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REAL-TIME ALIGNMENT COMPENSATION PREDICTION FOR
FLEXIBLE FILM EXPOSURE MACHINE BASED ON GENETIC
ALGORITHM OPTIMIZING BACK-PROPAGATION NEURAL
NETWORK

JIANPU XTI*, ZIKAI NIE, LIJUAN DENG, YONGGAO YUE, AND QING YANG

ABSTRACT. A genetic algorithm-optimized backpropagation (BP) neural net-
work is utilized to forecast real-time alignment correction for a flexible-film ex-
posure machine. In this study, the compensation value of a compensation system
used in the alignment of an exposure machine is predicted using an optimal neu-
ral network. Subsequently, the anticipated value is juxtaposed with the factual
compensation value, and its compliance with alignment standards is evaluated.
A compensation design of an exposure machine is verified experimentally, hence
validating the effectiveness of the suggested approach for real-time alignment
compensation pre-diction. The suggested method outperforms a single back-
propagation neural network model in terms of system sensitivity and resilience,
lowering mean square error by 70.99% and exposure-machine alignment time by
27.4%, rendering the improvements beneficial for engineering applications.

1. INTRODUCTION

The flexible-film exposure device is typically employed in the exposure phase of
printed circuit board (PCB) fabrication. The device is a high-precision instrument
used for developing complex circuits and patterns on dielectric film substrates. It
uses a light source to transmit through a photomask and transmit predefined pat-
terns or circuits onto the surface of a thin film by light radiation. The resulting
designs are widely used in the production of flexible electronic appliances such as
smartphone screens, tablets, flexible displays, and sensors. The revival of the global
economy and Industry 4.0 efforts, such as China Smart fabrication 2025, have cre-
ated technological problems in the production precision and efficiency of flexible-
film exposure machines, which are essential components in the production of circuit
boards. As a result, improving their current accuracy and efficiency has drawn at-
tention. An effective alignment compensation prediction can minimize the number
of alignment process repeats while simultaneously increasing alignment precision,
optimizing the exposure impact, and improving compensation selection accuracy.
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The current alignment compensation procedures are divided into three categories:
Taguchi methods, single-factor methods, and methods based on artificial intelligence
and machine learning. In addition to being time-consuming and difficult to utilize,
Taguchi methods rarely deliver desired alignment effects and thus demand for a high
degree of knowledge and significant experience. In a similar vein, single-factor ap-
proaches remain short of accomplishing the intended alignment effects even if they
show faster selection rates than Taguchi methods yield. The subsequent compen-
sation impact is directly determined by the elements that influence the alignment
effect while selecting compensation value [11]. To accomplish a specific degree of
compensation effect utilizing these approaches, a great deal of expertise and ex-
perience are required because to the nonlinearity and uncertainty inherent in the
exposure-machine alignment correction system.

The application of machine learning techniques can effectively address the pre-
diction problem in large-scale data, enhance real-time data processing capabilities,
and expedite the process of identifying the optimal data solution, thereby improving
the expected compensation effect [12]. It can also vividly depict the relationship
between data and the alignment compensation system. For example, Tsai et al [18]
introduced a data-driven approach for modelling the system integration scale factor
and positioning performance of an exposure machine. Their model not only predicts
positioning errors but also analyses parameter sensitivity. Similarly, Chou et al [2]
optimized the parameter combinations of multilayer convolutional neural networks
using a unified experimental design, thereby improving network performance and
enhancing image recognition accuracy for exposure machines through integrated
factorial experiments. Ahmadi et al [1] developed a method based on genetic al-
gorithms to swiftly compute the center of a circle in automatic exposure machine
image localization and applied it to a 4CCD automatic monitoring and exposure
machine.

In order to improve the automated alignment speed of an exposure machine,
Malashkhia et al. [15] integrated reference coordinates with intelligent image recog-
nition. This method achieved positional precision of 1 to 4 ym along the X and Y-
axes, with an auto-alignment time of around 10 s. An image alignment method was
developed by Malashkhia et al. [15] that improves imagine matching and alignment
efficiency by using pattern matching to ex-tract features from target information.
Meanwhile, Ghiasian et al. [4] developed a two-step auto-alignment system that re-
lies on geometric correlations between measurement data and machine coordinates.
This algorithm deter-mines the compensation value by reducing the positioning
error. The study on alignment markers by Kwon and Hwang showed that geomet-
ric template matching can improve the speed of recognition, surpassing traditional
correlation-based matching [9]. This suggests that artificial intelligence and machine
learning can significantly enhance image recognition accuracy and precision, speed
up alignment, and reduce compensation value errors in exposure machine alignment
compensation.

The objective of this study was to investigate the real-time prediction of align-
ment compensation for an expo-sure machine. In addition to offering a suitable com-
pensation parameter design that adapts appropriately to overall platform changes
during the exposure machine’s alignment process and enhances alignment accuracy,
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this configuration uses a uniform design to enable the experimental methods to pro-
cess the compensation value data. The effect of the compensation value was then
evaluated using a backpropagation (BP) neural network that was genetic algorithm-
optimized. This facilitated the prediction of alignment results for the flexible-film
exposure machine. The prediction efficiency and accuracy provided by the single
BP neural network and the BP neural network improved by the genetic algorithm
are compared in the experimental results [8,10]. The results show that the proposed
re-al-time alignment compensation system reduces repetitions, increases production
efficiency, and significantly improves alignment precision.

2. ALIGNMENT COMPENSATION PARAMETER DESIGN

Research studies have focused on improving the precision and efficiency of the
alignment step in exposure machines used in PCB manufacturing, especially in the
face of miniaturization and increased complexity. The standard alignment method
of an exposure machine depends primarily on manual modifications based on hu-
man visual identification, resulting in time-consuming operations and low precision.
A high-precision exposure ma-chine’s alignment compensation system necessitates
the combination of computer vision, motion servo control, multi-coordinate system
conversion, vast experimental data, and suitable compensation value formulae [7].

The system, which corrects errors between servo and computer-vision systems,
considers factors like vision lens aberration, mechanism design, and assembly accu-
racy, ensuring alignment and enhancing the productivity of the exposure machine
by compensating for anticipated compensation value. Figure 1 illustrates the point
alignment process in production, displaying the simulated effect of the alignment
compensation system. Figure 2 shows the hardware structure used, while Figure 3
shows the overall alignment lay-out of the exposure machine.

FILM TARGET
FILM TARGET = S =N &
1 2 3 4

FIGURE 1. Simulation of alignment error compensation.

An exposure machine’s alignment compensation mechanism necessitates the use
of two sets of system coordinates to align and expose the objective. This study uses
a BP neural network tuned using a genetic algorithm to estimate the compensation
value and improve the production accuracy and alignment efficiency of the exposure
machine. For the subsequent calculations, it is assumed that (O,X,Y) denotes the
coordinate system of the platform where the alignment target is situated; (0;,X;,Y;)
denotes the coordinate system of the charge-coupled device (CCD) lens on the
exposed object; (XC;, YC,) signifies the coordinates of CCD ¢ within the alignment
platform coordinates (XC;, YC;); and Ti indicates the angle of CCD 4 within the
alignment platform (XC;, YC;). The coordinate transformation formula for the
CCD coordinate system of the machine and target can be derived by defining the
coordinate systems of the alignment target and exposed object, as follows:
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(2.1) XT = XC;+ XT;-COS(T}) — YT, - SIN(T}),

The alignment errors between the four targets and the upper and lower light
masks are denoted by dz;s, dz;, dy;s, and dy;,, respectively, whereas dD is defined
as the distance between the alignment centers:

(2.3) dD = \/dx? + dy?.

Along the X-axis, the difference between the alignment centers of the upper and
lower photomasks is expressed by following equation:

(2.4) dX; = (dris+ dros + drss + drys) /4.

The difference between the alignment centers of the upper and lower photomasks
along the Y-axis is given by:

(25) de = (dyls + dy25 + dy?)s + dy4s) /4

Where dT is the angular deviation between the upper and lower masks with the
template and is given by the following formula:

(2.6) dT = tan™!(Z%).

Under the aforementioned conditions, it is evident that when dX=dY =0 and
dT=0, the exposure machine reaches an optimal alignment state, with the devi-
ation between the vision and servo systems approaching infinitesimal levels, thus
leading to the highest quality of exposure [5,20]. The main objective of this research
is to achieve rapid convergence of dX, dY, and dT to the ideal solution within a
limited number of iterations, therefore mitigating the influence of lens aberration,
equipment processing accuracy, and platform assembly precision. This turns the
exposure machine’s alignment compensation prediction into an optimization prob-
lem for the three previously indicated parameters. Figure 4 depicts the alignment
compensation principle.

The deviations in dX, dY, and dT are compensated for by the parameters fz,
fy, and ft, respectively. The alignment platform receives continual feedback from
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the compensation value, which directs the servomotor to modify the position until
alignment is attained. The input parameters fz, fy, and ft of exposure machine are
selected, and the X and Y-direction adjustment value, and rotation angle of the
alignment platform are compensated to minimize alignment error. To further im-
prove positioning accuracy, we set the following: first-position error: target d X and
dY distance difference before pose adjustment (E), angle error between initial and
first-position points (6;), sec-ond-position error: target dX and dY distance differ-
ence after pose adjustment (FEs), and angle error between first and second-position
points (#2). According to the weighted sum of (| E1| — |E2|) and (|61| — |f2]), when
the output result approaches 0, the exposure-machine alignment-compensation pre-
diction system reaches the optimal compensation state, the compensation accuracy
of the exposure machine alignment error reaches the ideal state.

Flexible film exposure machine Alignment lense
- " dx1 (XC1.YCh)
Action 2 o %
panel i T/ ‘:Q
>~ /
Guide rail Film
|—| Y
U v w
UVW Platform
I Racks I
X-axis
FIGURE 3. Alignment FiGure 4. Diagram of
mechanism of flexible-film the principle of alignment
exposure machine. compensation.

3. ALIGNMENT ACCURACY ANALYSIS OF FLEXIBLE-FILM EXPOSURE MACHINE

This study employs a BP neural network, augmented by a genetic algorithm,
to estimate alignment compensation for an exposure machine and determine the
appropriate compensation value to deliver the optimization result. The procedure
can be divided into the following three stages: 1) Examine the existing parameter
data of the expo-sure machine using a unified experimental design, then process
the resulting coordinate data to generate appropriate input and output parameters,
evaluate them, and simplify the dataset based on the weight ratio. 2) Train the
selected data, refine the model using the BP neural network and genetic algorithm to
find the ideal parameters, and then validate accuracy of the model by comparing the
training results with the actual parameters. 3) Predict the alignment compensation
for the exposure machine employing the evolutionary algorithm-enabled optimized
BP neural network, and then compare the results with that of the single BP neural
network [3].
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3.1. Compensation parameter acquisition. The current compensation system
parameters, fr, fy, and ft, is required established when a BP neural network opti-
mized by a genetic algorithm is employed for this purpose. The alignment process
of an exposure machine requires the collection of advanced and multiple experimen-
tal data, which frequently mandates the performance of multifarious experiments
that are both complex and time-consuming. When generating data predictions,
the compensation system parameters are organized using a consistent experimental
design. Simulating each experimental scenario for three parameters is crucial for
reducing experiment numbers, uniformly portraying indicator error, enhancing data
validity, and ensuring comprehensive comparison, thus enhancing the validity of the
data. In subsequent experiments, the comprehensiveness of the data was ensured
by identifying 41 experimental conditions based on variations in fz, fy, and ft. The
uniform experimental design, which aimed to estimate the alignment compensation
for the exposure machine using a non-linear relationship, served as the foundation
for the experimental allocation approach. Subsequently, the information needed in
accordance with the assessment standards was gathered using the specified method-
ology [17,19].

3.2. BP neural network. The BP neural network is a multilayer feed-forward
network trained using an error BP algorithm, consisting of an input, hidden, and
output layer, which can effectively approximate any nonlinear relationship with
appropriate parameters. The alignment compensation impact of the expected data
is evaluated using the lowest mean square error (MSE) between the actual and
predicted values as corrected by the exposure-machine alignment system. The BP
neural network can improve prediction results with an appropriate learning function
and iterative optimization using the gradient descent principle. However, using
the BP neural network for position compensation may not guarantee stability and
ineffective optimization due to the need for iterations to approximate optimal neuron
weights and thresholds. Implementing this procedure would consume a large number
of iterations and negatively affect the accuracy of the results. This study uses a
genetic algorithm (GA) to enhance the speed and prediction accuracy of the BP
neural network.

3.3. Genetic algorithm. Genetic algorithms (GA) emulate the naturally occur-
ring processes of biological evolution. Organisms adapt to changes in their external
environment through heredity and mutation. The basic characteristics of the off-
spring individuals are inherited from the previous generation and differ from those
of the previous generation by chance. The strongest adaptive ability individuals
are retained during offspring reproduction, resulting in the higher probability of
retaining point genes favorable for survival [14,22]. This algorithm is a parallel,
efficient global search method that can automatically search for hidden information
in a sample space and iterate to an optimal solution. Numerous studies and ex-
perimental results show that while GA offers accuracy in finding optimal values, it
also has disadvantages such as slow convergence and a tendency to fall into local
optimal solutions.
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3.4. GA optimization of BP neural network. The process of optimizing a BP
neural network using a GA can be divided into three stages:

(1) Determining the structure of the BP neural network;

(2) Optimizing the parameters of the neurons using a GA;

(3) Predicting the alignment compensation for the exposure machine using the op-
timized BP neural network.

3.4.1. Determining the structure of the BP neural network. In this study, a 3-layer
BP neural network structure was used. The input parameters are fr, fy, and ft,
whereas the output parameters are (|E1| — |E2|) and (|61] — |f2]). The weights and
thresholds of each neuron are used to obtain the corresponding output via the acti-
vation function, and the error correction of the feedback is obtained. Let each node

vector of the input layer be X = [x1,72,...,2;,...,2;]7 for 1 input neurons. Simi-
larly, let the vector of each node in the hidden layer be Y = [y1, 42, ..., ¥is- - - Y]’
for m neurons, and the node vector of the output layer be Z = [z1, z2,..., 2, . . ., zn]T

for n neurons. In addition relationship for different vectors are as follows :

Output vector are
D= [d17d27"'adia"'7dn]T>

Weight vector from the input layer to the hidden layer are

w = [wl,wg,...,wi,...,wm]T,

Weight vector from the hidden layer to the output layer be
E=le,e,....€,...,en]"

Threshold of each node in the hidden layer represented by

0=101,09,...,0i,...,0m]",
Threshold of each node in the output layer are
]T

a=lag, a0, ..., Q. .., qn],

Weights connecting input layer and hidden layer j be
T
Aj = [Ajh Ajg, S 7Aji7 ey Aﬂ}
Weights connecting hidden layer and output layer k be
T
By = [Bk1,Bi2,- - -, Bri,- -+, Brn| " -

The mathematical relationships among the layers are as follows:
For the hidden layer:

)

(31) }/] = fsigmoid (Zajl Xl + 9]) .
For the output layer:
(3.2) Vi = Jsigmoid (Zbkn X+ Oék) :

To avoid the inefficient optimization that occurs when a BP neural network is
used to estimate the compensation value for the alignment error of the exposure
machine, GA can be used to optimize the weights and thresholds. A GA-optimized
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BP (GABP) neural network is a supplemental technique to multi-objective opti-
mization.

3.4.2. Optimizing the parameters of the neurons using a GA. The use of a GA in
BP neural network initial weights and thresholds accelerates convergence in future
training and prevents local optimization issues. The selection of these weights and
thresholds depends on the prediction deviation value, which indicates a fitness value.
A higher degree of difference results in a smaller fitness value. The selection of a
suitable population size is crucial for ensuring spatial sample diversity and predic-
tion accuracy, while minimizing computation time. The number of neurons in the
implicit layer depends on the experimental specific data circumstances, determining
the optimal number of nodes [6,16]. The flow of the GA is illustrated in Figure 5.

/) Determine the\\
fitness functionj’

o

Generate initial
population

o

N Calculate
Generate new

population

—— population
fitness value

Duplication
Crossover
Mutation
(//Output the bes?\\
\_ indiviual //'

FIGURE 5. Flowchart of GA.

Following assessment of the individual fitness values, individuals are screened for
environmental change survival by Selection, Crossover (Pc), and Mutation (Pm)
with continuous iterations over the initial population. The selection of genetic op-
erators is crucial to ensuring accuracy. The selection operator selects for individuals
with high adaptability to establish an additional generation, with the objective of
directly transferring on qualities from out-standing individuals to the next genera-
tion. The probability of an individual being selected is given by:

fi fi
3.3 P; = = .
( ) ' ZZ:lfk f sum
Where f; is the fitness value of individual 4, and fs,, is the fitness value of the
population. The crossover operator randomly selects two parent individuals and
exchanges their characteristics to generate new individuals. Crossover is of great
significance to improving the global optimization ability of the algorithm, and its
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fitness is given by:

(34) PczwafiZfave Pc:1'07fi<fave

where f,4; is the maximum fitness value, f,, is the average fitness value, and
fi is the fitness value of individual ¢ for the crossover. The mutation (Pm) is set
independently according to the size of the experimental data and the amount of
arithmetic, and the variability of the results is analyzed to ensure that the optimal
solution is obtained. Population diversity is a result of selection, crossover, and
mutation, respectively. The ideal offspring persons will be utilized as the parents of
the following genetic operation’s generation once they have been observed through
screening. It can be accompanied by an iteration of the selection, crossover, and
mutation processes [21]. Until the new generation of weights, the thresholds in
the BP neural network for the prediction of the exposure-machine position-error
compensation are not in line with the requirements of the pairs. The steps for using
the GA to optimize the BP neural network are as follows:

(1) The GA is employed to encode and decode the initial weights and thresholds
of the BP neural network, thereby obtaining the initial population. The initial
values of the weights and thresholds are constrained to the range [—1,1]. The
neural network structure is determined to be 3-m-2, which implies that the
chromosomal length is 3 x m +m x 242 x 1.

(2) The fitness value associated with each combination of weights and thresholds is
computed. The discrepancy between the forecasted and actual values is used to
ascertain the compensatory impact of the alignment on the exposure machine.

(3) The selection process includes selecting individuals with superior fitness values
from the offspring population to become new parents. This is accomplished by
calculating the distribution probability using a roulette wheel mechanism.

(4) The study utilized the single-point crossover principle to execute the crossover
operation, which enhances the glob-al search capability of the algorithm by
exchanging genes among a set of chromosomes to generate new individuals.

(5) Mutation operations alter an individual’s genetic locus, creating alternative
alleles for substitution, thereby generating a new individual, enhancing the al-
gorithm’s global exploration capabilities.

(6) The procedure involves calculations to verify if the latest weights and thresh-
olds meet the fitness value and accuracy requirements of the exposure-machine
alignment, and if not, the process is repeated.

(7) The optimum solution is output as the starting weight and threshold of the BP
neural network when the required standards are achieved.

3.4.3. Prediction using optimized BP neural network. The BP neural network is
optimized using GA to determine initial weights and thresholds, and then the neuron
parameters are produced and given into the model for predicting the alignment
compensation for the exposure machine [13]. The data type and properties, and
the specific implementation methods are as follows determine the neural network
parameters:

(1) The obtained initial weights and thresholds are assigned to each neuron of the
BP neural network.
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(2) The Powell-Beale conjugate gradient is used as the activation function and
gradient principle of descent. Tansig, the transfer function, defines the input
layer to the hidden layer, Pureline, the hidden layer to the output layer, and
1000 is the maximum number of iterations and 0.03 is the learning rate for the
appropriate BP neural network con-figuration.

(3) The BP neural network is used to forecast the compensation value, and the
correct compensation value is subsequently achieved.

The comprehensive process of algorithm computation is illustrated in Figure 6.
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FI1GURE 6. Flowchart of experiment.

4. SIMULATION OF COMPENSATION VALUES USING GABP

In this study, the GA-optimized BP neural network was used to properly an-
ticipate error compensation for the exposure machine. The resulting deviation
is utilized as an output, while compensation parameters are employed as inputs.
The initial data of the experiment are obtained by aligning the coordinates of the
positioning points of the platform to read the experimental data from the upper
computer. The data is analyzed to obtain the essential deviation values, the input
parameters are determined based on the positional error parameter compensating
effect, and computed for the outputs, as shown in Figure 7.

4.1. Data acquisition and optimization. The study employed a uniform ex-
perimental design to improve the accuracy and stability of the exposure-machine
alignment-compensation prediction system. Reliability was achieved by preprocess-
ing the data, increasing the number of spatial points, and using GA-optimized BP
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neural networks. Test data was set up to validate the predicted compensation ef-
fect, and comparisons were made with traditional BP neural networks to ensure

alignment with expected effects.

TABLE 1. Partial data on position error compensation.

Coating mask Coating mask

Rotation angle

X direction Y direction compensation value
value (pm) value(pm) of hood (rad)
31.2 3.8 0.00029
30.3 4.7 0.00029
30.6 3.4 0.00029
30.5 3.3 0.00029
32.3 2.8 0.00029
31.5 1.9 0.00029
32.6 -5.9 0.00029
32.6 -7.9 0.00029
33.4 -9.2 0.00029
33.7 -94 0.00029
34.1 -10.2 0.00029
32.6 -12 0.00029
33.9 -12 0.00029
32.2 -12 0.00029
33.3 -10.6 0.00029
34.3 -10.1 0.00029

The alignment platform gap, CCD lens resolution, and compensation value are
the three main elements that affect the alignment precision of the exposure ma-
chine. The precision of exposure alignment can be increased with an appropriate
error-compensation prediction system. The results of the study indicate that the
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proposed GABP algorithm can significantly reduce overall performance by improv-
ing exposure accuracy, iteration time, and alignment machine alignment time when
combined with research on alignment platform error sources and compensation pa-
rameters.

TABLE 2. Partial data on position error compensation.

Coating mask Coating mask Rotation angle
X direction Y direction compensation value Output deviation

value (pm) value(pm) of hood (rad)

1.7 -4.6 -0.00059 1.6385373

0 -1.5 0.00074 0.8727199

2.8 0.9 0.00084 0.6270690

16.6 -8.3 0.00031 -0.043866

24.1 -19.9 0.00027 0.2963287

25.1 -20.6 0.00028 0.8695682

TABLE 3. Hidden layer parameters.

The number of
neurons in the MSE (um) Validation R Test R
hidden layers

5 0.032392 0.85512 0.85761
6 0.028974 0.88186 0.89685
7 0.016026 0.92477 0.91491
8 0.054434 0.78079 0.81558
9 0.026439 0.88842 0.91852
10 0.033514 0.87746 0.88475
11 0.0292 0.80075 0.86174
12 0.068954 0.70168 0.53669

The prediction of alignment compensation for the exposure machine uses three
parameters, i.e., fr, fy, and ft, as the compensation. To fulfill the accuracy require-
ments of nonlinear data fitting, a large amount of data was collected to train the
prediction system model. The error correction range of fr was [—15,75], fy was
[—20,20], and that of ft was [—0.0006,0.0017]. In the experiment, a total of 670
sets of position-error compensation parameters were selected for iterative optimiza-
tion. The experimental results indicated that the number of neurons in the hidden
layer was 7. Table 1 provides data for position-error compensation parameters used
in experiments, Table 2 presents data from 600 experiments, and Table 3 lists MSE
values for different neurons in the hidden layer of the BP neural network.

4.2. Analysis of results. The accuracy of the GABP algorithm model was verified
by selecting 670 data sets, with 600 used for training and 70 for testing, and iteration
was conducted until errors stopped decreasing. The iteration termination conditions
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Best Validation Performance is 0.015133 at epoch 44

Best Validation Performance is 0.031252 at epoch 1000
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were a final accuracy (in terms of error) less than 1073 or a training epoch number
greater than 1000.

When GABP is used to predict alignment compensation for the exposure ma-
chine, appropriate GA parameters are selected to optimize the weights and thresh-
olds for the BP neural network. The population size Ps in this study was 150, the
number of iterations was 50, the crossover rate Pc was set to 0.3, the mutation rate
Pm to 0.1, and the solution accuracy was set to 1073. The acquired results were
assessed using a range of metrics, including the R-value, curves of the predicted
and actual values, and percentage of the prediction error, after the initial weight
threshold of the BP neural network was optimized. The GA-optimized BP neural
network outperformed the traditional BP neural network in predicting better com-
pensation values for the alignment compensation system of the exposure machine,
resulting in a better alignment effect.

Figure 8 displays the outcomes of using only the BP neural network to improve the
position-error correction parameters of the exposure machine in a multi-objective
way. The MSE is the average of the sum of squares of the anticipated and original
data points, which correspond to the positional error compensation parameter. The
accuracy of the prediction model increases with decreasing MSE value. In Figure
8, the MSE value is 0.031252, which is never optimal after 1000 iterations and re-
sults in the partial creation of the ideal solution. Furthermore, the optimal MSE
value derived from the verification data was higher than the values for the testing
and training data. This observation suggests that obtaining an optimal solution for
the multi-objective hybrid optimization problem using only a BP neural network
is challenging and time-consuming. Conversely, for the multi-objective problem of
deter-mining optimal exposure-machine compensation parameters, a hybrid opti-
mization method combining the BP neural network and GA swiftly reached the
best MSE value by the 50th iteration, as seen in figure 9. The result, 0.015133,
is a significant 72.1% year-on-year drop compared to the prior technique, signif-
icantly reducing prediction errors and accelerating the realization of the optimal
MSE value.

The R-value test results for the compensation values predicted for the exposure
machine using the BP neural network and GABP hybrid optimization method are
shown in Figures 10 and 11. A lower deviation indicates that the forecast more
closely matches the actual value when the validation R-value is closer to 1. The
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Training: R=0.89004

Validation: R=0.79924

1g: R=0.89034

Output
Output

Output

. Output
Output
Output
Output

FIGURE 10. R value of BPNN. FIGURE 11. R value of GABP.

R-value for the validation data was only 0.79924 when the BP neural network was
the only method used to anticipate the compensation value; in contrast, the R-
values for the training and test data were 0.89004 and 0.86701, respectively. By
con-trast, when the BP neural network optimized by GA was used to predict the
compensation value, an outstanding accuracy of 0.945 was achieved in validation,
signifying a noteworthy enhancement in the prediction accuracy that corresponded
to a remarkable 18.4% year-on-year increase. Evidently, the optimization of the BP
neural network significantly increases the prediction accuracy and stability of the
model, thereby improving on the countermelody effect of the compensation value.

Error distribution in conventional BP network Error distribution in GABP network

0 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70
The serial number of sample The serial number of sample

FI1GURE 12. Error distri- FiGURE 13. Error distri-
bution for BPNN. bution for GABP.

The error distribution of the optimization results obtained after employing pri-
marily the BP neural network is displayed in Figure 12. The study found significant
fluctuations in the 70 predicted compensation parameters values, with an average
fitting effect, and a general difference of 3—4 um in the actual values, based on the
difference between actual and predicted values. In contrast, the distribution of the
actual errors was more similar to the projected data when the hybrid optimization
calculation was used (Figure 13). The fitting impact was better and the first 20
prediction results were more consistent with the actual values. The combination
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of BP neural network and GA effectively reduced the number of alignments of the
exposure machine during the production process, resulting in a maximum deviation
of 3 um.

Prediction error percentage of conventional BP network Prediction error percentage of GABP
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FiGure 14. Prediction FIGURE 15. Prediction
error of BPNN. error of GABP.

The proportion of anticipated data mistakes in the actual data errors was mostly
kept at 5% when the BP neural network was the sole one employed (figure 14).
Figure 15 illustrates that the data was highly inconsistent with a small percentage
being steady. However, when the hybrid optimization approach, which included GA,
was utilized, the data’s stability increased dramatically. The number of errors was
reduced to less than 3%, and prediction precision increased by 40%, thereby reducing
the time required for the alignment process and improving alignment performance.

Ficure 16. Center-to- FIGURE 17. Point-to-
edge alignment effect. center alignment effect.

To verify the feasibility of the proposed hybrid method in improving alignment
accuracy and efficiency, two experiments on circular center alignment and linear cen-
ter alignment were performed. Figures 16 and 17 illustrate the impact of the method
on alignment, respectively. The alignment accuracy and efficiency have been sig-
nificantly enhanced, effectively enhancing the alignment accuracy of the exposure
process. Thus, the multi-objective hybrid optimization method for the position-
error compensation parameters significantly improves the effect of the alignment
process of the exposure machine. Although the proposed method uses only neural
networks and genetic algorithms combined into a uniform design, it offers innova-
tions in the derivation and use of error compensation parameters. Moreover, from a
comparison of the experimental results, it was confirmed that GABP could obtain
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error compensation parameters faster and, at the same time, improve the produc-
tion efficiency. The uniform experimental design provided a wider sample space and
controlled the number of experiments. Additionally, the suggested GABP network
has been demonstrated as being sufficiently accurate and to be a more efficient
prediction approach when compared to the conventional method.

5. CONCLUSION

In this study, we optimized experimental data using a uniform design of exper-
iments, proposed a prediction method for the alignment compensation systems of
exposure machines using a BP neural network optimized by a GA, and analyzed the
alignment effect on a flexible-film exposure machine as an example. It was found
that using a GA-optimized BP neural network to predict alignment compensation
for an exposure machine can effectively reduce the number of iterations and improve
alignment accuracy. The suggested approach can forecast the alignment compen-
sation and, based on the data acquired, may predict the next step in real time.
This reduces the alignment time greatly, which is realistically useful for real-world
engineering applications. The GABP algorithm model does not readily fall into lo-
cal optimum solutions and can anticipate compensation values with high accuracy,
effectiveness, and stability at a fast convergence speed. The prediction results are
closer to the ideal alignment compensation effect compared to that provided by the
typical BP neural network, and it is extremely unlikely that iterative optimization
would be ineffective.
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APPENDIX A. ADDENDUM

GA Genetic Algorithm

GABP Genetic Algorithm Optimization of BP Neural Networks
BP Back Propagation

PCB Printed Circuit Board

CCD Charge Coupled Device

MSE Mean-Square Error
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