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WORST-CASE ROBUST MODEL OF MULTI-PERIOD AIRPORT
GROUP COORDINATED FLIGHT TIMETABLE

JIANZHONG YAN AND MINGHUA HU*

ABSTRACT. This paper introduces a robust optimization model for multi-period
airport group coordinated flight timetable (MPAGCFT) with worst-case travel
time. It assigns all arrival and departure flights of each period for different
airports to their unique time slots in an uncertain environment to prevent conflicts
between them at any waypoints. Furthermore, some real-world constraints such
as maximum delay time for each flight etc. have also been taken into account
in proposed model. The objective aims at minimizing total deviations between
planned and actual time for all flights. The solutions are found by applying
RSOME solver. Finally, a case study of four airports in China is given to verify
the feasibility of our study, by analyzing the impact of the uncertainty parameter
budget on optimal schedules.

1. INTRODUCTION

An airport group network includes comprises a collection of airports, shared
waypoints, and the connections that link them together. There are some flights
scheduled to take off or land at their planned times at the airport, where an arrival
flight fly from the shared waypoint at a time to the airport at planned loading
time, while each departure flight fly from the airport at their planned take-off times
to the shared waypoint at a time. Obviously, no coordination of all arrival and
departure flights between different airports and a shared waypoint may cause them
to pass though this waypoint within a safe interval, resulting in some flights must
hover for a while to make sure the safe fly corridor. In such case, these delayed
flights simultaneously generate additional fuel consumption and carbon emissions.
Compared with a single airport flight timetable (SAFT), airport group coordinated
flight timetable (AGCFT) can improve time slot resource allocation efficiency to
minimize flight delays and mitigate carbon emissions, by coordinating arrival and
departure times of related flights at various airports to mitigate conflicts at the
same waypoints [18,27,28,32,46]. The solution scale of AGCFT is larger than that
of SAFT, which has been proved to be a NP-hard problem [9]. Therefore, AGCEFT
have attracted the attention of many scholars and engineers.

At present, most of the existing literature studies the problem of single- period
AGCFT, which aims at only generate one day’s flight schedule for a week’s one, by
assuming that any flight operates on seven days in a week [14,33]. However, some
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flights do not operate every day of the week, resulting in multi- period AGCFT fit
better than single- period AGCFT in practice. Existing literatures of multi- period
AGCFT could be further divided into two categories: (1) the same arrival and
departure time of the flight on seven days in a week [5]; (2) the changed arrival and
departure time of the flight on seven days in a week [4]. Obviously, the seven-day
schedule of the first category can be generated as a whole, while the schedule for
each day of the week of the second category can be generated separately. Although
the operation efficiency of the former is not as high as that of the latter, it is more
in line with the travel habits of civil aviation passengers. However, existing studies
have mainly focus on multi- period AGCFT with certain flight time and ignored
the effect of uncertainty on model performance, which makes the schedule difficult
to be applied in practice [11,22,31]. Therefore, it is essential to investigate robust
optimization model for multi- period AGCFT with worst-case flight time.

The primary contribution of our research aimed at proposing a robust optimiza-
tion model for MPAGCFT with worst-case flight time. The two tasks of this study
conclude: 1) Determination of the optimal schedules for MPAGCFT by simultane-
ously assigning all arrival and departure flights of each period for different airports
to their unique time slots to avoid potential conflicts at all shared waypoint, by
taking into account some real-world constraints such as maximum delay time for
each flight etc. as well as spatiotemporal distribution of flight times between air-
ports and waypoints. 2) Creation of robust optimization model for MPAGCFT by
assuming worst-case flight time to discuss the influence of uncertainty of flight time
on the schedules. Finally, a case study is applied to generate optimal schedules and
the validity of this study is verified by comparing with the traditional model.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related literatures on airport flight timetable. Section 3 introduces the notions of
MPAGCFT and explains the formulation of proposed model. Section 4 gives a
real instance to verify the feasibility of this study. Finally, concluding remarks and
future work are discussed in Section 5.

2. LITERATURE REVIEW

Airport flight timetable allocation stands as one of the paramount components
within Air Traffic Flow Management (ATFM) [11,22,27,28,31,46]. Historically,
a plethora of scholars have extensively scrutinized slot allocation issues, primarily
focusing on two domains: single airports and airport clusters. Concerning single air-
port schedule allocation, Zografos et al. [50] initially proposed the objective function
for timetable allocation: minimizing the total absolute deviation between requested
and allocated time intervals (also referred to as planned delay [29]). The research
findings of this model indicate that announcing capacity increments can significantly
ameliorate the objective function, thereby enhancing timetable allocation efficiency.
Subsequent studies have expanded considerations to encompass total planned dis-
placement, such as maximum planned displacement [34], fairness [3, 21, 48], and
anticipated operational delays [10,47]. These objectives are often considered in
conjunction with other factors, as exemplified by Zografos et al. [47], who inte-
grated the acceptability of flight schedules into their model. Research indicates
that by diminishing the efficiency of flight schedules, their utilization intensity can
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be heightened. Building upon prior research, Fairbrother and Zografos [13] intro-
duced a demand-based fairness index, which, although more aligned with the ac-
tual operational requirements of airlines, lacks preference features. Following suit,
Katsigiannis and Zografos [23] introduced a time flexibility index to reflect airline
preferences. Ribeiro et al. [36] further refined the objectives into minimizing total
displaced timetables, maximizing displacement, total displacement, and the number
of flights displaced, assigning weighted values to prioritize these objectives, thereby
better reflecting airline preferences. Noteworthy is the innovative approach of this
model, which employs a dictionary-based sequence to address each priority issue,
thus capturing dependencies between different time timetables. Similarly, Jacquilla
and Vaze [20] proposed a dictionary framework based on efficiency, fairness, and
punctuality. Owing to the vast and intricate nature of flight schedule data, addi-
tional model-solving methodologies include heuristic algorithms [6,7,24, 33, 40,43|
as well as the Deferred Acceptance (DA) algorithm [23], column-and-row genera-
tion algorithms [50], two-stage approaches [15], and the e-constraint method [16].
In recent years, scholars have delved deeper into the multi-objective functions for
timetable allocation at single airports. For instance, Zografos and Jiang [48] pro-
posed a multi-objective optimization model considering efficiency, fairness, and air-
port accessibility. Katsigiannis et al. [23,25] extended the work of Fairbrother and
Zografos [13], proposing a multi-objective optimization model considering minimum
and maximum displacement and fairness. Kerama and Zografos [26] introduced an
optimization model considering efficiency, fairness, flexibility, and regularity of flight
schedules. Although these studies address the multi-objective and multi-level issues
of airport flight schedules and adhere to corresponding policies and regulations, they
overlook the relationships between relevant stakeholders in practical applications.
Research indicates that studying a single airport within a complex network en-
vironment can better capture the interactions among airports, airlines, and pas-
sengers [1,19,37]. For instance, Sheng et al. [38] investigated the uncertainty in
airport cluster demand by describing subjective predictions and market equilibrium
of various stakeholders, including ticket prices, flight sizes, private information, dif-
ferences in flight schedules, time value, route selection, and passenger utility. After
determining the departure time of flights from the departure airport, it is imper-
ative to simultaneously confirm the arrival time of these flights at the destination
airport. Research on flight schedule allocation in airport clusters can effectively
grasp the substitutability, temporal and spatial complementarity, and interdepen-
dence between timetables [35,49] which are unattainable at single airports. Castelli
et al. [8] initially proposed the flight schedule allocation problem for airport clus-
ters, aiming to minimize the cost deviation between allocated flight schedules and
ideal schedules. However, this model did not consider existing scheduling rules (a
limitation addressed in the study by Benlic [5]) and was only applicable to specific
flights at specific times, neglecting scheduling issues for entire seasons or series of
time periods. Subsequently, Corolli [10] extended Zografos et al.’s single airport
cluster model by proposing a two-stage stochastic programming model with re-
course rights, which for the first time considered capacity uncertainty at the airport
cluster level, applicable to flight schedule requests for four different days. Never-
theless, it overlooked grandfather rights. Fairbrother and Zografos [14] proposed
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a novel timetable allocation model that allows flexible operations throughout the
scheduling season, effectively reducing planned displacement, but it is only suitable
for small to medium-sized airports. Following this, Pellegrini et al. [32] introduced
a model capable of handling all flight schedule requests in Europe, addressing flight
scheduling for the entire season. Similar to single airport timetable allocation is-
sues, most studies also employ heuristic algorithms [2,18,33] to address timetable
allocation problems in airport clusters.

It is widely acknowledged that the primary objective of flight timetable alloca-
tion is to mitigate flight delays, a process heavily influenced by multifaceted factors
including capacity constraints (both in airspace and at airports), runway availabil-
ity, air traffic density, among others. Concurrently, schedule coordinators encounter
significant uncertainty when making decisions, encompassing capacity constraints
(both in airspace and at airports), flight durations, prediction intervals, adverse
weather conditions, and operational demands from various departments [45]. In re-
sponse to this prevailing uncertainty, numerous scholars have embarked on modeling
endeavors. For instance, Wang and Zhao [41] endeavored to minimize strategic de-
viation costs and potential operational congestion by formulating a flight schedule
allocation model for airport networks under uncertain capacity conditions, account-
ing for airline preferences. However, this model fell short in analyzing the ramifi-
cations of external capacity fluctuations on decision-making, opting instead for a
direct utilization of weighted averages within a single-stage model. Wang et al. [42]
delved into the allocation of flight schedules under flight time uncertainty at 15-
minute intervals while maintaining fixed capacity constraints. Although this model
encapsulated network effects and the cascading repercussions of consecutive flights
within airport networks, it neglected to address the nuances of periodic flights and
the propagation of delays. Liu et al. [30] amalgamated the salient features of the
aforementioned models by adopting 5-minute intervals to curtail delay propagation
and alleviate cascading reactions within airport networks through the judicious con-
trol of capacity constraints. The secondary phase of this model treated the tally of
flight delays within a specified timeframe as a continuous variable, thereby facilitat-
ing decision-making under worst-case capacity scenarios and enhancing predictive
flexibility across multiple operational days. However, the literature reviewed herein
is not devoid of shortcomings: firstly, the examined models delved into flight sched-
ules within specified temporal boundaries without broaching the subject of flight
cycle dynamics; secondly, while these models grappled with uncertainty surrounding
airport capacity, they remained silent on the fluctuating nature of airspace capac-
ity stemming from flight time uncertainties. One prominent avenue for addressing
uncertainty optimization models lies in the adoption of chance constraints. In the
context of flight schedule allocation applications, Delahaye and Wang [11] under-
scored that chance constraints were introduced to address fixed capacity constraints
within airport networks, proffering a flight schedule allocation method for airport
networks. This model minimized total flight displacement within airport networks
while converting departure/arrival point constraints into chance constraints, thereby
accommodating a spectrum of capacity constraints. Subsequently, Wang et al. [44]
delved into the airspace capacity requirements resulting from flight time uncertainty,
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employing chance constraints to tackle this uncertainty. The above research indi-
cates that uncertainty optimization models, as opposed to deterministic optimiza-
tion models, can provide robust and efficient solutions for flight schedule allocation
in airport clusters, offering important reference tools for slot coordinators.

Although a few researchers have successfully studied a variety of models and
methods for SAFT/AGCFT, the following three problems deserve further investi-
gation:

(1) Most of the existing studies mainly focused on single- period AGCFT to
generate one day’s flight schedule for a week’s timetable, neglecting some flights
do not operate every day of the week. Although multi- period AGCFT fit better
than single- period AGCFT in practice, related studies on multi- period AGCFT
are scarce [4,5,12,14,33].

(2) Existing studies have mainly focus on SAFT/AGCFT with uncertain flight
time or airport capacity. However, they can not solve the robustness and anti-
interference of scheduling scheme under uncertain environment, which makes the
schedule difficult to be applied in practice. Therefore, it is important to explore
a robust optimization model for multi- period AGCFT with worst-case flight time
[17,39].

3. ROBUST OPTIMIZATION FRAMEWORK FOR MPAGCFT

3.1. Description of the problem. A MPAGCFT network topology contains some
nodes (i.e., airports or waypoints) and edges between them, where an airport could
link serval shared waypoints, and a shared waypoint can also connect multiple
airports. There are many flights at each airport in seven days of a week, which
involve planned take-off or landing times, types (arrival or departure flight), shared
waypoints as well as maximum delay times etc. The 1440 minutes of the day are
divided into 288 time slots at 5-minute intervals. All flights at each airport need
to be assigned to their unique time slots in seven days of a week. Furthermore,
the quantity of flights at an airport or a waypoint designated for a specific time
slot in seven days of a week is less than its capacity. Moreover, interval variables
are employed to represent the uncertain flight times, which may be influenced by
adverse weather conditions and other factors. The primary objective of this paper
is to identify the optimal relationship among the network layout of MPAGCFT, the
spatial and temporal distribution of flights across various airports, as well as the
uncertainties associated with flight duration, scheduling, and overall system costs.

The objective of this study is to present a worst-case robust model designed to
assign all flights in seven days of a week to their specific time slots to minimize the
total deviations in their arrival and departure times between planned and actual
schedules. To ensure that our model aligns with real-world scenarios, the primary
assumptions are outlined as follows:

(1) The basic information of all arrival and departure flights at each airport in
seven days of a week can be obtained in advance.

(2) The capacity of airports or waypoints for each time slot in seven days of the
week is also known in advance.

(3) The estimated intervals for flight times can be derived through analysis of
flight operation data.
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3.2. Notations. A few preliminary definitions and notations are given in Table 1.

TABLE 1. Definitions and notations of MPAGCFT model

Index:
k Each time slot index
i Each flight index
a Each airport index
w Each shared waypoint index
5 Each day index
Sets:
A All airports
K All time slots
N All shared waypoints
S Seven days of a week
C?;” All flights leaving from airport a on a day s
n All flights arriving at airport a on a day s
P;jfs All flights leaving from airport a flying though waypoint w on a day s
Fgf‘w,s All flights arriving at airport a flying though waypoint w on a day s
Parameters:
T7° The scheduled time slot of arrival or departure flight ¢ on a day s
d; Maximization deviation in arrival or departure time slot of flight 7 on a day s
C(’fﬁs Airport a’s total capacity of time slot k on a day s
;55 Airport a’s total capacity during 15 min on a day s
c, Airport a’s total capacity during 30 min on a day s
Cgos Airport a’s total capacity during 60 min on a day s
Cf:gn Airport a’s total arrival capacity of time slot k on a day s
;755;1“ Airport a’s total arrival capacity during 15 min on a day s

Airport a’s total arrival capacity during 30 min on a day s
C%In Airport a’s total arrival capacity during 60 min on a day s
CHkOut  Airport a’s total departure capacity of time slot k on a day s
C150u  Airport a’s total departure capacity during 15 min on a day s

ng’s;o“t Airport a’s total departure capacity during 30 min on a day s
C’S?S’O”t Airport a’s total departure capacity during 60 min on a day s
1’273 Waypoint w’s total capacity of time slot k on a day s
s Waypoint w’s total capacity during 15 min on a day s
%U(fs Waypoint w’s total capacity during 30 min on a day s
1635 Waypoint w’s total capacity during 60 min on a day s
fUIS“ Waypoint w’s total arrival capacity of time slot k on a day s
1105;751“ Waypoint w’s total arrival capacity during 15 min on a day s
f’ﬁg“ Waypoint w’s total arrival capacity during 30 min on a day s
SE;I“ Waypoint w’s total arrival capacity during 60 min on a day s
k,Out

Waypoint w’s total departure capacity of time slot k on a day s
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TABLE 1. (Continued)

Parameters:

Q15 Out  Waypoint w’s total departure capacity during 15 min on a day s

Waypoint w’s total departure capacity during 30 min on a day s
[e) . 5 . . .
fuos U Waypoint w’s total departure capacity during 60 min on a day s
T2, Flying time from airport a to waypoint w on a day s
) . . . .
T 0 Average flying time from airport a to waypoint w on a day s
s, Deviation of flying time from airport a to waypoint w on a day s

QSO Out

Decision variables:

h Whether each flight ¢ will be allocated to time slot £ on a day s or not

3.3. Formulation. A novel 0—1 robust model of MPAGCFT with worst-case flight
time could be firstly outlined as follows:
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The objective function (3.1) aims at minimizing the total deviations between
planned and actual times for all flights across various airports in seven days of a
week. Constraint (3.2) mandates that all flights must be assigned to their unique
slot times in a day of a week. Constraint (3.3) mandates. Constraints (3.4)—(3.7)
establish that overall quantity of arrival and departure flights at the airport in any
5/min/15min/30min/60min in a day of a week cannot exceed its certain thresh-
old. Constraints (3.8)—(3.11) establish that overall quantity of arrival flights at the
airport in any 5/min/15min/30min/60min in a day of a week cannot exceed its
certain threshold. Constraints (3.12)—(3.15) establish that overall quantity of de-
parture flights at the airport in any 5/min/15min/30min/60min in a day of a week
cannot exceed its certain threshold. Constraints (3.16)—(3.19) stipulate that overall
quantity of arrival and departure flights passing through the waypoint in any 5/min/
15min/30min/60min in a day of a week must also adhere to established thresholds.
Constraints (3.20)—(3.23) reinforce limitations on total number of departure flights
at the airport in any 5/min/15min/30min/60min in a day of a week. Constraints
(3.24)—(3.27) reiterate restrictions concerning arrival flights at the airport in any
5/min/15min/30min/60min in a day of a week.

To deal with MPAGCFT with random flying tlme the affine term T w T+ T(fwz
is used to depict its uncertainty in the interval [T, — T5,, T o, + 15,1, Where the

aw?
stochastic parameter z lies in the uncertainty set Z {z ||z Hoo < 1,]|z]]1 T}, and

I" presents the budget of uncertainty in flight time. The robust model of MPAGCFT
is described as below.
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The other constraints are the same as above. Objective function (3.28) presents
worst-case of objective function (3.1). Constraints (3.29)—(3.40) present worst-cases
of constraints (3.16)—(3.27).

4. SOLUTION METHOD

As above mentioned, MPAGCFT could be further divided into Model 1 with the
same arrival/ departure time of a flight on all days and Model 2 with its changed
arrival/departure time on different days. Model 1 can be directly solved by using
RSOME solver generate a 7-day flight schedule, and Model 2 will be solved seven
times by the RSOME solver to generate a daily flight schedule. A data-driven
framework for solving MPAGCFT is given in Figure 1. After analyzing the flight
information on seven days in a week of each airport in an airport group, their busy
shared waypoints are determined and their upper and lower bounds of flight times
are obtained. The solutions of Model 1 and Model 2 are obtained based on their
inputs and budget of uncertainty parameter.

5. EXAMPLE STUDY

5.1. Data preparation. A total of 2547 flights between August 1, 2023 to August
7, 2023 in MPAGCFT network of four airports in Beijing-Tianjin-Hebei region,
China, seen in Figure 2, is utilized to demonstrate the validity of this study. Ta-
bles 2 and 3 depict all flights of four airports as well as them between airports and
waypoints on each day of a week. There are a total of 2035, 2547, 2020, 2253, 2041,
2127 and 2064 arrival and departure flights between Monday and Sunday, where
56.3%, 52.45%, 56.5%, 55.9%, 5.61%, 54.3%, 56.4% of those flights fly through
these busy waypoints in these seven days. Other parameters are set as: d; =
120 mlIl Cl5m1n _ 30{/7,020111111 — GCZ;, CSOmin — 120k; Qw — 4 Qlem — BQ’ZH
Q?)Omln — 6Qw7 60min __ 12@5, r=o0.

w

5.2. Results. There is a total deviation of 5106 slots for assigning all flights on
these seven days to their actual time slots in the optimal solution of Model 1. As
seen in Tables 2 and 3, the result shows that: (1) For the four airports on any given
day, the larger degree of imbalance between supply and demand of an airport it is
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the largest, and deviations between planned and actual time for all flights. They are
ranked in descending order as ZBAD, ZBAA, ZBTJ and ZBSJ. (2) For an airport
on a different day, the more flights on a given day, the greater imbalance between
supply and demand, resulting in more deviations between planned and actual time
for all flights. They are ranked in descending order as Tuesday, Thursday, Saturday,
Friday, Monday, Wednesday and Sunday.
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TABLE 2. Flights of airports and waypoints airports

Airport Number of flights
Name C* Monday Tuesday Wednesday Thursday Friday Saturday Sunday
ZBAA 8 588 805 574 636 588 571 583
ZBAD 6 934 1043 932 981 944 941 955
ZBTJ 4 337 455 337 415 339 398 340
ZBSJ 2 176 244 177 221 170 217 186

TABLE 3. Flights between four airports and waypoints

Airport WayPoint
Number of flights
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Name Name

P522 111 126 108 115 109 101 106
TBAA P86 78 91 73 81 7 65 76
VAGBI 107 126 103 116 105 102 105
DPX 77 92 T 86 79 74 80
P522 87 98 90 96 89 91 90
7BAD P86 142 151 142 145 142 134 144
VAGBI 113 125 112 120 116 117 115
DPX 132 146 134 138 136 127 139
P522 59 69 58 67 57 63 56
7BTJ P86 40 50 40 47 41 45 41
VAGBI 58 70 o7 67 95 63 56
DPX 29 38 30 37 29 33 31
P522 40 54 40 49 38 49 44
7BS] P86 20 30 21 29 19 26 23
VAGBI 40 52 42 49 39 49 42
DPX 14 19 14 18 14 16 16

TABLE 4. Basic information of the optimal solution for Model 1

Airport Total delay time/Number of flights not delayed or more than 30 minutes

Monday Tuesday  Wednesday Thursday Friday Saturday Sunday

ZBAA  37/553/0 200/673/0 30/545/0 42/597/0  33/557/0  34/538/0  32/552/0
ZBAD 549/679/13 963/725/32 539/678/14 688/700/19 558/685/14 637/684/16 520/694/13
ZBTJ  14/324/0  75/402/0  12/325/0  40/379/0  15/325/0  32/368/0  17/325/0
7ZBSJ  2/174/0  13/233/0  2/175/0  8/214/0  3/167/0  7/211/0  4/182/0

Furthermore, Table 5 compares difference in optimal solutions the of Model 1 and
Model 2. Compared with Model 1, total deviation, number of flights not delayed,
number of flights delayed more than 30 minutes and number of flights delayed
more than 60 minutes of Model 2 are reduced by 18.7%, 14.2%, 40.7% and 35.5%,
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TABLE 5. Comparison of model A and model B

Scenarios Model 1 Model 2 Gap

Total deviation (time slots) 5106 4302 18.7%
No delay 12664 11093 14.2%

Number of flights delayed More than 30 minutes 121 86 40.7%
More than 60 minutes 42 31 35.5%

respectively. However, passengers expect the same flight to be constant at departure
or arrival time on seven days of a week, thus Model 1 is more realistic than Model 2.

5.3. Sensitivity analysis. Figure 3 analyzes the effect of degree of uncertainty on
the model performance. The heightened degree of uncertainty has resulted in an
expanded time window for flight duration. This, in turn, diminishes the solution
space that accommodates all relaxation variables, ultimately leading to a suboptimal
solution. Obviously, if changed time window of the flight time does not reduce the
solution space, the optimal solution stays the same.

Impact of the degree of uncertainty on model performance
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F1GURE 3. Comparison of optimal schedules under various degrees
of uncertainty

Figure 4 analyzes how different airport capacity affect the result. The enhance-
ment of airport capacity can lead to reduction in the total deviation of time until
the threshold is reached. This is due to the fact that the enhancement of airport
capacity has allowed some flights not to be delayed. When the capacity of a time
slot is greater than number of flights assigned to this time slot, total deviation of
time is a fixed value, decided by some factors such as waypoint capacity.

Figure 5 analyzes the effect of different waypoint capacity on the result. As
waypoint capacity increases, the total deviation time gradually decreases. When
the threshold is reached, it will remain the same. The reason for this phenomenon
is similar to that of Figure 4.
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Impact of different airport capacities on model performance
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F1GURE 4. Comparison of optimal schedules under various airport capacities

Impact of different waypoint capacities on model performance
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F1GURE 5. Comparison of optimal schedules under various waypoint capacities

6. CONCLUSIONS

This paper develops a worst-case robust model for MPAGCFT with uncertain
flight time to identify optimal relationship between network layout of MPAGCFT,
space-time distribution of flights at different airports, the uncertainties associated
with flight durations, schedule and overall system costs. Furthermore, some prag-
matic constraints such as airport and waypoint capacity as well as maximum delay
time are also considered in proposed model. The solutions are derived utilizing
RSOME. Finally, a real example is presented to validate practicality of this re-
search.

The key findings of this study are summarized as follows:
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(1) For the infeasible timetable with number of flights at some periods being more
than their airport or waypoint capacities, our study, the same as the traditional
AGCFT model, also adjusts arrival and departure time of some flights to make
number of flights for all periods less than the airport or waypoint capacities, so that
the infeasible timetable becomes a feasible timetable.

(2) Compared with single- period AGCFT, MPAGCFT could generate a viable
7-day schedule based on the differences in flight schedules for the seven days of
the week. Obviously, the greater the imbalance between supply and demand at an
airport, the greater its flight deviation. Similarly, the greater the imbalance between
supply and demand on a given day, the greater the flight deviation.

(3) Although total deviation times for all flights of Model 1 is larger than that
of Model 2, the former is closer to reality than the latter, which is in line with
passengers’ travel habits.

However, our model has two major shortcomings: (1) it only considers minimum
objective of deviations between planned and actual time for all flights, ignoring
the impact of airline and airport fairness on the schedule; (2) many real-world
constraints such as schedule of new flights, dynamic allocation of airport or waypoint
capacity etc. are neglected. Expanding our model to a multi-objective framework
with many pragmatic constraints will be the focus of our future work.

REFERENCES

[1] N. Adler, Hub-spoke network choice under competition with an application to western europe,
Transp. Sci. 39 (2005), 58-72.

[2] A. Agogino and J. Rios, Robustness of two air traffic scheduling approaches to departure uncer-
tainty, in: Proceedings of 2011 IEEE/ATAA 30th Digital Avionics Systems Conference, IEEE,
October 2011, pp. 16-20.

[3] K. N. Androutsopoulos and M. A. Madas, Being fair or efficient? A fairness-driven modeling
extension to the strategic airport slot scheduling problem, Transp. Res. Part E: Logist. Transp.
Rev. 130 (2019), 37-60.

[4] K. N. Androutsopoulos, E. G. Manousakis and M. A. Madas, Modeling and solving a bi-
objective airport slot scheduling problem, Eur. J. Oper. Res. 284 (2020), 135-151.

[5] U. Benlic, Heuristic search for allocation of slots at network level, Transp. Res. Part C: Emerg.
Technol. 86 (2018), 488-509.

[6] E. K. Burke, S. Petrovic and R. Qu, Case-based heuristic selection for timetabling problems,
J. Sched. 9 (2006), 115-132.

[7] B. Capozzi, S. Atkins and S. Choi, Towards optimal routing and scheduling of metroplex
operations, in: Proceedings of 9th ATAA Aviation Technology, Integration and Operations
Conference (ATIO), ATAA, June 2009: 7037.

[8] L. Castelli, P. Pellegrini and R. Pesenti, Airport slot allocation in europe: economic efficiency
and fairness, Int. J. Reven. Manag. 6 (2012): 28.

[9] T. B. Cooper and J. H. Kingston, The complezity of timetable construction problems, in:
Proceedings of Lecture Notes in Computer Science, Springer Berlin Heidelberg, June 1996,
pp. 281-295.

[10] L. Corolli, G. Lulli and L. Ntaimo, The time slot allocation problem under uncertain capacity,
Transp. Res. Part C: Emerg. Technol. 46 (2014), 16-29.

[11] D. Delahaye and Y. Wang, Slot allocation in a multi-airport system under flying time uncer-
tainty, in: Proceedings of International Workshop on ATM/CNS, Springer, October 2022, pp.
119-126.

[12] B. Dijk, B. F. Santos and J. P. Pita, The recoverable robust stand allocation problem: a gru
airport case study, OR Spectr. 41 (2018), 615-639.



WORST-CASE ROBUST MODEL OF MULTI-PERIOD AIRPORT GROUP COORDINATED 1967

(13]
(14]

(15]

(16]

(17]

(18]
(19]
20]

(21]

(22]

23]

24]

(25]

(26]

27]

(28]

29]

30]

(31]

J. Fairbrother and K. G. Zografos, Introducing flexibility and demand-based fairness in slot
scheduling decisions, in: Proceedings of Odysseus conference, Sardinia, June 2018, pp. 23—29.
J. Fairbrother and K. G. Zografos, Optimal scheduling of slots with season segmentation, Eur.
J. Oper. Res. 291 (2021), 961-982.

J. Fairbrother, K. G. Zografos and K. D. Glazebrook, A slot-scheduling mechanism at congested
airports that incorporates efficiency, fairness, and airline preferences, Transp. Sci. 54 (2020),
115-138.

H. Feng, R. Hu, D. Wang, J. Zhang and C. Wu, Bi-objective airport slot scheduling considering
scheduling efficiency and noise abatement, Transp. Res. Part D: Transp. Environ. 115 (2023):
103591.

Y. S. Gok, S. Padrén, M. Tomasella, D. Guimarans and C. Ozturk, Constraint-based robust
planning and scheduling of airport apron operations through simheuristics, Ann. Oper. Res.
320 (2022), 795-830.

F. B. Hafner, Improving airline schedule reliability using a strategic multi-objective runway slot
assignment search heuristic, Master’s thesis, University of Central Florida, 2008.

S. Hong and P. T. Harker, Air traffic network equilibrium: Toward frequency, price and slot
priority analysis, Transp. Res. Part B: Methodol. 26 (1992), 307-323.

A. Jacquillat and V. Vaze, Interairline equity in airport scheduling interventions, Transp. Sci.
52 (2018), 941-964.

Y. Jiang and K. G. Zografos, A decision making framework for incorporating fairness in
allocating slots at capacity-constrained airports, Transp. Res. Part C: Emerg. Technol. 126
(2021): 103039.

F. Ju, K. Cai, Y. Yang and Y. Gao, A scenario-based optimization approach to robust esti-
mation of airport capacity, in: Proceedings of 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, IEEE, September 2015, pp. 2066—2071.

F. A. Katsigiannis and K. G. Zografos, Optimising airport slot allocation considering flight-
scheduling flexibility and total airport capacity constraints, Transp. Res. Part B: Methodol.
146 (2021), 50-87.

F. A. Katsigiannis and K. G. Zografos, Multi-objective airport slot scheduling incorporating
operational delays and multi-stakeholder preferences, Transp. Res. Part C: Emerg. Technol.
152 (2023): 104156.

F. A. Katsigiannis, K. G. Zografos and J. Fairbrother, Modelling and solving the airport
slot-scheduling problem with multi-objective, multi-level considerations, Transp. Res. Part C:
Emerg. Technol. 124 (2021), 102914.

T. Kerama and K. G. Zografos, A multi-objective framework for investigating airport sched-
ule efficiency, fairness, flexibility, and reqularity trade-offs, in: Proceedings of International
Workshop on Freight Transportation and Logistics, ODYSSEUS, May 2022, pp. 24-32.

M. Keskin and K. Zografos, Modeling and solving the network-wide airport slot allocation
problem with connectivity, efficiency and fairness considerations, SSRN Electron. J. (2022),
DOI: 10.2139/ssrn.4180320.

M. Keskin and K. G. Zografos, Optimal network-wide adjustments of initial airport slot allo-
cations with connectivity and fairness objectives, Transp. Res. Part B: Methodol. 178 (2023):
102801.

D. Koesters, Airport scheduling performance—an approach to evaluate the airport scheduling
process by using scheduled delays as quality criterion, in: Proceedings of the Air Transport
Research Society (ATRS) annual world conference, UNO Aviation Institute, June 2007, pp.
23-27.

W. Liu, Q. Zhao and D. Delahaye, Research on slot allocation for airport network in the
presence of uncertainty, J. Air Transp. Manag. 104 (2022): 1022609.

K. K. H. Ng, C. K. M. Lee, F. T. S. Chan and Y. Qin, Robust aircraft sequencing and scheduling
problem with arrival/departure delay using the min-maz regret approach, Transp. Res. Part E:
Logist. Transp. Rev. 106 (2017), 115-136.



1968 J. Z. YAN AND M. H. HU

[32] P. Pellegrini, T. Bolié, L. Castelli and R. Pesenti, Sosta: An effective model for the simultaneous
optimisation of airport slot allocation, Transp. Res. Part E: Logist. Transp. Rev. 99 (2017),
34-53.

[33] P. Pellegrini, L. Castelli and R. Pesenti, Metaheuristic algorithms for the simultaneous slot
allocation problem, IET Intell. Transp. Syst. 6 (2012), 453-462.

[34] N. Pyrgiotis and A. Odoni, On the impact of scheduling limits: A case study at newark liberty
international airport, Transp. Sci. 50 (2016), 150-165.

[35] S. J. Rassenti and R. L. Bulfin, A combinatorial auction mechanism for airport time slot
allocation, Bell J. Econ. 13 (1982), 402-417.

[36] N. A. Ribeiro, A. Jacquillat, A. P. Antunes, A. R. Odoni and J. P. Pita, An optimization
approach for airport slot allocation under iata guidelines, Transp. Res. Part B: Methodol. 112
(2018), 132-156.

[37] B. Saraswati and S. Hanaoka, Airport—airline cooperation under commercial revenue sharing
agreements: A network approach, Transp. Res. Part E: Logist. Transp. Rev. 70 (2014), 17-33.

[38] D. Sheng, Z. C. Li, Y. B. Xiao and X. W. Fu, Slot auction in an airport network with demand
uncertainty, Transp. Res. Part E: Logist. Transp. Rev. 82 (2015), 79-100.

[39] C. Tan and J. He, Robust airport gate assignment based on the analysis of flight arrival time,
Math. Prob. Eng. 2021 (2021): 6693127.

[40] P. B. M. Vranas, Optimal slot allocation for european air traffic flow management, Air Traffic
Control Q. 4 (1996), 249-280.

[41] D. Wang and Q. Zhao, A simultaneous optimization model for airport network slot allocation
under uncertain capacity, Sustain. 12 (2020): 5512.

[42] K. Wang and A. Jacquillat, A stochastic integer programming approach to air traffic scheduling
and operations, Oper. Res. 68 (2020), 1375-1402.

[43] S. Wang, J. H. Drake, J. Fairbrother and J. R. Woodward, A constructive heuristic approach
for single airport slot allocation problems, in: Proceedings of 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), IEEE, December 2019, pp. 1171-1178.

[44] Y. Wang, C. Liu, H. Wang and V. Duong, Slot allocation for a multiple-airport system con-
sidering airspace capacity and flying time uncertainty, Transp. Res. Part C: Emerg. Technol.
153 (2023): 104185.

[45] C. Wanke, M. Callaham, D. Greenbaum and A. Masalonis, Measuring uncertainty in airspace
demand predictions for traffic flow management applications, in: Proceedings of ATAA Guid-
ance, Navigation, and Control Conference and Exhibit, ATAA, June 2003, pp. 5708-5716.

[46] M. Wei, Y. Xiong and B. Sun, Spatial effects of urban economic activities on airports’ passenger
throughputs: A case study of thirteen cities and nine airports in the Beijing-Tianjin-Hebei
region, China, J. Air Transp. Manag. 125 (2025): 102765.

[47] K. G. Zografos, K. N. Androutsopoulos and M. A. Madas, Minding the gap: Optimizing airport
schedule displacement and acceptability, Transp. Res. Part A: Policy Pract. 114 (2018), 203—
221.

[48] K. Zografos and Y. Jiang, Modelling and solving the airport slot scheduling problem with
efficiency, fairness, and accessibility considerations, in: Proceedings of TRISTAN Symposium,
Academia, June 2016, pp. 13-16.

[49] K. G. Zografos, M. A. Madas and K. N. Androutsopoulos, Increasing airport capacity utili-
sation through optimum slot scheduling: review of current developments and identification of
future needs, J. Sched. 20 (2016), 3—24.

[50] K. G. Zografos, Y. Salouras and M. A. Madas, Dealing with the efficient allocation of scarce
resources at congested airports, Transp. Res. Part C: Emerg. Technol. 21 (2012), 244-256.

Manuscript received October 24, 202/
revised February 27, 2024



WORST-CASE ROBUST MODEL OF MULTI-PERIOD AIRPORT GROUP COORDINATED 1969

J. Z. YAN
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 213332,
China; Operation Management Center, ATMB, CAAC, Beijing 100022, China

E-mail address: yanjianzhong2024@163.com

M. H. Hu
Operation Management Center, ATMB, CAAC, Beijing 100022, China
E-mail address: minghuahu@nuaa.edu.cn



