receptive fields, they fall short
in fully modeling global dependencies. The Vision Transformer (ViT), which uti-
lized a self-attention mechanism, addressed this limitation [12]. The Transformer
model was later adapted for image classification, achieving performance comparable
to or surpassing CNN models in various visual tasks [2]. ViT models are gaining
widespread adaptation in agricultural applications, including pest detection, crop
monitoring, and residue detection [3, 6, 8].

However, ViT models face challenges due to their high parameter count and signif-
icant computational requirements, limiting their deployment in resource-constrained
environments. To mitigate these issues, model compression techniques, such as
pruning, have been proposed to reduce model size without significantly compro-
mising performance. Some researchers introduced a combined approach of pruning,
quantization, and Huffman coding, reducing the storage requirements of deep neural
networks by over 90% with only minimal performance loss [9]. Moreover, Voita et
al. (2019) [13] demonstrated that removing certain attention heads in Transformer
models does not substantially affect performance in natural language processing
(NLP) tasks. Additionally, some studies have optimized Transformer architectures,
such as Spatten, by pruning redundant tokens and attention heads [14].

In agricultural residue detection, particularly with colloidal gold assays, ViT mod-
els have shown promise in overcoming challenges, such as identifying trace residues
and differentiating between residue types. Thus, this paper utilizes different scales
of Vision Transformer models, including ViT-Base/16, ViT-Base/32, ViT-Small/16,
and ViT-Tiny/16, and applies transfer learning methods for image classification of
colloidal gold test kits. Additionally, the models are optimized through pruning.
The study explores the impact of data augmentation on the performance of these
ViT models. It compares the effects before and after pruning the qkv layer in classi-
fying small-batch colloidal gold test kit datasets. The findings provide a theoretical
basis for further research on ViT model image classification tasks.

2. Materials and methods

2.1. Vision Transformer Model. The Vision Transformer (ViT) model consists
of three main components: Linear Projection of Flattened Patches, Transformer En-
coder, and MLP Head. It also contains image patching (Patch Embedding), linear
mapping, class identifiers, positional encoding, encoder layers, layer normalization,
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Figure 1. The Processing Flow of the Vision Transformer (ViT) Model

and an MLP output layer. The model effectively learns global features in images
through patching, positional encoding, and the self-attention mechanism.

As shown in Figure 1, an input image size of 224 × 224 is segmented into mul-
tiple 14 × 14 patches using a kernel size of 16 × 16 and a stride of 16, resulting
in patches with a feature dimension of 768. These patches are then flattened to
form a matrix of size (196, 768), which is linearly mapped and processed into a se-
quence before inputting into the Transformer. A class identifier is appended at the
beginning of the input sequence to aggregate information from the entire image for
classification tasks. Positional encoding is applied to each patch, including the Class
Token, to retain spatial information and help the model grasp the relative positions
of different patches. The encoder consists of multiple stacked layers containing a
self-attention mechanism and a feed-forward network (FFN), which extracts global
image features. Following the encoder layers, the output undergoes layer normal-
ization before entering the multilayer perceptron (MLP) head to generate the final
classification results.

The Vision Transformer (ViT) model modifies the Transformer architecture for
visual data. Standard Transformer modules require a two-dimensional matrix of
tokens matrix as input. However, image data is typically represented as a three-
dimensional tensor of shape [H, W, C]. An embedding layer utilized convolutional
layers to convert this into a two-dimensional token matrix. Each transformed token
vector is embedded with positional information using a specific positional encoding
function before being fed into the Transformer module, comprising a Transformer
Encoder and an MLP (Multilayer Perceptron).



1974 Y. Z PENG, Y. J. GAO, F. XIE, Z. Y. GUO, AND Q. J. GAO

The Vision Transformer (ViT) model modifies the Transformer architecture for
visual data. Standard Transformer modules require a two-dimensional matrix of
tokens matrix as input. However, image data is typically represented as a three-
dimensional tensor of shape [H, W, C]. An embedding layer utilized convolutional
layers to convert this into a two-dimensional token matrix. Each transformed token
vector is embedded with positional information using a specific positional encoding
function before being fed into the Transformer module, comprising a Transformer
Encoder and an MLP (Multilayer Perceptron).

The input tokens undergo Layer Normalization in the Transformer Encoder before
entering the multi-head attention layer. After a residual connection, the tokens
are normalized again, passed through an MLP, and subjected to another residual
connection to produce the output. This process is repeated L times, yielding feature
representations that capture global information, in contrast to CNNs, which focus
on extracting local information.

The key advantage of the Transformer Encoder is its ability to capture long-
distance dependencies between different regions of an image, thereby improving
performance in tasks such as image classification. Multi-head attention divides
the input embedding into multiple subspaces (heads), computing self-attention in
parallel across these subspaces. The outputs of these heads are concatenated to
form the final attention output.

(2.1) Attention(q, k, v) = softmax

(
qkT√
dk

)
v

(2.2) MultiHead(q, k, v) = Concat (head1, . . . , headh)WO

In equations (2.1) and (2.2), the input tokens are mapped to query (q), key (k),
and value (v) vectors through the learnable matrices Wq, Wk, and Wv, where
dk is the dimension of the query and key vectors. Each token performs a dot
product with all the query and key vectors. After scaling and applying softmax
normalization, the corresponding attention scores are computed. These attention
scores reflect the relationship between tokens; the higher the score, the stronger
the relationship between the tokens. This mechanism allows the model to establish
long-range dependencies across different regions in the image.

The MLP Head, used for classification, consists of fully connected layers and
activation functions. It further extracts and combines features through nonlinear
transformations, enhancing the model’s representational power and generalization
ability. The classification results are output by the final MLP Head.

2.2. Model pruning. Model pruning targets trained models by removing redun-
dant parameters based on criteria that evaluate the significance of specific param-
eters to the target task. This process compresses the model, reducing both the
number of parameters and computational load while maintaining accuracy.

Common pruning algorithms include structured and unstructured pruning [7].
Structured pruning achieves compression by removing entire channels, layers, con-
volutional kernels, and other structural components of the network. This can include
channel, filter, neuron, and layer pruning, as shown in Figure 2. Some neurons in
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Figure 2. The application process of unstructured pruning in the
ViT model.

neural networks do not capture useful information, and removing these neurons
does not significantly affect network performance. Research has shown that smaller
weights typically have a negligible impact on model accuracy.

Based on this approach, this study primarily prunes the multi-head self-attention
layers of the ViT model, with a specific focus on the qkv linear layer. The pruning
strategy is as follows: First, the original model is trained on the target dataset.
Next, a pruning threshold is defined, and a unified mask is applied to all qkv layers.
The pruning rate of the qkv layers is then computed, and the threshold is itera-
tively adjusted until it converges within a predefined range. Finally, this optimized
threshold is applied for one-shot pruning, followed by fine-tuning to restore model
accuracy.

2.3. Model Evaluation Metrics. In the experiments conducted in this paper,
the hyper-parameters adjusted include batch size, learning rate, and the number of
epochs. The batch size determines the number of samples used in a single training
iteration. Larger batch sizes consume more memory and can speed up the training
process, but may also lead to instability and convergence issues. Smaller batch sizes
use less memory and train more slowly, but typically result in more stable converge.
The learning rate controls the size of the steps taken during parameter updates.
Larger learning may accelerate convergence but can cause oscillations around the
optimal value or even lead to divergence, whereas a lower learning rate ensures more
stable training but slower convergence. The number of epochs controls how often
the model iterates over the entire training dataset. More epochs can help the model
learn more from the data, but excessive epochs can lead to overfitting, decreasing
the model’s ability to generalize to new data.

The performance of the trained model is evaluated using a confusion matrix,
which visualizes the classification results. Each column of the confusion matrix
represents a predicted category, while each row represents the true category of the
data. True Positive (TP) defines the number of instances the model accurately
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identified as positive; True Negative (TN) defines the number of negative samples
correctly classified as negative; False Positive (FP) defines the number of negative
samples incorrectly classified as positive; and False Negative (FN) defines the num-
ber of positive samples incorrectly classified as negative. Equation (2.3) computes
accuracy, defined as a ratio of correctly predicted samples to the total number of
samples. Equation (2.4) calculates Precision, the proportion of actual positive cases
among those predicted as positive. Equation (2.5) computes Recall, the proportion
of true positive cases correctly identified by the model.

(2.3) Accuracy =
TP + TN

TP + TN + FP + FN

(2.4) Precision =
TP

TP + FP

(2.5) Recall =
TP

TP + FN

3. Results

3.1. Experimental Environment. The experimental setup was on a Windows
10 operating system platform, with an NVIDIA RTX3050 Laptop GPU with 4GB
VRAM and an AMD R5 5600 CPU. The deep learning framework used was Pytorch.
The input image resolution was set to 224× 224, and images were normalized to
[0, 1] before being fed into the model for training. All images were divided into
training and validation sets in an 8:2 ratio. The training process of the neural
network model was accelerated using the most commonly used Stochastic Gradient
Descent (SGD) optimizer, which has the advantages of low computational cost and
fast model convergence. All experiments were conducted in the aforementioned
experimental environment.

The experiment employed unstructured pruning. A pretrained base ViT model
was first loaded and trained on the target dataset. The trained model was then
subjected to pruning in the q, k, and v layers of the Multihead Attention module,
with a threshold set at 0.025. Weights in the qkv layers were compared against
this threshold: weights exceeding the threshold were assigned a pruning mask of 0
(False), while those below the threshold were assigned a mask of 1 (True). Weights
with a mask of 0 were pruned, whereas those with a mask of 1 remained unchanged,
resulting in a pruned model. Finally, the model was fine-tuned to restore accuracy.
To evaluate the sensitivity of the qkv layer to pruning, different pruning rates were
tested on the ViT-Ti/16 model, specifically 15%, 35%, 75%, and 85%. For other
models, pruning rates of approximately 35% and 70% were selected for the qkv
layers, with an overall pruning rate fluctuating within ± 5%.

3.2. Model Comparison Before and After Data Augmentation. Determin-
ing the negativity or positivity of test reagents typically involves manually inspecting
the test strips. If the upper band is lighter and the lower band is darker, or if both
bands are of similar intensity, the result is considered negative; if the upper band is



PRUNING-AND-COMPRESSION MODEL FOR COLLOIDAL GOLD DETECTION 1977

Figure 3. The application process of unstructured pruning in ViT models.

darker than the lower band, it is positive. Following this approach, training images
were manually categorized into negative and positive classes.

The accuracy of each ViT model was compared before and after data augmen-
tation. As shown in Figure 3D, blue bars represent accuracy before data augmen-
tation, and orange bars represent accuracy after. All four ViT models exhibited
significant improvements in accuracy following dataset enhancement, with increases
of approximately 16%, 18%, 13%, and 13%, respectively. The training loss curve for
the validation set in Figure 3C demonstrated faster converging with reduced fluc-
tuation than the loss curve without data augmentation shown in Figure 3B. This
indicates that data augmentation and dataset expansion improved the accuracy,
generalization, and stability of the ViT models, making them more suited for image
classification tasks.

When trained on the target dataset, the ViT-S/16 model performed slightly bet-
ter than the ViT-B/16 without data augmentation. However, after augmentation,
the ViT-B/16 emerged as the best-performing model, achieving a validation set ac-
curacy of 96.39% with a loss close to 0.1. In contrast, the ViT-S/16 model had a
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Figure 4. Comparison of parameter counts across different Vision
Transformer (ViT) models.

slightly lower validation accuracy of 94.9% but a loss value similar to that of the
ViT-B/16 model.

The parameter counts for ViT-B/16 and ViT-B/32 are the largest, at 85.8001M
and 87.4567M, respectively, requiring greater computational resources. In contrast,
the earlier models, ViT-S/16 and ViT-Ti/16, have significantly fewer parameters,
at 21.6664M and 5.5248M, respectively. Despite ViT-Ti/16 having the smallest
parameter count, ViT-S/16 delivers performance comparable to ViT-B/16 on a
dataset of 10,000 images of colloidal gold test reagents, demonstrating its ability to
maintain high performance with fewer parameters.

3.3. ViT Model Training Optimization. Building on the strengths of the afore-
mentioned ViT-S/16 model, this study further optimized the training parameters
of the ViT-S/16 model, using the validation set loss curve for assessment. By ad-
justing the Batch size, Learning rate, Epoch, and Optimizer, the study investigated
the impact of these hyperparameters on the Validation Loss of the ViT model, as
shown in Figure 5A, comparing SGD and Adam optimizers. Under the same num-
ber of training iterations, SGD demonstrated a faster reduction in loss, ultimately
achieving a lower validation loss. In contrast, Adam showed greater fluctuations in
loss during training and less effective convergence than SGD.

The results in Figure 5B indicate that the loss curves for batch sizes of 16 and
32 were nearly identical, both converging quickly to a lower loss value. The results
in Figure 5C indicate that the model with a learning rate of 0.001 experienced a
quicker decline in loss, ultimately reaching a lower loss value. In contrast, the model
with a learning rate of 0.0003 declined more slowly.

Finally, adjustments were made to the Learning Rate Scheduling in the optimizer.
As depicted in Figure 5D, training was conducted using Step Decay and Cosine
Annealing strategies. Step Decay involved reducing the learning rate to 10% of its
original value every eight iterations. The loss curve from Cosine Annealing was
smoother, and the final results were slightly better than with step decay. Based
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Figure 5. Comparison of validation set loss for ViT models based
on different hyper-parameters.

on these experimental results, the hyperparameters were set to a Batch Size of 32,
Learning Rate of 0.001, Epoch of 20, and using Cosine Annealing for learning rate
scheduling.

3.4. Model Pruning Comparison Results. Based on the image dataset ex-
panded to 10,000 samples, we conducted pruning experiments on four common
ViT-Base models. The hyperparameters for model training were set as follows: the
learning rate, batch size, and number of epochs were set to 0.001, 32, and 15, re-
spectively. Consistent with previous experiments, the SGD optimizer and the cosine
annealing learning rate scheduler were used. The experimental results are listed in
Table 1.

Table 1. Comparison of performance model accuracy in dif-
ferent pruning rate

Model Baseline Accuracy Low pruning rate Accuracy High pruning rate Accuracy

ViT-B/16 96.49% 97.13% 96.39%
ViT-B/32 86.39% 92.53% 92.28%
ViT-S/16 94.90% 97.08% 96.49%
ViT-Ti/16 91.59% 94.56% 94.01%

The accuracy of the ViT-B/16 and ViT-B/32 models was 96.49% and 86.39%,
respectively, with ViT-B/16 exhibiting superior performance and higher accuracy.
Both models have similar parameter counts of 85.80M and 87.45M, respectively.
In comparison, the ViT-S/16 and ViT-Ti/16 models, which have fewer parame-
ters (21.6M and 5.52M, respectively), still achieved relatively high accuracies of
94.90% and 91.59%, respectively, making them particularly well-suited for resource-
constrained environments.
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We first performed unstructured pruning on the qkv layers of the ViT-Ti/16
model, which has the smallest parameter count among ViT models, followed by
accuracy recovery training to investigate the impact of different pruning rates on
model accuracy. We applied four pruning rates for the ViT-Ti/16 model: 10%,
35%, 70%, and 85%. The results are summarized in Table 2.

Table 2. Comparison of performance and number of pa-
rameters for different ViT-Ti/16 model pruning rates.

qkv Layer Pruning Rate Threshold Accuracy(%) Parameter Count

12.63% 0.009 94.56% 5.35M
33.67% 0.025 94.56% 5.08M
68.80% 0.060 94.01% 4.61M
86.03% 0.090 90.40% 4.38M

The model’s accuracy remained almost unchanged at low pruning rates of 12.63%
and 33.67%, with the 33.67% pruning rate providing a better compression result. At
high pruning rates of 68.80% and 86.03%, the model with 68.80% pruning achieved
approximately 3.6% higher accuracy than the one with 86.03% pruning. We applied
35% and 70% pruning rates to the qkv layers of various ViT models and conducted
accuracy recovery training. The results after accuracy recovery are presented in
Table 3.

Table 3. Comparison of performance and parameter counts
for low pruning rate.

Model Threshold qkv Layer Pruning Rate Accuracy(%) Parameter Count

ViT-B/16 0.009 34.95% 97.13% 78.37M
ViT-B/32 0.025 39.19% 92.53% 79.13M
ViT-S/16 0.025 35.18% 97.08% 19.7M
ViT-Ti/16 0.025 33.67% 94.56% 5.08M
ViT-B/16 0.025 74.01% 96.39% 70.08M
ViT-B/32 0.060 75.93% 92.28% 71.33M
ViT-S/16 0.060 71.07% 96.49% 17.79M
ViT-Ti/16 0.060 68.80% 94.01% 4.61M

After applying low pruning rates to the qkv layers, the models exhibited notable
improvements in accuracy compared to their original versions. For instance, the
accuracy of ViT-B/16 increased from 96.49% to 97.53%, with a pruning rate of
20.64%, leading to a parameter reduction to 81.45M. Similarly, the accuracy of
ViT-B/32 improved from 86.39% to 92.53%, with a pruning rate of 39.19% and a
parameter reduction to 79.13M. Likewise, the accuracy of ViT-S/16 increased from
94.90% to 97.08%, with a pruning rate of 35.18%, reducing the model size to 19.7M.
Finally, the accuracy of ViT-Ti/16 improved from 91.59% to 94.56%, with a pruning
rate of 33.67% and a parameter reduction to 5.08M.
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After applying high pruning rates to the qkv layer, the performance changes
compared to the low pruning rate models were derived and summarized in Table 4.

Table 4. Comparison of performance and parameter counts
for high pruning rates

Model Threshold qkv Layer Pruning Rate Accuracy(%) Parameter Count

ViT-B/16 0.025 74.01% 96.39% 70.08M
ViT-B/32 0.060 75.93% 92.28% 71.33M
ViT-S/16 0.060 71.07% 96.49% 17.79M
ViT-Ti/16 0.060 68.80% 94.01% 4.61M

The accuracy of ViT-B/16 decreased from 97.53% to 96.39%, with a pruning
rate of 74.01% for the qkv layer and the parameter count reduced to 70.08M; the
accuracy of ViT-B/32 decreased slightly from 92.53% to 92.28%, a reduction of
about 0.03%, with a pruning rate of 75.93% for the qkv layer and the parameter
count reduced to 71.33M; the accuracy of ViT-S/16 decreased slightly from 97.08%
to 96.49%, with a pruning rate of 71.07% for the qkv layer and the parameter count
reduced to 17.79M; the accuracy of ViT-Ti/16 decreased from 94.56% to 94.01%,
with a pruning rate of 68.08% for the qkv layer and the parameter count reduced to
4.61M. Although some models show a slight drop in accuracy, overall, the changes
in accuracy demonstrate the effectiveness of pruning optimization in these models.

Furthermore, under lower pruning rates, the results show that in Table 5, ViT
models of base size and below show improvements in accuracy while reducing the
model’s parameter count, thus enhancing their generalization ability.

Table 5. Comparison of performance model accuracy in dif-
ferent pruning rate

Model Baseline Accuracy Low pruning rate Accuracy High pruning rate Accuracy

ViT-B/16 96.49% 97.13% 96.39%
ViT-B/32 86.39% 92.53% 92.28%
ViT-S/16 94.90% 97.08% 96.49%
ViT-Ti/16 91.59% 94.56% 94.01%

At higher pruning rates, the accuracy values of ViT-B/32, ViT-S/16, and ViT-
Ti/16 models slightly dropped compared to those of lower pruning rate models, ex-
ceeding those of the original models. The accuracy of the ViT-B/16 model slightly
decreased, but its parameter count dropped from 85.8M to 70.08M, being bene-
ficial for deployment. ViT-S/16 and ViT-Ti/16 strike the best balance between
parameter count and accuracy. In the lower pruning rate experiments, all models
show improvement in accuracy. All models, except ViT-B/16, improve accuracy
in the higher pruning rate experiments. Particularly, the ViT-S/16 model slightly
outperforms the ViT-B/16 model, delivering the best performance overall.

The confusion matrix reflects the predictive performance of classification models
across different categories, effectively demonstrating the balance of the classification
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model. As shown in Figure 6, in the confusion matrices after accuracy recovery for
the four types of ViT models, all four models perform well-balanced classifications,
with the ViT-S/16 model showing the best performance.

Figure 6. The confusion matrix reflects the predictive performance
of classification models

Figure 7. Bubble chart of accuracy and parameter count after
model pruning.
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Additionally, this study explores the relationship between accuracy and parame-
ter count across different ViT models. Figure 7 shows that the ViT-B/16 and ViT-
S/16 models achieve high accuracies close to 0.98 and 0.97, respectively, with fewer
parameters. Although the ViT-Ti/16 has the smallest parameter count (5.07M),
its accuracy is lower than the first two, at about 0.95. However, the ViT-B/32 has
a larger parameter count and lower accuracy. Thus, the results suggest that the
ViT-S/16 is optimal.

Finally, this study evaluated the accuracy of different pruned ViT models on
the validation set, as shown in Figure 8A. The results indicate that the pruned
ViT-S/16 model achieved the highest accuracy on the validation set, approaching
0.97, demonstrating excellent pruning effects. Both ViT-B/16 and ViT-Ti/16 also
maintained high accuracies, each above 0.90; however, the validation accuracy of
ViT-B/32 was lower, not achieving the same performance level as the other models
post-pruning. Additionally, Figure 8B shows the loss curves, with ViT-S/16 having
the lowest and most stable convergence, consistent with high accuracy. The loss
curves for ViT-B/16 and ViT-Ti/16 were relatively low and showed little variation.
The loss curve for ViT-B/32 fluctuated more and did not converge effectively.

Figure 8. Comparison of loss curves before and after pruning.

4. Conclusion

This study compared the performance of Vision Transformer (ViT) models of
different scales on a small-batch colloidal gold test kit dataset, utilizing data aug-
mentation, model training optimization, and qkv layer compression techniques. The
results indicate that data augmentation significantly improved the accuracy and gen-
eralization capability of the ViT models in colloidal gold test kit image classification,
particularly under varying image quality conditions. Data augmentation techniques
effectively enhanced model recognition accuracy. After training optimization, the
ViT-S/16 model achieved optimal performance using the cosine annealing algorithm
for learning rate decay adjustment, further enhancing training efficiency.

In the qkv layer compression experiments, accuracy improved across all models
at low pruning rates, with the ViT-B/16 model achieving the highest accuracy of
97.13%. Although some models exhibited a slight decline in accuracy as pruning
rates increased, ViT-S/16 outperformed ViT-B/16 under higher pruning rates while
significantly reducing the parameter count. These findings confirm the effectiveness
of qkv layer compression in improving model efficiency and reducing computational
resource consumption. The experiments successfully classified colloidal gold test kit
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images, demonstrating the potential of qkv layer compression methods for agricul-
tural detection tasks.

The innovation of this study lies in proposing a new strategy to optimize ViT
models through qkv layer compression, providing a theoretical foundation for model
optimization by balancing pruning rates. The results indicate that at low pruning
rates, accuracy loss is minimal, while at higher pruning rates, ViT-B/16 experiences
only a limited performance decline. This suggests that the proposed optimization
method effectively enhances model efficiency while maintaining high accuracy. Fu-
ture research could explore compression techniques applied to different layers and
extend this optimization approach to a broader range of agricultural detection tasks,
further improving model accuracy and computational efficiency.
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