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Time-frequency analysis methods are commonly used techniques for handling
with nonlinear and nonstationary signals. For example, Empirical mode decom-
position (EMD) and local mean decomposition (LMD) are techniques that can ef-
fectively uncover the constituents of a signal across both temporal and spectral
dimensions, and have been extensively adapted to mechanical fault diagnosis. al-
though EMD has undergone significant development, it still has problems such as
end point effect, mode mixing and negative frequency. Compared with EMD, LMD
has achieved more significant improvements not only in the terminal effect but also
negative frequency. However, the calculation speed is slower, and there are also
false components. Intrinsic time-scale decomposition (ITD), introduced by Frei and
Osorio, can break down intricate, nonstationary, and nonlinear signals into multi-
ple appropriate rotational components, effectively capturing the dynamic traits of
these fluctuating signals. This method boasts a superior computational efficiency,
frequency resolution and dismantling efficiency for the real-time processing of non-
stationary signals with time-varying characteristics. Wang [9] used the ITD method
to adaptively decompose the switch machine pressure signal into a range of intrin-
sic rotational components, which effectively represented the different local features
of the pressure signal. Yu [10] utilized the ITD method’s adaptive decomposition
ability for signals, thereby improving the accuracy of signal output.

The ITDmethod has not interpolation and selection process, Thus, the immediate
amplitude and phase obtained can instantly mirror the time-frequency characteris-
tics of the original signal.

This paper introduces a fault diagnosis technique for wind turbine bearings utiliz-
ing ITD instantaneous data. Initially, ITD is utilized to effectively break down the
intricate vibration acceleration signals from wind turbine bearing faults into several
suitable rotational components.Afterwards, the proper rotation components (PRCs)
with containing significant periodic impact composition are found, the PRCs’ in-
stantaneous amplitude and instantaneous phase are analyzed in frequency domain
to obtained feature vectors of bearing faults. Finally, the feature vectors input to
the neural network to identify wind turbine bearing faults.

This paper elaborates on the mathematical principles of the ITD method in
Section 2, and outlines the procedure for identifying faults in wind turbine bearings
using the intrinsic time scale decomposition of immediate data in Section 3. In
Section 4, the approach is demonstrated to be highly effective for diagnosing faults
in real-world wind turbines. The section 5 concludes with a summary.

2. Intrinsic time-scale decomposition method

ITD [3,8] method’s computing speed is more superior than EMD and LMD. Com-
plex vibration signal can be decomposed into independent PRCs and a convergent
component. The detail introduction of ITD method as follows:

The definitions of signal Xt, ξ are reference elements which extract a reference
signal from the signal Xt, leaving a residual signal called proper rotation. A decom-
position of Xt as follows:

(2.1) Xt = ξXt + (1− ξ)Xt = Lt +Ht

where Lt = ξXt is baseline signal, Ht = (1− ξ)Xt is proper rotation component.
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(1) The local extrema {τk, k = 1, 2, . . . , n} of a signal Xt is determined, where
τ0 = 0. The X(τk) and L(τk) are abbreviated as Xk and Lk, assuming Lt and Ht

are defined in [0, τk], and Xt is available for t ∈ [0, τk+2].
(2) The baseline-extracting factor ξ in interval (τk, τk+1] between consecutive

extrema is defined as:

(2.2) ξXt = Lt = Lk +

(
Lk+1 − Lk

Xk+1 −Xk

)
(Xt −Xk)

where

(2.3) Lk+1 = α

[
Xk +

(
τk+1 − τk
τk+2 − τk

)
(Xk+2 −Xk)

]
+ (1− α)Xk+1

where α ∈ (0, 1), it is generally fixed with 0.5.
(3) The ψ is defined as proper rotation extraction operator, then H1

t = ψXt =
Xt − ξXt = Xt − L1

t is proper rotation component (PRC) which has the highest
relative frequency. The highest relative frequency is the value corresponding to the
frequency component with the largest frequency value in a signal decomposition.
The baseline signal L1

t as the input signal, repeat these steps until the baseline
signal is monotonic. The entire decomposition process can be represented as:

(2.4)

Xt = ψXt + ξXt = ψXt + (ψ + ξ)ξXt

= [ψ(1 + ξ) + ξ2]Xt

=

(
ψ

p−1∑
k=0

ξk + ξp

)
Xt

where ψξkXt is the (k + 1)st level proper rotation, ξpXt is the monotonic trend.
The ITD approach introduced a novel concept for instantaneous amplitude, phase,
and frequency, with the instantaneous phase θt being characterized as:

(2.5) θt =



(
xt
A1

)
π

2
, t ∈ [t1, t2),(

xt
A1

)
π

2
+

(
1− xt

A1

)
π, t ∈ [t2, t3),(

− xt
A2

)
3π

2
+

(
1 +

xt
A2

)
π, t ∈ [t3, t4),(

− xt
A2

)
3π

2
+

(
1 +

xt
A2

)
2π, t ∈ [t4, t5)

where A1 > 0, A2 > 0, they respectively denote a full-wave’s amplitude of positive
half-waves and negative half-waves. t1 and t5 are the time of two successive zero
up-crossings. t2 marks the moment when the positive half-wave reaches its peak
(A1). t3 indicates the instant when the waveform crosses zero while descending. t4
signifies the time at which the negative half-wave hits its lowest point (-A2). The
full-wave refers to the segment of the signal from one zero up-crossing to the next.
The half-wave is defined as the part of the signal that spans between two consecutive
zero crossings. A monotone interval is the section of the signal that lies between
two neighboring extreme points.
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The instantaneous frequency ft can be derived from the instantaneous phase θt
through differentiation, as shown below:

(2.6) ft =
1

2π

dθt
dt
.

The instantaneous amplitude At is defined based on half-wave, At is calculated
based on the peak values of the correct rotations occurring between zero points, as
outlined below:

(2.7) At =

{
A1, t ∈ [t1, t3),

−A2, t ∈ [t3, t5).
.

The ITD technique successfully captures the intrinsic properties of the signal.
This approach is particularly well-suited for examining signals that include Ampli-
tude Modulation-Frequency Modulation (AM-FM) elements. Essentially, the ITD
method addresses and resolves all the drawbacks associated with EMD. First, the
computational complexity of ITD is only O(n), which is much lower than that of
EMD. Second, when applied to data windows, the randomness of ITD makes the
edge effects generated by the signal in the window not interfere with each other, un-
like those generated by EMD. Finally, when EMD tries to perform time-frequency
energy analysis, a special filtering process must be referenced, which is not required
by ITD, which also leads to higher efficiency of ITD than EMD.

This study employs the ITD algorithm to dissect the vibration signal from wind
turbine bearing faults, isolating the key components’ instantaneous amplitudes and
phases. By examining their frequency spectra, this method can accurately pinpoint
the specific fault traits in wind turbine bearings.

3. Fault diagnosis method of wind turbine bearing based on ITD
instantaneous information

Due to the influence of wind conditions and the intrinsic properties of roller bear-
ings, when a fault occurs in a wind turbine’s roller bearing, the resulting vibration
signal typically exhibits a complex modulation pattern. In order to better identify
wind turbine bearing fault, it is needed to effectively extract fault features. ITD
method has used to effectively decompose vibration acceleration signal to obtain
PRCs, c1, c2, . . . , cn. The PRCs which contains obvious periodic impact composi-
tion are selected in this paper. Their instantaneous amplitude and instantaneous
phase is analyzed in frequency domain using the equations (3.1) ∼ (3.4). And bear-
ing fault features APi = [Ai(umf ), Ai(ufc), Ai(urmsf ), Ai(ustdf ), Pi(umf ), Pi(ufc),
Pi(urmsf ), Pi(ustdf )] are extracted. Where i represents the i-th proper rotation
component ci; Ai(umf ), Ai(ufc), Ai(urmsf ), Ai(ustdf ), represents instantaneous am-
plitude’s frequency-domain characteristics; Pi(umf ), Pi(ufc), Pi(urmsf ), Pi(ustdf ),
represents instantaneous phase’s frequency-domain characteristics.

Frequency mean:

(3.1) umf =
1

K

K∑
k=1

s(k).
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Frequency center:

(3.2) ufc =

K∑
k=1

fks(k)

K∑
k=1

s(k)

.

Frequency root mean square value:

(3.3) urmsf =

√√√√√√√√
K∑
k=1

f2ks(k)

K∑
k=1

s(k)

.

Frequency standard deviation:

(3.4) ustdf =

√√√√√√√√
K∑
k=1

[fk − tfc]
2s(k)

K∑
k=1

s(k)

.

In the formula (3.1) ∼ (3.4), s(k) is frequency spectrum of vibration signal,
where k = 1, . . . ,K, and K represents the total number of frequency spectral lines;
fk denotes the frequency value of the k-th line in the spectrum.

When wind turbine’s bearing occurs faults, shock signal is generated. This makes
the spectrum of instantaneous amplitude and instantaneous phase for PRCs (ci) will
change, and the main spectral energy peak position also changes [12]. Thus, effec-
tively analyze the frequency features of ci’s instantaneous information will well get
the unit device’s running condition. Since the ITD method can decompose vibra-
tion signal into several PRCs whose frequency portion ordered arrangement. And
in the high frequency part, the features of the roller bearing are concentrated [1].
Therefore, it is only necessary to analyze the first few PRCs. The vectors AP serve
as fault characteristic vectors, and a neural network approach is utilized to detect
faults in wind turbine roller bearings.

The methodology for diagnosing wind turbine bearing faults using ITD instanta-
neous data is illustrated in Figure 1. The detailed steps are as follows:

(1) Under laboratory conditions, main shaft bearing faults of direct-drive wind
turbine which occur frequently are simulated. The issues encompass defects in the
outer ring, inner ring, and rolling elements. Additionally, a bearing under normal
operational conditions is also simulated. Vibration acceleration signals from the
bearing in these four scenarios are utilized as both sample and test data. For this
study, spherical roller bearings, commonly employed in real-world wind turbines,
are chosen for the experiments.

(2) The intrinsic time scale decomposition (ITD) technique is employed to break
down the vibration acceleration signal. This process allows both the sample and
test data signals to be separated into a sequence of PRCs (c1, c2, . . . , cn), each
representing distinct characteristic scales;
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Figure 1. Flowchart of Fault Diagnosis Process Based on ITD.

(3) The instantaneous information (instantaneous amplitude and instantaneous
phase) of the first k PRCs which contains evident periodic impact components is
analyzed in frequency domain, the bearing feature vectors APi = [Ai(umf ), Ai(ufc),
Ai(urmsf ), Ai(ustdf ), Pi(umf ), Pi(ufc), Pi(urmsf ), Pi(ustdf )] are extracted, where
i = 1, 2, . . . , k;

(4) The fault feature vectors APi is input to the neural network for training:
Neural network comprises interconnected nodes, or neurons, which process and

transmit information. This technology finds wide-ranging uses in various domains,
including visual identification and the processing of human language.

Initially, determining the suitable number of layers, the quantity of neurons per
layer, and the activation functions for a neural network is contingent upon the spe-
cific characteristics and intricacy of the problem. Through the application of opti-
mization techniques such as gradient descent, the parameters, including weights and
biases, are fine-tuned to reduce the loss function, which quantifies the discrepancy
between the forecasted and the true outcomes.

(5) Once the training is satisfactory, using the trained neural network to identify
the test samples.

4. Experiment validation

4.1. Experiment rig. The wind turbine experimental rig, as shown in Figure 2, is
supplied with wind sources by a small wind tunnel. In order to create experimental
conditions with different wind speeds, a 15kW axial flow fan was installed, which
was controlled by a variable frequency drive. This experiment rig consists of wind
wheel, The primary shaft bearings and generator utilize spherical roller bearings,
which are primarily designed to support radial loads. Additionally, these bearings
can handle some axial loads, typically induced by the wind’s impact on the turbine
blades. The wind wheel shaft and generator is connected by a coupling. Generator
output terminal is connected with storage battery through an AC-DC converter.
A wind sensor is employed to gauge the velocity of the wind, while a photoelectric
switch sensor is utilized to determine the rotational speed of the wind turbine. An
acceleration sensor is installed on bearing pedestal to collect bearing’s vibration
acceleration signal. The experimental sampling frequency is 2kHz.
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Figure 2. Test stand of direct-drive wind turbine.

To investigate potential localized damage in spherical roller bearings, which can
affect the outer ring, inner ring, and rollers, a series of experiments was conducted
using four 22206-type spherical roller bearings. These bearings have an outer di-
ameter of 62 mm, an inner diameter of 30 mm, and a thickness of 20 mm. One
bearing is kept in its original, undamaged state, while the other three are intention-
ally damaged to simulate different fault conditions: an inner ring defect, an outer
ring defect, and a roller defect. The defects are created by cutting slots into the
respective components using a wire cutting technique. These slots’ width is 0.2mm,
depth is 0.3mm. The fault bearing is installed on close to the wind turbine side.

4.2. Results and analysis. The experimental frequency of the wind turbine is set
at 4.17 Hz. At this frequency, the vibration acceleration signals for bearings with
defects in the inner race, outer race, and rollers are illustrated in Figure 3. Addi-
tionally, the figure presents the initial four PRCs (ci) obtained by decomposing the
vibration acceleration signals using the ITD technique. The analysis reveals that in
four states the first PRC c1 contains the original signals’ main information. The c1
has obvious fault shock characteristics. The instantaneous amplitude and instan-
taneous phase of c1 in four states are extracted. They are analyzed in frequency
spectrum as shown in Figure 4. In order to observe easily the instantaneous phase,
this figure only gives the phase diagram in the 0∼0.1s. Instantaneous amplitude
and instantaneous phase directly reflects the characteristics of the vibration signal,
so in this paper the instantaneous amplitude feature and instantaneous phase fea-
ture of c1 in four states are extracted. These features can effectively represent the
original signal’s state characteristics. That the selected feature vectors are: AP1 =
[A1(umf ), A1(ufc), A1(urmsf ), A1(ustdf ), P1(umf ), P1(ufc), P1(urmsf ), P1(ustdf )], where
A1(umf ), A1(ufc), A1(urmsf ) and A1(ustdf ), denote respectively the mean frequency,
frequency center, frequency root mean square value and frequency standard de-
viation value of the first proper rotation component’s instantaneous amplitude;
P1(umf ), P1(ufc), P1(urmsf ) and P1(ustdf ) denotes respectively the mean frequency,
frequency center, frequency root mean square value and frequency standard devia-
tion value of the first proper rotation component’s instantaneous phase. Through
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analysis, it was discovered that the first inherent rotational component c1 encom-
passes the main information of the original signal and has obvious fault impact
characteristics. Its instantaneous amplitude spectrum was analyzed. It can be per-
ceived that in the instantaneous amplitude spectrum map of the c1 component of
the outer ring fault, there is a clear spectral line at the fault characteristic frequency
of 23.44 Hz in the outer ring fault of the bearing, which is close to the calculated
frequency, indicating that the self-aligning roller bearing has an outer ring fault.In
the instantaneous amplitude spectrum chart of c1 inner ring fault, the characteris-
tic frequency of inner ring fault of the bearing, 33.2 Hz, can be clearly seen, which
is close to the theoretical calculated frequency, indicating that the spherical roller
bearing has inner ring fault. In the instantaneous amplitude spectrum chart of c1
rolling body fault, the distinct frequency of the bearing’s roller defect, 11.73 Hz, is
evident and closely matches the theoretically predicted frequency, confirming the
presence of a roller fault in the spherical roller bearing.

Figure 3. Vibration acceleration signals and their former four
proper rotation components of direct-drive wind turbine in differ-
ent conditions.
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Figure 4. The immediate magnitude, the instantaneous angle, and
their corresponding spectral characteristics of the primary inherent
rotational elements within vibration acceleration data under various
scenarios.

Vibration acceleration data from wind turbine bearings are gathered across four
distinct conditions: normal operation, outer race defect, inner race defect, and
roller defect. For each condition, 30 datasets are collected, resulting in a total of
120 datasets. Table 1 presents 32 feature vectors for these four conditions, de-
rived from the spectral analysis of the instantaneous amplitude and frequency of
the primary rotational component. Where A1(umf ), A1(ufc), A1(urmsf ), A1(ustdf ),
represents respectively the mean frequency, frequency center, frequency root mean
square value and frequency standard deviation value of the first proper rotation
component’s instantaneous amplitude. The P1(umf ), P1(ufc), P1(urmsf ), P1(ustdf ),
denotes respectively the mean frequency, the central frequency, the root mean square
frequency, and the standard deviation of the frequency for the instantaneous phase
of the primary proper rotational component.

As can be seen from Table 1, the difference between fault signals and normal
signals is more clearly manifested in the instantaneous phase feature. The difference
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between Roller fault and the normal state is the smallest in all components, while
the differences between the other two faults and the normal state are more obvious.
The difference between Outer race fault and Inner race fault in a single component
is small, but when viewed as a whole, there is still a difference that can be further
identified by a neural network.

Table 1. Spherical roller bearing fault feature of direct-drive wind
turbine based on instantaneous amplitude and instantaneous phase
of ITD.

In the 120 sets vibration acceleration data for four states of wind turbine bear-
ings, 60 sets (15 sets of each state) are randomly selected as standard sample in-
putting neural network to train, the remaining 60 data sets are utilized as test
samples for validation. The test outcomes show that all the test samples are cor-
rectly recognized. The neural elements of the input layer of neural network takes 8
(instantaneous amplitude features and instantaneous phase features), The output
layer consists of 4 neurons, each representing a distinct state of the wind turbine’s
main bearing. The hidden layer is composed of 10 neural units. The network’s
performance target is a root mean square error below 1e-8 between the actual and
expected outputs. Testing revealed that the trained neural network model achieved
perfect accuracy in diagnosing bearing faults, with good performance.
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To assess the computational effectiveness of the ITD method, it was utilized
to analyze vibration signals from a wind turbine under various conditions: outer
ring defect, inner ring defect, rolling element defect, and no defect. This was con-
trasted with the EMD method, a prevalent technique for analyzing non-stationary
signals that is also effective in extracting fault features from wind turbine bear-
ings. The findings are detailed in Table 2. According to the data, the ITD method
demonstrates superior decomposition efficiency and is well-suited for the analysis of
real-time, non-stationary signals, making it suitable for online fault diagnosis.

Table 2. Comparison of signal decomposition efficiency of ITD and
EMD

Outer race fault Inner race fault Roller fault Roller fault
ITD 0.110s 0.125s 0.093s 0.047s
EMD 2.093s 1.610s 1.562s 1.094s

5. Conclusions

ITD method is capable of decomposing complex, unsteady and nonlinear vibra-
tion signal into several PRCs. The instantaneous amplitude and instantaneous
phase containing obvious periodic impulse components is analyzed based on the
frequency spectrum. This can effectively Measure the characteristic value of the
complex signal,. Thus, despite the wind turbine bearing fault signal being non-
tationary and nonlinear, wind turbine diagnosis based on ITD instantaneous infor-
mation can be accomplished well. The findings suggest that the ITD technique is
highly effective for identifying faults in wind turbine bearings, while also offering
impressive computational speed.

The fault label information in the text is still limited, and more fault labels will be
added in the future to couple with the data information to improve the effectiveness
of feature representation.
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