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sets. This learning process must encapsulate not only the topological and attribute
information but also the temporal dynamics, including the chronological evolution
of network topologies and the time-varying attributes of nodes. Further, network
representation learning helps researchers decipher the structural and behavioral
nuances of complex networks, enabling the projection of the original network and
facilitating critical inferences such as the prediction of previously unseen or lost
connections [5, 8, 11], the inference of node labels [15], and the determination of
node community affiliations [12].

The existing meta-path-based representation learning algorithms usually extract
information from the network across both temporal and spatial dimensions for learn-
ing. These algorithms, however, often disregard the relational information between
network nodes and do not effectively capture the associations within the two distinct
node modes. In this study, we proposed an evolving bipartite network representation
learning algorithm based on a network projection to address these issues, named
LP4EBN. The proposed algorithm solution could simultaneously construct the as-
sociation between nodes of the same mode and different modes, resulting in more
abundant node representations. We conducted link prediction experiments on five
real-life datasets to evaluate the effectiveness of the proposed algorithm, realizing
that our proposed algorithm achieved better performance on most datasets.

2. Methodology

2.1. Algorithm process. The training process of the LP4EBN algorithm, depicted
in Figure 1, consists of several steps. First, a batch of interaction data, comprising
EB network data within a specific time interval, is input into the algorithm. The
algorithm then integrates the historical interaction records of each node to extract
the behavior attribute information of the node, which is used for node attribute
modeling. Simultaneously, the algorithm generates two projection networks based
on the node modes of the original EB network and their corresponding mode inter-
nal interaction records. The algorithm aggregates information from both projection
networks to obtain the neighborhood information of the target node. Additionally,
it collects relevant evolving node behavior attributes from the original EB network
for the training. Finally, a recurrent neural network (RNN) is used to learn the asso-
ciation of the node within the time interval. The final node representation is learned
by combining the historical information of the node, the predicted association infor-
mation, and the neighborhood information of two-mode projection networks. The
algorithm performance is tested on downstream link prediction tasks.

The RNN plays a central role in learning the temporal associations between nodes.
It takes the initial embedding vectors of each node as input, encapsulating the
historical behavioral attributes of the nodes. Additionally, the embedding vectors
of neighbor nodes, weighted by their interaction intensity with the target node over
time, are included to reflect the strength of temporal connections. Specifically, the
timestamp information is incorporated as part of the sequence data input into the
RNN, ensuring that the model captures the temporal dependencies in the evolution
of the network. The output of the RNN is the updated node representation, which
not only includes the static features of the nodes but also integrates their dynamic
behavioral patterns over time.
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Figure 1. Overall framework of LP4EBN

In this study, we specifically considered the impact of the time set T on the
network dynamics. Each point in time t was associated with the edges in the
network, mapped to the edge attributes in the form of timestamps. This implied
that we recorded not only the nodes it connected but also the specific time when
the edge was created or the interaction occurred for every edge in the network. This
mapping allowed us to capture and analyze the evolution of the network over time.
The temporal information was used to weigh the contributions of neighbor nodes
and influence the update of node representations in every algorithm step.

2.2. Construction of the projection network . Let us assume the existence of
a bipartite evolving network G = (X,Y,E, T ), where the sets X and Y represent
two disjoint node sets. Nodes within set X do not form edges among themselves
and only interact with nodes in set Y. Similarly, nodes within set Y do not form
edges among themselves and only interact with nodes in set X. E denotes the set of
edges, recording the interaction information between nodes, and T represents the
timestamp information.

An evolving bipartite network is a special kind of evolving network. Existing
studies mostly use meta-path-based learning node representation for this type of
network. However, meta-paths generally need to be manually defined, and the edges
of the meta-path are linked by two different modes. Nodes and the information as-
sociated with nodes of the same mode are ignored. This study mapped the evolving
bipartite network to obtain two projection networks with a single node mode. The
evolving bipartite network G = (X,Y,E, T ) was mapped on the node set X and Y,
respectively, to obtain the projection networkGX = (X,EX , TX), GY = (Y,EY , TY )
so as to learn the associated information between nodes of the same mode.

The construction process of the projection network in this study was inspired
by the mapping process from a bipartite graph to a monopartite graph. Tak-
ing the evolving bipartite network shown in Figure 2 as an example, the mu-
tual information I of the evolving bipartite network is expressed as follows:I =
{(1, A, t1), (1, B, t2), . . . , (4, B, t9), (4, C, t10)}, according to the bipartite graph map-
ping to obtain a single point. The idea of the graph is that interaction information
{(1, A, t1), (1, B, t2)}(t1<t2) exists in the bipartite graph, that is, node A and node
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Figure 2. Construction of the projection network.

B have interacted with node 1 successively. An edge is present between node A and
node B in a monopartite graph. Based on the aforementioned mapping process, an
edge exists between node 1 and node 2 due to an interaction{(1, A, t1), (2, A, t3)}
(t1<t3) in the bipartite graph. According to the aforementioned rules, the projec-
tion networks derived from mapping the evolving bipartite network onto sets X and
Y are shown in Figure 2, respectively.

Considering timestamp information on the edges of the evolving bipartite net-
work, this study preserved the timestamp information of the two interactions in-
volved in the network projection from the evolving bipartite network mapping to
ensure the integrity of the timing information. For example, if a pair of interaction
information {(xi, Y, ti), (xj, Y, tj)}(ti<tj) is present in the evolving bipartite net-
work, then the interaction information saved on the projection network is recorded
as {[xi, xj, (ti, tj)]}. This shows that the timestamp information on the edges of
the projection network is stored in the form of tuples (ti, tj)(ti<tj). When learning
the node representation on the projection network later, the timestamp information
contained in this tuple will be used to calculate the corresponding weight of each
neighbor node in the projection network.

2.3. Calculation of weight . Our LP4EBN algorithm used two projection net-
works to capture the historical interaction records of the evolving bipartite network
for a given batch of interaction information. The interaction information before
and after projection is presented in Figure 3. The timestamp information of the
two interactions related to the mapping process was maintained in the projection
networks to preserve the timing information in the original EB network. The algo-
rithm stored the two interaction timestamps in tuple form and used this information
to calculate the influence of each neighbor of the target node in the corresponding
projection network, assigning specific weight values accordingly.

Two projection networks can be obtained by mapping in the aforementioned
manner for an evolving bipartite network at a given time t. Let us assume that
the interaction information on the projection network is [xi, xk, (ti, tk)](ti ≤ tk ≤ t),
where xi represents the target node, xk represents the neighbors of the target node
on the projection network nodes, and tiand tk represent the timestamp information
of the two interactions involved. The LP4EBN algorithm needs to first calculate
the time interval △tk between two interactions, and the specific calculation formula
is shown in Equation (2.1).

(2.1) △tk = tk − ti.
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Figure 3. Original evolving bipartite network and projection network.

If two nodes interact with the same node at a relatively close time, then the two
nodes are more similar, and hence the weight value corresponding to the neighbor
node in the projection network is larger. On the contrary, if two nodes interact
with the same node and the time interval is large, the similarity between the two
nodes is not high and the weight value corresponding to the neighbor node in the
projection network is small. Therefore, the corresponding weight is larger for the
neighbor node xk with a smaller time difference △tk. Otherwise, its corresponding
weight is smaller. For the neighbor node xk of the target node in the projection
network, the corresponding weight calculation formula is shown in Equation (2.2),
where K is the number of neighbors of the target node in the projection network.

(2.2) Weightk1 =
e

1
△tk∑K

k=1 e
1

△tk

.

For the interaction [xi, xk, (ti, tk)](ti ≤ tk ≤ t) in the projection network, the
time information tk on the connection edge is far from the current time t, that is,
the neighbor node is in a long time. If no relevant interaction exists within the
target node, then the influence of the neighbor node on the target node and the
corresponding weight is small. Conversely, if the time on the edge in the projection
network is extremely close to the current time t, it indicates that the interaction
has just occurred. Therefore, the target node should learn node representation, and
its corresponding weight is larger. Therefore, we should consider the time interval
△t′k between the time information (ti, tk) on the projection network and the current
moment t. The specific calculation formula is shown in Equation (2.3).

(2.3) △t′k = t− tk.

The closer the interaction time information in the projection network is to the
current moment, the smaller the △t′k. Otherwise, the larger the △t′k. According to
△t′k, the weight corresponding to the neighbor node xk in the projection network
can be obtained. The weight calculation formula is similar to the previous weight
calculation, as shown in Equation (2.4). Among these, K still takes the value of 10
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when the algorithm is implemented.

(2.4) Weightk2 =
e

1
△t′

k∑K
k=1 e

1
△t′

k

.

The weight weightk1 and weightk2 of the neighbor node xk can be obtained based
on the time information on the projection network. In this study, the two weights
were simply averaged to obtain the neighbor node xk in the projection network.
The final weight value weightk is calculated using the specific formula shown in
Equation (2.5).

(2.5) Weightk =

(
weightk1 + weightk2

)
2

.

After obtaining the weight value corresponding to the neighbor node xk in the
projection network, we should read the historical state information of the neighbor-
ing node in the storage module and then multiply it by the weight to obtain the
influence of the node on the target node. The assigned weights gauge connection
strengths and are vital for capturing the dynamic evolution of the network. They
reflect the interaction degree between the focal node and its neighbors within a given
time frame. These weights allow the network to assign varying influence levels to
neighbor nodes based on timestamp data by adjusting the RNN input. Recent in-
teractions contribute more information due to larger weights, whereas earlier ones
contribute less. Additionally, weights help balance the impact of different neighbor
nodes, preventing model bias from extreme values.

2.4. Negative sampling . In this study, we presented a novel negative sampling
strategy specifically designed for the evolving nature of bipartite networks. Our
strategy involved choosing nodes that had historical interactions with node x but
were not present in the interaction data of the batch being predicted, for example
y, as negative sampling. This selection process necessitated both the predicted
interaction data and the existing knowledge of past interactions, thereby converting
the training process into a supervised learning task. As the algorithm was tailored
for bipartite networks featuring two distinct node types, the interactions between
nodes of the same kind were inherently absent. Therefore, when selecting negative
samples for node x in set X, only nodes in set Y could be selected. If we chose the
nodes of the set X, they must not interact, serving as weak negative samples that
were easily judged as negative examples. In this study, we designed a strong negative
sample selection strategy. The specific selection method is shown in Equation (2.6).

(2.6) Y negative
x = Y

batchi−1
x − Y batchi

x = Y
batchi−1
x − (Y batchi

x ∩ Y
batchi−1
x ),

(2.7) Y negative
x = Y all − Y

batchi−1
x − Y batchi

x

where Y
batchi−1
x represents the set of nodes that have interacted with node x ob-

tained according to known historical interaction information. Y batchi
x represents the

interaction information currently input to the model for link prediction. The node



RL-BASED LINK PREDICTION FOR EVOLVING BIPARTITE NETWORKS 1817

set that will interact with node x. Y negative
x means the negative sample node set

formed by the selected node y constitutes a negative sample with node x. The
subtraction in the formula means the subtraction between sets, and ∩ means the
intersection of sets. When the number of selectable negative sample nodes is less

than the size of the negative sample node set Y negative
x , that is, when the number

of nodes obtained in Equation (2.6) is insufficient, negative samples are randomly
selected from the set shown in Equation (2.7). Y all represents nodes in set Y that
are currently known to have occurred in all interactions.

3. Experiments

3.1. Datasets. As shown in Table 1, experiments were carried out on five real-life
representative datasets to evaluate the proposed algorithm. The LP4EBN algorithm
was implemented using the same dataset division method and ratio as the baseline
algorithm, dividing the data into training, validation, and test sets in a 70:15:15
ratio. The parameter settings for the training process were as follows: the batch
size was set to 200, the learning rate was 0.0002, the dropout rate was 0.1, the
embedding dimension of the nodes was 100, and the number of neighbors aggregated
in the reconstructed network (K) was 10.

Table 1. Dataset-related information

Dataset Node Edge Duration

Wikipedia [6] 9227 157,474 1 month

Reddit [6] 10,984 672,447 1 month

MOOC [6] 7144 411,749 17 months
LastFM [6] 1980 1,293,103 1 month

UCI [9] 1899 59,835 196 days

3.2. Experimental results and analysis. Table 2 shows that our algorithm
could achieve good results in link prediction tasks in most cases. The algorithm
did not perform well on the Reddit dataset, which was because the Reddit dataset
represented the situation of users posting in forums. Active users posting in the
same forum section may have polarized opinions. In summary, the LP4EBN al-
gorithm achieved good link prediction results on most evolving bipartite network
datasets, proving that the introduction of the projection network to learn the as-
sociation relationship between nodes of the same mode was beneficial to the node
representation on the evolving bipartite network.

Some baseline algorithms can only perform the transductive link prediction task
due to the limitation of the application range of the baseline algorithm. Therefore,
the aforementioned comparative experiments were all performed on the transduc-
tive link prediction task. However, the LP4EBN algorithm proposed in this study
could handle both the transductive and inductive link prediction tasks. The specific
experimental results of the algorithm are shown in Table 3.

We conducted ablation experiments using MOOC and Reddit datasets as exam-
ples to examine whether introducing the reconfigured network positively affected
node representation learning. The experimental results of the MOOC dataset are
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Table 2. Comparison of AUC and AP values obtained using each
algorithm on the link prediction task

Dataset JODIE DyRep TGAT CAWN EdgeBank LP4EBN

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
Wikipedia 0.79 0.77 0.79 0.81 0.74 0.76 0.84 0.89 0.77 0.71 0.88 0.89
Reddit 0.79 0.77 0.80 0.79 0.78 0.77 0.85 0.89 0.77 0.70 0.77 0.79
MOOC 0.77 0.70 0.80 0.74 0.61 0.59 0.60 0.66 0.60 0.57 0.79 0.76
LastFM 0.69 0.68 0.70 0.71 0.50 0.50 0.40 0.56 0.76 0.69 0.80 0.79
UCI 0.71 0.62 0.44 0.45 0.57 0.61 0.73 0.79 0.69 0.65 0.76 0.80

Table 3. Performance of LP4EBN in transductive and inductive
link prediction tasks

Dataset AP(Transductive) AUC(Transductive) AP(Inductive) AUC(Inductive)
Wikipedia 0.89 0.88 0.88 0.86
Reddit 0.79 0.77 0.61 0.58
MOOC 0.76 0.79 0.82 0.82
LastFM 0.79 0.80 0.88 0.89
UCI 0.80 0.76 0.77 0.74

Figure 4. Ablation experiments on the MOOC dataset.

shown in Figure 4. In the figure, the method of not introducing the projection net-
work is recorded as Without reconstruct info, and the control group is the complete
LP4EBN algorithm.

The results of the ablation experiments showed that the introduction of projection
network–related information in the evolving bipartite network helped the algorithm
to learn node representation. Whether it was in the transductive link prediction
task or the inductive link prediction task, the introduction of the projection network
in this study could improve the AP and AUC indicators on the link prediction task
to a certain extent.

The projection network is built on historical interactions. Therefore, long-term
history is not useful for current representation learning and may even harm it. Thus,
when aggregating neighbor node information on the projection network, only K
recently interacted neighbors are selected for information aggregation. A parameter
sensitivity experiment was conducted using the Wikipedia dataset to examine the
impact of the number of aggregated neighbors on node representation learning. The
results are presented in Figure 5.
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Figure 5. Aggregating the influence of different numbers of neigh-
bor node representations on link prediction.

Figure 5 illustrates the impact of aggregating varying numbers of neighbor nodes
within the projection network on the outcomes of link prediction. Specifically, in-
corporating a larger set of neighbor nodes in inductive link prediction scenarios
is advantageous for modeling the representations of nodes lacking a historical in-
teraction record. Nonetheless, this aggregation does not inherently improve with
an indefinite increase in the number of neighbors. The experiments indicated that
the aggregation of representation data from 10 neighbor nodes optimized the link
prediction performance.

4. Conclusions

This study developed a novel link prediction algorithm tailored for evolving bi-
partite networks. The algorithm introduced a unified projection network framework
integrating nodes from both modes, coupled with a meta-path learning approach
enabling dual feature extraction across the projected and original networks. By
capturing node representations that comprehensively reflect network complexity,
the model consistently achieved or surpassed state-of-the-art performance in exper-
iments, advancing link prediction research in evolving bipartite networks.
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[8] L. Lü and T. Zhou, Link prediction in complex networks: A survey, Physica A: Statistical
Mechanics and Its Applications 390 (2011), 1150–1170.

[9] P. Panzarasa, T. Opsahl and K. Carley, Patterns and dynamics of users’ behavior and in-
teraction: Network analysis of an online community, Journal of the American Society for
Information Science and Technology 60 (2009), 911-932.

[10] B. Perozzi, R. Al-Rfou and S. Skiena, DeepWalk: Online learning of social representations, in:
Proc. 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
Association for Computing Machinery, 2014, pp. 701–710.

[11] Shabaz, Mohammad and U. Garg, Predicting future diseases based on existing health status
using link prediction, World Journal of Engineering 19 (2022), 29–32.

[12] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu, C. Paris, S. Nepal, D, Jin, Q.
Sheng, Yu, S. Philip, A comprehensive survey on community detection with deep learning,
IEEE Transactions on Neural Networks and Learning Systems 35 (2022), 4682–4702.

[13] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan and Q. Mei, LINE: Largescale information net-
work embedding, in: Proc. 24th International Conference on World Wide Web , International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,
2015, pp. 1067–1077.

[14] C. Wu, M. Hu, R. Jiang and Q. Hao, Effects of road network structure on the performance
of urban traffic systems, Physica A: Statistical Mechanics and its Applications, 563 (2021):
125361.

[15] S. Xiao, S. Wang, Y. Dai and W. Guo, Graph neural networks in node classification: survey
and evaluation, Machine Vision and Applications 33 (2022),1–19.

[16] Z. Yang, M. Ding, X. Zou, J. Tang, B. Xu, C. Zhou and H. Yang, Region or Global a Principle
for Negative Sampling in Graph-based Recommendation, IEEE Transactions on Knowledge and
Data Engineering 35 (2023), 6264–6277.

Manuscript received May 19, 2024

revised October 10, 2024



RL-BASED LINK PREDICTION FOR EVOLVING BIPARTITE NETWORKS 1821

Dongqi Wang
Software College, Northeastern University, China

E-mail address : wangdq@swc.neu.edu.cn

Jie Wang
Software College, Northeastern University, China

E-mail address : 2271453@stu.neu.edu.cn

Qianqian Gan
Software College, Northeastern University, China

E-mail address : 2071273@stu.neu.edu.cn

Mingshuo Nie
Software College, Northeastern University, China

E-mail address : niemingshuo@stumail.neu.edu.cn

D. Chen
Software College, Northeastern University, China

E-mail address : chendm@mail.neu.edu.cn


