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structured teaching, while field-dependent learners prefer tightly structured teach-
ing. Choosing teaching strategies based on students’ cognitive patterns can sig-
nificantly improve teaching effectiveness. For field-independent learners, problem-
driven and self-exploration teaching methods can be adopted; For field-dependent
learners, more structured guidance and feedback can be used [10]. On this basis,
sports are closely interconnected and not isolated from disciplines such as science
and technology. The participation of students’ sports majors not only enriches the
diversity of educational activities but also facilitates the integration of sports knowl-
edge with that of science and engineering, promoting interdisciplinary crossover and
fusion.

Combining science and engineering universities with students majoring in sports
can bring diversity in professional backgrounds to educational activities. Science
and engineering students typically possess solid theoretical foundations in science
and logical thinking abilities. In contrast, students’ sports majors boast practi-
cal skills, excellent physical fitness, and superb athletic abilities, contrasting the
two. This diversity in professional backgrounds not only enriches the content of
educational activities but also aids in exploring the different responses of various
knowledge structures and ability systems to experimental tasks or intervention mea-
sures. Especially under certain experimental conditions, such as physical fitness
tests and sports recovery, students’ sports majors may exhibit distinct physiological
and psychological reactions compared to other students, providing more extensive
and in-depth data for experiments.

Students’ sports major research findings often have high practical application
value. They can directly apply experimental results to actual training and com-
petitions, enhancing athletic performance and achievements, particularly in sports
science, sports injury prevention and rehabilitation, and physical conditioning. This
potential for practical application elevates the professional expertise of students’
sports majors and offers science and engineering students opportunities to trans-
form theoretical knowledge into practical applications.

Meanwhile, science and engineering universities usually possess relatively com-
plete experimental facilities and research conditions, providing robust support for
the smooth conduct of experiments. Due to the needs of their professional training,
students’ sports majors adhere well to experimental rules and operational proce-
dures, ensuring the accuracy and reliability of experimental data. This feasibility of
experimental control lays a solid foundation for the smooth progress of educational
activities.

To achieve a match between cognitive patterns and teaching methods, especially
in the field of physical education, educators can further collect and analyze a large
amount of data from sports majors’ students’ learning, training, and competition
processes, deeply understand their cognitive patterns and learning characteristics,
match their cognitive patterns with knowledge patterns, construct teaching content
targeted, adopt heuristic education methods suitable for their cognitive patterns,
face the cognitive reality of learners, and deliver educational resources to learners
in the form of graded teaching, thereby improving the timeliness, interactivity, and
self-learning ability of teaching. However, this work is difficult for manpower to
complete.
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The rapid development of artificial intelligence technology has injected innova-
tive concepts and models into modern teaching and provided new technologies and
means for constructing students’ cognitive and knowledge patterns [4, 16, 27]. In
recent years, the attention mechanism has garnered extensive attention, and its
parallel computing function and inter-feature dependency construction ability have
achieved good results in natural language processing tasks. In the context of event
detection tasks, Wu et al. [22] used the attention mechanism to dynamically deter-
mine the amount of information drawn from word or character-level embeddings,
thereby enhancing the model’s understanding of textual semantic features. Ding
R et al. [5] addressed the challenge of identifying relationships between parameters
and events within the text by proposing multiple attention layers to extract intra-
sentence relationships, facilitating the extraction of deeper semantic information.
Wang Xianxian et al. [19] proposed the AttIndRNNCapsNet model for the default
of event elements in the Viennese language by introducing the intrinsic properties
of events and event elements into an independent recurrent neural network com-
bined with the attention mechanism to obtain higher-level semantic features of the
text. Wang et al. [21] proposed using a syntactic dependency graph to construct
a graph neural network to solve the ambiguity problem of monolingual words and
fully extract the information between words, and at the same time, enhance the
node information of the syntactic dependency graph by combining with the atten-
tion mechanism, to enhance the model’s ability to recognize event triggers. Ahmad
et al. [1] combined the advantages of GCN and attention and proposed a Graph
Attention Transformer Encoder (GATE), which learns structured contextual rep-
resentations using a self-attention mechanism, allowing it to capture long-distance
dependencies and apply them to different types of languages.

Herzig et al. mapped visual features and GLoVe word vectors to a common
semantic space through a semantic transformation module and concatenated the
features of the two modalities. Then, they used a graph self-attention module to
assign attention scores to the concatenated features to fuse and update node rep-
resentations and finally classified them to obtain scene maps [8, 18]. Similarly, Mi
et al. concatenated the word vectors corresponding to visual features and object
categories and updated node features through object-level and relationship-level
graph attention networks, respectively. Finally, the scene map was classified [17].
Kiros et al. processed object labels and relationship labels into word vectors using
language embedding models and injected them as language information into the
features of visual nodes. They used a module similar to a Transformer encoder as a
message propagation method to integrate language information while propagating
visual information [9]. However, these methods need the ability to mine multimodal
contextual information between and within images and text. These methods either
concatenate image and text features or cannot fully utilize cross-modal contextual
information [15]. Either the need for more consideration for contextual information
between word vectors within the text modality leads to suboptimal text features.
Due to the need for the ability to perceive multimodal contextual information, these
scene graph generation methods often obtain suboptimal representations of multi-
modal contextual features, which affects the effectiveness of scene graph generation.
The features of different modalities often interact during the forward propagation
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process of the model, thereby learning the semantic correlation between entities
in different modalities. Lee et al. used pre-trained object detectors to extract vi-
sual features of salient regions in images. They designed a cross-modal attention
mechanism to achieve interaction between region and word features, thereby using
local alignment of the two modalities to infer the similarity between images and
texts [13]. Wang et al. encoded the geometric position of the region based on Lee et
al. to obtain a graph text-matching model that is sensitive to the position of image
content [20]. Jiuxiang et al. modeled salient regions in images and words in natu-
ral language descriptions as visual and textual images using cross-modal attention
mechanisms and graph convolutional neural networks for intra-modal interaction [7].
Before calculating the degree of image text matching, this method utilizes various
cross-modal information exchange mechanisms to interact with the features of two
different modalities to discover and utilize the complementary information between
modalities and better align the two modalities’ local/global semantic information.
Therefore, compared to the previous method, this method has better retrieval per-
formance. However, due to the introduction of modal interaction processes, such
methods’ training time and matching score calculation time will be longer. To
match student cognitive patterns with knowledge patterns, it is necessary to uti-
lize the dynamic changes in short-term and long-term interests in student learning
and life. The educational process must be based on the student’s cognitive level,
from low to high, and from conceptual ambiguity to clarity. A multimodal mapping
between video, text, and phonetic values should be established to describe videos
through cognitive pattern keywords, visualize knowledge pattern types, and achieve
effective reasoning in the learning process [23,26].

This article is based on personalized education and utilizes the Transformer deep
self-attention transformation twin network in response to the above needs. By
matching the cognitive model of students with the knowledge patterns of learning
resources, a cognitive knowledge pattern matching method based on the deep self-
attention transformation twin network is proposed to support the diverse needs of
personalized cognition among students’ sports majors.

2. Construction of student cognitive and knowledge patterns

2.1. Construction of Student Cognitive Patterns. The construction of stu-
dent cognitive patterns is based on the acquisition of multidimensional and multi-
dimensional data from students, abstracting their multidimensional features, and
constructing a student cognitive model by assigning “labels” to present student
portraits [3, 6, 25]. This article constructs a cognitive model for students from the
following three dimensions: basic information, learning ability analysis, and learning
style model.

(1) Basic information about students: Explicit data can be obtained directly from
the school’s open data platform, including individual information such as student
name, gender, age, ethnicity, class, sports specialty, physical data, interests, and
other personal information; At the same time, social relationship characteristics
between students can be extracted from the already obtained big data, and all
students in the class form classmate relationships. In learning group activities,
dynamic same-group relationships are also formed.
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(2) Learning ability analysis: Students’ learning ability is the most important
information that teachers, students, schools, and society pay attention to, and it is
also the key to determining whether they can successfully match their knowledge
patterns. However, conventional scores and other information make it difficult to
analyze the cognitive differences and learning process data between students. More
scientific and modern detection methods are needed to conduct cognitive analysis
on students and comprehensively obtain their knowledge and ability levels.

(3) Learning style model: Learning style refers to the personal learning habits and
preferences gradually formed by students in the learning environment and sports
process, with relative stability. It is an important characteristic indicator in per-
sonalized education. The currently recognized learning style models are the Felder
Silverman model, the Kolb model, the VARK model, etc.

This paper uses the VARK Learning Style Scale to test and conduct a question-
naire survey and basic learning tests on 50 students’ sports majors, measuring their
learning foundations, learning styles, and learning preferences in school. The cog-
nitive patterns of students, including visual, auditory, read-write, and kinesthetic,
were obtained [14]. Among them, visual students have strong observation and imag-
ination, are good at learning through visual charts, are good at using image symbols
to connect concepts, concretize abstract things, have strong perception and under-
standing of colors, lines, and charts, have a strong memory of images, images, and
scenes, and can quickly pay attention to details. For students with this type of
cognition, using images to promote memory and convert boring textual data into
graphical models for learning is suitable. Read-write students have strong reading
and summarizing abilities and can better understand textual knowledge concepts;
Auditory students have strong listening abilities and are adept at learning through
auditory reception of information; Kinesthetic students have strong action and prac-
tical abilities and are skilled in learning through hands-on participation in practice.

2.2. Construction of Knowledge Pattern Material Library. This article uses
a deep self-attention transformation to construct the correlation between visual
features and knowledge patterns of multimodal data, as shown in Fig. 1.

Establishing knowledge pattern keywords can achieve the mapping relationship
between semantic information of knowledge concepts within sports and deep trans-
formation network models. Users input different descriptions of the course’s knowl-
edge concepts (such as easily understandable course content, more in-depth but
difficult-to-understand course content, etc.) into the semantic reasoning module
and then match them with the knowledge pattern keywords in the knowledge pat-
tern material library [24].

In addition, a feedback mechanism is added to address the situation where the
semantic information provided by users concerning certain sports terminology or
specific training methods cannot find a corresponding knowledge pattern. This
mechanism allows users to add the desired knowledge pattern to the list of key-
words in a certain knowledge pattern in the database to associate the newly added
keywords with a specific sports knowledge pattern.

As the output of this section, the classification of sports knowledge patterns
as a strong constraint is crucial for matching subsequent student cognition with
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Figure 1. Construction process diagram of knowledge pattern ma-
terial library

multimodal sports learning materials and the interpretability of problem tracing.
Then, the VARK learning style measurement method is used to extract cognitive
attribute features of students with specific sports needs, including information on
their knowledge level, learning style, emotional state, etc., to reflect their cogni-
tive state comprehensively. Subsequently, the extracted cognitive attribute features
will be combined with historical cognitive classification features to reflect better
the long-term cognitive state and changing trends of students. This can further
optimize the modeling of cognitive states by utilizing students’ past learning be-
haviors and performances, and the resulting student cognitive patterns will be used
as keywords in the sports knowledge pattern material library. Next, many sports
learning materials will be collected and input into the deep self-attention transfor-
mation twin network. Use many sports course content learning materials to train
the neural network and obtain a knowledge pattern material library corresponding
to each cognitive mode. When new sports course learning materials are generated
or collected, they are input into the network, and the deep self-attention transfor-
mation twin network is used to match and classify them into the corresponding
sports knowledge pattern material library.

In summary, in response to the needs of students’ sports majors and combining
many learning resources on open platforms, a knowledge pattern material library
based on the basic sports course has been constructed. Two types of learning
resources for students with different cognitive modes have been collected, namely
visual and read-write knowledge pattern material libraries. This library will also
serve as the library for experimental verification of the matching method in this
article.

3. Construction of deep self-attention transform twin neural
networks

3.1. Network Structure of Cognitive and Knowledge Pattern Matching.
Convolutional neural networks occupy a central position in computer vision tasks
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Figure 2. Local image of knowledge pattern material library: (a)
visual type; (b) read-write type

such as image recognition by their powerful spatial feature extraction capability. Its
convolutional and pooling layers are well-designed to efficiently capture spatial infor-
mation and local features such as edges and textures in images. Meanwhile, CNN
effectively reduces the number of model parameters, lowers computational cost,
and improves training speed and model generalization ability through parameter
sharing and sparse connectivity. Compared with traditional fully connected neural
networks, CNNs are more efficient in processing images, especially on large-scale
datasets. CNNs perform well in image classification and can be applied to various
computer vision tasks, such as target detection, semantic segmentation, and video
analysis. Therefore, CNNs have become the preferred solution in the field of image
recognition and are widely used in various computer vision tasks.

Therefore, we build a knowledge pattern material library based on deep neural
networks and convolutional neural networks. Firstly, the model utilizes deep neural
networks and convolutional neural networks to collect a large amount of sports
course knowledge materials and trains the network to correspond the collected sports
course materials with the knowledge pattern keywords in the knowledge pattern
keyword index table, obtaining a knowledge pattern material library about this
cognitive pattern. Then, based on the constraints of student cognitive encoding
and knowledge pattern classification encoding as input features, a good connection
and matching relationship can be established between student cognitive state and
knowledge patterns. Finally, a classification output is obtained using the Decoder
module of the Transformer for decoding to determine whether the input course
content materials match various knowledge patterns. This output can help teachers
better create teaching materials, understand students’ cognitive states and learning
needs, and provide personalized teaching and guidance. The process is shown in
Figure 3.
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Figure 3. Network structure of cognitive pattern knowledge pat-
tern matching

By utilizing deep self-attention transformation, the knowledge pattern features
in the material library are matched with the knowledge pattern keywords obtained
through student cognitive patterns to construct a knowledge pattern material li-
brary. The Transformer twin network model obtains a weighted feature vector
through the “Self-attention” module, which focuses on the long-term learning, life,
entertainment, and other information of students in school. It is then passed on to
the network’s selection mechanism and encoding encoder module, known as the Feed
Forward Neural Network. The system integrates and maps information consistent
with their cognitive patterns through multi-feature fusion and filtering, influenced
by students’ cognitive patterns. This process transforms the input into embedded
Query, Key, and Value vectors. Using the Encoder-Decoder Attention module in
the network, the matching content (Value) is obtained based on the similarity be-
tween Query and Key. The relationship between the current student’s cognitive and
encoded knowledge feature vectors is outputted to determine the knowledge pattern
of the concept. Complete the mapping from student cognitive patterns to student
knowledge pattern matching and use it as input and knowledge pattern constraint
for subsequent intelligent, personalized retrieval.
3.2. Construction of Deep Self-Attention Transform Twin Neural Net-
work Vision Transformer.

(1) Input images from the knowledge material library into the Transformer
Firstly, to input an image into the Transformer, each image pixel can be flattened

into a sequence, which can then be input into the Transformer. However, this can
cause excessive computational complexity, such as for a 224×224 size image, which
requires input of 50176 embedding vectors. As the number of pixels increases, the
computational complexity increases by a square level. Therefore, ViT splits the
image into patches individually as input to the Transformer. For example, if the
input image size is (224224,3) and each patch size is 16×16, it will result in 14×14 =
196 patches. Therefore, the number of this input is acceptable. Compared to CNN,
which can only perform correlation analysis on adjacent elements, Transformer can
calculate and consider the correlation of global elements, which is also the advantage
of Transformer.

(2) The Structure Construction of Vision Transformer
Firstly, the divided patches are transformed into embedding vectors through a

linear mapping layer. Then, a class token representing the class is added at the
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starting position of these embedding vectors, and position embedding is added to
each embedding vector. These vectors are then input into the Transformer Encoder
for calculation. Finally, the MLP multi-head attention block outputs the classifica-
tion result, as shown in Figure 4. How does the size of the input vector change in
the linear mapping layer. Firstly, the linear mapping layer is implemented through
a convolutional layer consisting of 768 convolutional kernels with a size of 16 × 16
and a step size of 16. After the image with a size of (224224,3) is input into the
network, it is transformed into a tensor with a size of (197768) through the con-
volutional layer. Then, after adding a category vector, the tensor size is (197768).
Finally, position encoding and tensor size are added (197768). The structures of
the Encoder Block and MLP Block for the Transformer are shown in Figure 4.

Figure 4. Structure of Vision Transformer

Firstly, the processed tensor is input into the Encoder Block, which undergoes
a layer normalization module and then enters the multi-head attention module to
calculate self-attention. Then, it is dropped out and connected through a residual
before layer normalization. This processing method can optimize the accuracy of
the input vector information. Finally, an MLP Block is used, and another Dropout
is performed to obtain the output classification result. After inputting the tensor
into the MLP Block, a linear, fully connected layer is first used to increase the
number of channels by four times. Then, the GELU activation function is used,
and after a Drop Out, a fully connected layer is used to restore the number of
channels. Finally, the output result is obtained.

3.3. Construction of Deep Self-attention Transform Twin Neural Net-
works. Firstly, the Patch Embed module is established, in which initialization
parameters are defined. The image size is (224224), and the size of each patch is
(16,16). RGB images are passed in with three channels, and the ViT base model
is used. The dimension of the embedded vector passed in is 768, and layer normal-
ization is not performed by default. After defining the image size and patch size,
continue to define the number of patches and the number and size of convolution
kernels. Next is the forward propagation process. As the ViT model requires a
fixed input image size, an error will be reported if the input image size does not
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match the required size. Next, the image will be flattened by flattening its height
and width, swapping dimensions 1 and 2, and finally, normalizing it to convert it
into an embedding vector and input it into the self-attention module. This module
is a module for processing input images, which converts them into vector sequences
and serves as input for subsequent modules.

Regarding the Multi-head Self attention module in Vision Transformer, first de-
fine the initialization parameters, where the dimension is the dimension of the em-
bedding vector output by PatchEmbed, with an attention headcount of 8 and no
bias of q, k, and v. Next, calculate the dimension of each headcount, and input q,
k, and v into a linear fully connected layer, where the dimension will be tripled.
Then, perform Dropout, pass through a linear, fully connected layer, and Dropout
again. Then comes the forward propagation stage, where the parameters passed
in are the number of processed images, the number of patches plus one, and the
dimension of the embedding vector. Next, the q, k, and v vectors are obtained
through matrix operations specific to each head. Each head has its own q, k, and
v vectors and performs multi-head self-attention transformation. Next, each row
of the obtained result is processed with softmax, and the result is weighted and
summed with matrix V. After processing the matrix, the results of each head are
concatenated to obtain a global attention result. Finally, the output is obtained
through fully connected and dropout layers. In this module, the most core Multi-
head Self-attention operation in the Transformer was mainly performed, calculating
the correlation between different patches in the input image and obtaining the Q,
K, and V matrices for different patches based on global considerations, as follows:

(3.1) Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

The MLP module first defines initialization parameters, the number of input
nodes, the number of hidden layer nodes, and the activation function GELU. Then,
through the first fully connected layer, the input is the number of input nodes, and
the output is the number of hidden layer nodes. After processing the data with
the activation function, the output is obtained through the fully connected layer.
The dimension of this output is the same as the dimension of the input Multi-
head Self-attention module, which restores the dimension of the vector. The main
function of this module is to perform image classification processing, using a multi-
layer perceptron to apply the parameters obtained from Multi-head self-attention
to multiple fully connected layers to achieve a prediction of the final result.

The Transformer Encoder Block module first defines initialization parameters,
including dimensions, number of headers, q, k, v vectors, activation function GELU,
and dropout parameters. Then, it defines the first layer normalization function,
uses the Multi-head Self-attention module, defines the second layer normalization
function, calculates the vector dimension passed in the MLP module, and finally
inputs the obtained parameters into the MLP module for the forward propagation
stage.

Finally, there is the Vision Transformer module, which first defines initializa-
tion parameters and then calls the PatchEmbed module, Multihead Self-attention



COGNITIVE PATTERN KNOWLEDGE-MATCHING FOR PHYSICAL EDUCATION 1871

module, MLP module, and Transformer Encoder Block module to complete the
classification of the input images.

4. Verification of cognitive pattern knowledge pattern matching
methods

Based on the knowledge pattern material library and deep self-attention trans-
formation twin neural network constructed in the previous text, this chapter will
take the basic sports course as an example and use the knowledge images of con-
cepts in the established knowledge pattern material library to test the established
twin network, experimentally verifying the accuracy and feasibility of the proposed
matching method.

4.1. Selection of research subjects. Firstly, this article selects two types of stu-
dents with significant differences in cognitive patterns. The first type is students
with strong receptivity, learning ability, and a preference for exploring conceptual
knowledge. Their cognitive patterns are defined as read-write. Due to their ability
to quickly understand new knowledge, we hope to match more in-depth learning
resources to this group of students. Therefore, we hope to match course materials
with more conceptual textual content in the content of images to this group of stu-
dents so that they can accurately understand the fundamental principles of learning
this knowledge from the perspective of conceptual principles and also better and
faster enable them to learn the content they want to learn; The second type is stu-
dents who have weak acceptance ability and are not easy to understand obscure and
difficult to understand knowledge points. Their cognitive mode is generally visual,
and they need help to accept new knowledge during the learning process, making
it difficult to understand the knowledge points of principle concepts. Therefore,
we aim to match some materials with illustrations to help these students visualize
and concretize abstract principle concepts to understand better how this knowledge
point is derived or how the concept is applied in practical life. This can help them
better and more deeply understand this knowledge point.

4.2. Experimental Program Design. A test experiment was designed and im-
plemented to investigate the accuracy and effectiveness of personalized learning
resources designed for students with two cognitive modes: read-write and visual.
The experiment was conducted with a sample of second-year students’ sports majors
from a university, focusing on two groups of students with significant differences in
cognitive modes, and 30 students with stable grades and good mental health were
selected as the test subjects to ensure the reliability of the results. Subsequently, we
randomly subdivided these students into two groups: the test group and the control
group. Throughout the experimental cycle, we strictly controlled all variables other
than the systematic input information, such as video browsing, voice input, social
input, etc., to ensure the accuracy of the experimental results, and conducted the
test and recorded the results in the same period every other day for subsequent data
analysis.

After four weeks of systematic testing and data collection, we used statistical
methods to analyze the data in a comprehensive and in-depth manner. The results
are shown in Table 1. Seven typical technical solutions were selected for comparative
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verification to verify the superiority of the technical solution proposed in this paper:
SCAN, BFAN, DPRNN, CAAN, GSMN, SHAN, and SGRAF. Based on the student
experimental samples provided in this paper, the core indicators of the read-write
and visual cognitive patterns were calculated, respectively. Then, the data obtained
using the technical solution proposed in this paper were compared with the results
obtained by the seven typical technical solutions. As shown in Table 1, the technical
solution DSAT proposed in this paper exhibits superior recognition and matching
effects in terms of R@1, R@5, and R@10 for both cognitive patterns, verifying the
technical advancement of the proposed DSAT scheme.

Table 1. Data processing results

Method
Read-Write

Cognitive Pattern
Visual

Cognitive Pattern rsum
R@1 R@5 R@10 R@1 R@5 R@10

SCAN* 67.2 90.1 95.7 48.1 77.6 85.5 464.2
BFAN* 68.4 91.6 - 50.7 78.1 - -
DPRNN 70.3 91.3 95.5 55.3 81.5 88.1 482.0
CAAN 70.6 91.5 97.0 52.2 79.3 87.7 478.3
GSMN* 76.0 94.2 97.2 57.9 82.0 89.3 496.6
SHAN* 74.4 93.8 96.8 55.6 81.7 88.2 490.5
SGRAF* 77.9 94.4 97.3 58.3 83.4 88.6 499.9
DSAT* 77.3 94.6 97.5 60.4 84.6 90.1 504.5

4.3. Twin Network Training. Firstly, input the content related to the course
of the basic sports from the prepared knowledge pattern material library into the
training network of the deep self-attention transformation twin network. The train-
ing process is shown in Figure 5. Eight hundred-eight photos were used to train the
network, with 647 photos as the training set and 161 photos as the test set. Ten
epochs were set to obtain the training parameters that needed to be learned.

After obtaining the trained parameters, the course material content can be matched
with the corresponding cognitive students. As shown in Figure 6, first select images
with more conceptual text to input into the network, hoping that the network can
match them to students with read-write cognitive patterns. The following matching
results are obtained after inputting the image into the prediction network. After
inputting the image with more conceptual text into the system, it is recognized
and classified by the Transformer’s multi-head attention mechanism. The corre-
sponding category displayed is the read-write type student cognitive pattern, with
a probability above 83%, indicating good matching results.

Next, we input a learning resource with a lot of image content, hoping that
the twin network can match it to students with visual cognitive patterns. After
inputting the image into the network, the result is shown in the following figure.
The output result shows that the corresponding student’s cognitive pattern category
is a visual cognitive pattern, with a matching degree of over 80%. We have also
successfully matched the course content to students with suitable cognitive pattern
types, as shown in Figure 7.
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Figure 5. Twin network training process

Figure 6. Read-write cognitive pattern matching test results

Through the above experiments, we found that the deep self-attention transfor-
mation twin neural network excelled in completing the task of matching the learning
content of different basic sports courses to students with corresponding cognitive
patterns. The experimental results indicate that the cognitive knowledge pattern
matching method based on deep self-attention transformation twin neural network
constructed in this paper has certain feasibility and effectiveness.

4.4. Model Performance Evaluation. To validate the superiority of deep self-
attention transformation twin neural network in mitigating the interference of noisy
features in the matching process, the validation was carried out on the Flicker30k
dataset, where DSAT is the abbreviation of the methodology in this chapter, R@1,



1874 G. YANG, W. YANG, AND Y. WANG

Figure 7. Visual cognitive pattern matching test results

R@5 and R@10 in the table are Recall@k, which is subdivided into two task settings
of read-write cognitive pattern and visual cognitive pattern, and contains a total of
six metrics data. The rsum in the last column of the table is the sum of the recall of
the first six columns, which gives a more comprehensive picture of the performance
of the matching model.

Table 2. Results of data matching

Method
Read-Write

Cognitive Pattern
Visual

Cognitive Pattern rsum
R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO 1k test
SCAN* 72.3 94.1 98.8 58.4 88.2 94.4 506.2
BFAN* 74.7 95.5 - 59.6 88.5 - -
DPRNN 75.6 95.8 98.5 62.1 89.3 95.3 516.6
CAAN 75.4 95.3 98.2 61.2 89.1 95.6 514.8
GSMN* 78.0 96.2 98.6 63.6 90.0 95.2 521.6
SHAN* 76.2 96.7 98.7 62.5 89.5 95.8 519.4
SGRAF* 79.8 96.4 98.1 63.9 90.3 96.1 524.6
DSAT* 79.9 96.6 98.7 64.7 91.4 95.6 526.9

MSCOCO 5k test
SCAN* 50.3 82.2 90.2 38.7 69.0 80.9 411.3
CAAN 52.7 83.6 90.4 41.4 70.2 82.3 420.6

SGRAF* 58.1 84.9 92.1 41.6 70.7 81.6 429.0
DSAT* 60.4 86.5 92.3 41.8 72.4 81.9 435.3

The results of the comparison experiments are shown in Table 2. Compared with
the previous methods, the DSAT proposed in this paper can get some improvement
in each metric. In the task setting of read-write cognitive pattern, compared with
the baseline model SGRAF, the DSAT model can achieve a good improvement
in R@1, R@5, and R@10 by 2.0%, 0.2%, and 0.3%, respectively, with the most
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important metric, R@1, achieving a great improvement. In the task setting of visual
cognitive pattern, compared with the baseline model SGRAF, the DSAT model was
able to achieve a great improvement in each metric, with the most important metric
R@1 improving by 1.6%, whereas R@5 improved by 1.5% and R@10 by 1.4%.

Finally, the composite metric rsum shows that DSAT significantly improves by
7% compared to SGRAF. DSAT also achieves a more significant performance im-
provement on Flicker30k, which fully proves the importance of the DSAT model in
mitigating noise feature interference in the matching process.

5. Conclusion

Starting from the concept of “teaching according to individual needs”, this article
utilizes artificial intelligence and information technology to empower personalized
education deeply. Firstly, the knowledge patterns of sports majors’ student cog-
nitive patterns and learning resources were constructed, and the process inference
between multi-model learning resources and student cognitive patterns was com-
pleted. Then, the Transformer deep self-attention transformation twin network
matched the student’s cognitive patterns and knowledge patterns, obtaining learn-
ing resources suitable for the student’s cognitive patterns. Finally, the feasibility
and accuracy of the matching method proposed in this article were experimentally
verified, with a matching accuracy of up to 80%.
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