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to the issue of local minima. Consequently, ELM has been the subject of extensive
research and has been successfully applied to tackle imbalanced classification prob-
lems, demonstrating its efficacy in overcoming the challenges posed by uneven class
distributions. Even though ELM and its extensions have been deeply examined and
debated within the context of imbalanced classification problems, their ability to
discern classes in binary classification problems is restricted to learning a singular
hyperplane. This major limitation considerably deters their overall application and
evolution. Currently, Wan et al. [10] introduced the notion of twin extreme learn-
ing machine (TELM), it boasts two primary advantages: its user-friendliness and
remarkable learning efficiency. Its inherent symmetry permits TELM to divide a
complex Quadratic Programming Problem (QPP) into two Sub-QPP. Addressing
the formidable task of handling imbalanced datasets in machine learning, tradi-
tional methods like TELM often show a bias towards the majority class, leading
to misclassifying minority instances as noise. This highlights the need for cre-
ative and urgent new approaches. The pervasive issue of noise and outliers within
datasets further complicates this scenario, as TELM encounters difficulties in effec-
tively managing these elements. Thus, there is a pressing need for novel solutions
that can adeptly handle both data imbalance and contamination. In this study,
we introduce a new classification model called Intuitionistic Fuzzy Twin Extreme
Learning Machine (IFRTELM) designed to tackle binary classification challenges,
especially when dealing with imbalanced datasets that include noise and outliers.
The IFRTELM integrates intuitionistic fuzzy numbers (IFNs) to assign member-
ship and nonmembership functions to individual training samples. The member-
ship function evaluates the closeness of samples to their class centroids, whereas
the nonmembership function measures the discrepancy between conflicting samples
and their surroundings. Furthermore, the IFRTELM minimizes structural risk and
enhances classification accuracy, outperforming comparable techniques in handling
complex, imbalanced datasets even under noisy conditions.

2. Theoretical basis

2.1. Twin Extreme Learning Machine. In the given training set T = {(xi, yi)|i =
1, 2 . . . l} ∈ (Rn, y)l, containing m1 instances belonging to the positive category and
m2 instances belonging to the negative category, we can divide this set according
to the category labels. Here, xi ∈ Rn denotes the feature vector of the sample, and
yi ∈ y = {−1, 1} denotes the corresponding category labels, where −1 denotes the
negative category and 1 denotes the positive category. The total number of samples
l is the sum of the number of positive and negative instances, i.e. l = m1 +m2. To
further elaborate the context of the neural network, we assume that the network
processes the input samples through a hidden layer that produces different out-
puts for positive and negative class samples. We define H1 and H2 as the matrices
representing the outputs of the hidden layer specifically for positive and negative
class samples, respectively. H1 is a matrix whose rows correspond to the hidden
layer outputs for each of the m1 positive class samples. The columns of H1 would
represent the activations of the hidden layer neurons for these positive samples. H2

is similarly defined but for the m2 negative class samples. Its rows correspond to
the hidden layer outputs for each of the negative class instances, and its columns
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represent the hidden neuron activations for these samples.

H1 =

 h1(x1) . . . hl(x1)
...

. . .
...

h1(xm1) . . . hl(xm1)

 , H2 =

 h1(x1) . . . hl(x1)
...

. . .
...

h1(xm2) . . . hl(xm2)

 ,

where hi(x) is ith column vector of the hidden layer output matrices, i = 1, 2, . . . N .
Wan et al. [10] introduced the notion of twin extreme learning machine (TELM),
it boasts two primary advantages: its user-friendliness and remarkable learning
efficiency. Its inherent symmetry permits TELM to divide a complex Quadratic
Programming Problem (QPP) into two distinct, yet non-identical, QPPs involving
hyperplanes, as exemplified in equations (2.1) and (2.2). This unique property
endows TELM with the capability to operate at a significantly faster pace than
traditional ELM, thereby enhancing its practical applicability and performance.

(2.1) f1(x) = β1h(x) = 0,

and

(2.2) f2(x) = β2h(x) = 0.

Thuly, the TELM can be written as

(2.3)
min
β1,ξ1

1

2
∥H1β1∥2 + C1e

T
2 ξ1

s.t. −H2β1 + ξ1 ≥ e2,

and

(2.4)
min
β2,ξ2

1

2
∥H2β2∥2 + C2e

T
1 ξ2

s.t. H1β2 + ξ2 ≥ e1,

where the slack vectors, denoted by the symbols ξ1 > 0 and ξ2 > 0, are assumed to be
positive. The regularisation parameters, represented by the symbols C1 ≥ 0, C2 ≥
0, are assumed to be positive. The vectorse1 and e2, which are of appropriate
dimensions, are defined as vectors of ones.

Via Lagrange function and Karush-Kuhn-Kucher condition, we can get

(2.5)
min
α1

1

2
αT
1 H2(H

T
1 H1)

−1HT
2 α1 − eT2 α1

s.t. 0 ≤ α1 ≤ C1e2,

and

(2.6)
min
α2

1

2
αT
2 H1(H

T
2 H2)

−1HT
1 α2 − eT1 α2

s.t. 0 ≤ α2 ≤ C2e1,

In this paper, we may consider the vectors α1 ≥ 0 and α2 ≥ 0 of Lagrange multipliers
to be non-negative, specifically equal to zero or greater than zero, and may also
define the regularised term as a quantity of the form I × ϵ.
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2.2. Intuitionistic Fuzzy Set. We assume that a non-empty set X can consist of
a fuzzy set A in the universe X as follows [3, 9]:

(2.7) A = {(x, µA(x)) | x ∈ X}
where µA : X → [0, 1] denotes the degree of membership of xinX by µA(x). Then
an intuitionistic fuzzy set can be defined as [3, 9]

(2.8) Ã =
{(

x, µÃ(x), νÃ(x)
)
| x ∈ X

}
.

The membership and non-membership degrees of xinX are given by µ
Ã
(x) and

ν
Ã
(x), respectively, where µ

Ã
: X → [0, 1] and ν

Ã
: X → [0, 1]. These functions

satisfy 0 ≤ µ
Ã
(x) + ν

Ã
(x) ≤ 1 and the degree of hesitancy of xinX can be denoted

as [3, 9].

(2.9) πÃ(x) = 1− µÃ(x)− νÃ(x).

For an IFN [3, 9], we can express this as α = (µα, να), where µα ∈ [0, 1] and
να ∈ [0, 1], and 0 ≤ µα + να ≤ 1. The largest IFN is α+ = (1, 0) and the smallest
IFN is α− = (0, 1). The IFN for a given α can be calculated as follows:

(2.10) s(α) = µα − να

where s(α) denotes the score of the IFN and α = (µα, να). However, the scores of
some IFNs cannot be determined. To solve this problem, the following function can
be used instead

(2.11) h(α) = µα + να.

Based on (2.9) and (2.11), we can get

(2.12) h(α) + π(α) = 1.

If s(α1) = s(α2) and h(α1) < h(α2), then α1 < α2. Using Equation (2.10), we
can derive the score function for other cases as follows:

(2.13) H(α) =
1− ν(α)

2− µ(α)− ν(α)
.

Thus, the connections between membership and nonmembership functions can
be described as follows: 1) s (α1) < s (α2) ⇒ H (α1) < H (α2); 2) s (α1) =
s (α2) , h (α1) < h (α2) ⇒ H (α1) < H (α2) [3, 9].

2.3. Intuitionistic Fuzzy Membership Assignment. In the following sections,
we discuss the customized levels of membership and non-membership functions,
uniquely crafted for individual training samples in the complex feature space.

• 1) The membership function is defined in the high-dimensional feature space,
based on the distance between a training sample and the corresponding class
centre. For each individual training sample, the degree of membership can
be formulated as follows:

(2.14) µ (xi) =

 1− ∥ϕ(xi)−C+∥
r++δ

yi = +1

1− ∥ϕ(xi)−C−∥
r−+δ

yi = −1

In the case where the variable parameter δ > 0 is greater than or equal
to zero, the notation r+ (r−) and C+ (C−) represent the radius and class
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centre of the positive (negative) class, respectively. The symbol ∥ ·∥ denotes
the distance between the input sample and the corresponding class centre.

(2.15) D (ϕ (xi) , ϕ (xj)) = ∥ϕ (xi)− ϕ (xj)∥

where the symbol ϕ is used to denote the input sample in the high feature
space. Accordingly, the centroid of each class can be calculated using the
following formula:

(2.16) C± =
1

l±

∑
yi=±1

ϕ (xi)

where the variables l+ (l−) represent the total number of samples of a pos-
itive and negative nature, in that order. The radius of each class can be
calculated as follows:

(2.17) r± = max
yi=±1

∥∥ϕ (xi)− C±∥∥ .
• 2) The function of non-membership is as follows, as evidenced by references
[3, 8, 9]: The non-membership function employs the relationship between
all inharmonic points and the total number of training samples in their
neighbourhood (i.e., ρ (xi) )) in the following manner:

(2.18) ν (xi) = (1− µ (xi)) ρ (xi)

where 0 ≤ µ (xi) + ν (xi) ≤ 1, and ρ (xi) is defined as

(2.19) ρ (xi) =
|{xj | ∥ϕ (xi)− ϕ (xj)∥ ≤ α, yj ̸= yi}|

|{xj | ∥ϕ (xi)− ϕ (xj)∥ ≤ α}|

where α > 0 is an adjustable parameter and | · | denotes the cardinality.

The degrees of membership and non-membership within the Intuitionistic Fuzzy
Numbers (IFNs) are formulated by leveraging the inner product distance in the fea-
ture space. Consequently, kernel functions are employed as a means of constructing
these IFNs.

Theorem 2.1 ([3, 8, 9]). Suppose K (x, x′) is a kernel function. Thus, the inner
product distance is expressed as

(2.20)
∥∥ϕ(x)− ϕ

(
x′
)∥∥ =

√
K(x, x) +K (x′, x′)− 2K (x, x′).

Theorem 2.2. Building upon Theorem 2.1, the radii of the two classes can be
expressed as follows:
(2.21)

1) r+ = max
yi=+1

√√√√K (xi, xi) +
1

l2+

∑
ym=+1

∑
yn=+1

K (xm, xn)−
2

l+

∑
yj=+1

K (xi, xj)

(2.22)

2) r− = max
yi=−1

√
K (xi, xi) +

1

l2−

∑
ym=−1

∑
yn=−1

K (xm, xn)−
2

l−

∑
yj=−1

K (xi, xj).
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3. Main Contributions

To overcome these limitations of TELM [10], we introduce the intuitionistic fuzzy
twin extreme learning machine for imbalanced data (IFRTELM), as follow:

(3.1)
min
β1,ξ1

1

2
∥H1β1∥2 + ∥β1∥2 + C1s

T
2 ξ1

s.t. −H2β1 + ξ1 ≥ e2,

and

(3.2)
min
β2,ξ2

1

2
∥H2β2∥2 + ∥β2∥2 + C2s

T
1 ξ2

s.t. H1β2 + ξ2 ≥ e1,

where ξ1 > 0 and ξ2 > 0 are slack vector, C1 ≥ 0, C2 ≥ 0 are regularization
parameters, e1 and e2 are column vectors of ones with desirable length, and s1 ∈
Rl+and s2 ∈ Rl−are the score values of class + and − , respectively.

Using the Lagrangian function and the Karush-Kuhn-Tucker (KKT) condition,
we can conclude that

(3.3) β1 = −(HT
1 H1 + I)−1HT

2 α1,

and

(3.4) β2 = (HT
2 H2 + I)−1HT

1 α2.

where ϵI is a regularized term that overcomes the singular of HT
1 H1 and HT

2 H2.
Likewise, the Wolfe dual for (3.1) and (3.2) can be written as:

(3.5)
min
α1

1

2
αT
1 H2(H

T
1 H1 + I)−1HT

2 α1 − eT2 α1

s.t. 0 ≤ α1 ≤ C1s2,

and

(3.6)
min
α2

1

2
αT
2 H1(H

T
2 H2 + I)−1HT

1 α2 − eT1 α2

s.t. 0 ≤ α2 ≤ C2s1,

where α1 ≥ 0 and α2 ≥ 0 are the vectors of Lagrange multipliers.
After obtaining β1 and β2, we classify new sample points x utilizing the decision

function outlined below:

(3.7) f(x) = arg min
k=1,2

dk(x) = arg min
k=1,2

|βT
k h(x)|.

where | · | signifies the orthogonal distance of the data point x from the hyperplane
defined by βk. This function determines the class label by selecting the hyperplane
(k = 1 or k = 2) that minimizes the perpendicular distance of x from it.

Furthermore, we delve into the computational intricacies of our method. The
comprehensive computational cost of our algorithm is encapsulated by the com-

plexity of O(m
3

4 + 2L3 + 2n3), where L represents the number of nodes in the
hidden layer, m signifies the total count of training samples, and n denotes the
dimensionality of each sample. This breakdown offers insights into the scalability
and efficiency of our approach.
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4. Experimental comparative analysis

To assess the efficacy and generalization prowess of the IFRTELM, we embarked
on a series of experiments utilizing extensive datasets crafted by David Musicant’s
NDC Data Generator1. Our objective was to gain a comprehensive understanding
of how the computational demands of various algorithms escalate in tandem with
the proliferation of data points. TABLE 1 outlines the specifics of the NDC datasets
employed. Within our experimental framework, we randomly allocated 30% of each
NDC dataset for training purposes, reserving the remaining 70% for testing. This
process was iterated tenfold to ensure a reliable average classification accuracy. Ad-
ditionally, we examined the performance under label noise conditions, introducing
simulated noise by randomly selecting samples and inverting their labels. We ex-
perimented with varying degrees of label inversion, specifically at 0%, 5%, and 15%
noise levels.

Table 1. Description of NDC datasets

Dataset Samples Features

NDC-11 100000 32
NDC-31 300000 32
NDC-51 500000 32

As evident from TABLE 2 , which presents a comparative analysis of classifica-
tion accuracy, our methodology consistently outperforms other algorithms across all
three noise level scenarios, demonstrating a superior ability to accurately classify
data points in the presence of varying degrees of label noise.

Table 2. Experimental results.

TELM IFRTELM
Datasets Label noise Accuracy (%) Accuracy (%)

0% 83.90 86.77
NDC-11 5% 74.35 81.09

15% 68.63 73.96
0% 75.66 82.02

NDC-3l 5% 69.17 78.56
15% 63.79 77.01
0% 75.64 82.04

NDC-51 5% 70.22 76.89
15% 62.86 71.33

1Accessible at http://www.cs.wisc.edu/musicant/data/ndc
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5. Conclusion

This paper presents a novel classification model, designated IFRTELM, which
is proposed as a means of addressing the challenges inherent to binary classifica-
tion. The IFRTELM employs intuitionistic fuzzy numbers (IFNs) to assign unique
membership and non-membership functions to each training sample. The member-
ship function quantifies the degree of proximity of a given sample to its class cen-
tre, whereas the non-membership function assesses the inter-relationship between
discordant samples, thereby reducing the impact of noise. Moreover, the model
minimises structural risk and enhances classification accuracy, thereby providing a
robust solution for real-world applications that are confronted with data imbalance
and contamination.
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