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length and lack contextual accuracy [3]. Subsequent studies combined coding tech-
niques and multiple attention mechanisms for sequence extraction and sentiment
analysis [21]. While tag coding helps manage missing data, it can result in infor-
mation loss or inaccuracy. Multi-head attention with a fusion graph grid improved
accuracy but increased complexity and computational cost [17]. This limits model
scalability and real-time performance, especially with larger datasets.

To address these issues, we propose a lightweight multimodal sentiment analysis
model, namely the multimodal multi-head attention mechanism perceptual fusion
model. It uses multi-head attention to extract key features from text, audio, and
video. The model randomly selects two modes, then integrates a third mode, com-
bining multimodal fusion with attention mechanisms to preserve emotional features.
Finally, the features of all three modes are fused for sentiment analysis. The prime
contributions of the paper are as follows:

• Multimodal feature extraction is carried out using multi-head attention
mechanism and mapped to the vector quantum space to cut down the fea-
ture dimension while retaining the main emotional feature information.

• The fusion of multimodal multi-head attention multi-channel data is realized
by calculating the emotion labels of the data and fusing different channels
from text, audio, and video with different modalities for analysis.

• After experiments on the multimodal datasets of CMU-MOSI and CMU-
MOSEI, compared with the previous baseline model, our proposed model
has achieved significant improvement in sentiment analysis tasks, which well
proves the effectiveness of the method.

The rest part is structured as follows. Section 2 reviews related work, focus-
ing on feature extraction methods and fusion strategies to enhance model perfor-
mance. Section 3 details the multimodal feature fusion using the multi-head at-
tention model, including the design of attention mechanisms and the integration of
multi-head attention into feature extraction and fusion. Section 4 validates method
using CMU-MOSI and CMU-MOSEI datasets. Section 5 concludes paper.

2. Related work

2.1. Text feature analysis. In text modality research, attention mechanism and
Long Short-Term Memory (LSTM) network[7] are combined to link context and
identify emotion-related words. This proved the attention mechanism’s importance
in word-context relationships. For text feature extraction and analysis, the Bidirec-
tional Encoder Representations from Transformers (BERT) [8] model is adopted to
extract rich text features, playing a key role in multimodal sentiment analysis.

2.2. Audio feature analysis. Audio feature analysis involves extracting features
from audio signals. Some researchers suggest using end-to-end deep learning with
neural networks to directly learn emotional representations from raw audio[13], by-
passing manual feature design and enhancing emotion recognition. This approach
offers more accurate features for multimodal sentiment analysis. We use the Col-
laborative Voice Analysis Repository for Speech Technologies (COVAREP)[10] for
audio feature extraction to support multimodal sentiment analysis research.
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2.3. Video Feature Analysis. Video feature analysis involves extracting and un-
derstanding features from video data to support various analytics and sentiment
analysis tasks. Some researchers use images to align with text in social media emo-
tion analysis, highlighting key sentences [11]. This study shows that images can
serve a similar role as text. For video feature extraction, we use facet[14], which
provides detailed feature representations of text and images in video, enhancing our
understanding and improving accuracy in multimodal sentiment analysis.

2.4. Multimodal sentiment analysis. With the rise of diverse datasets, single-
modal sentiment analysis no longer suffices for multimodal applications, making
multimodal sentiment analysis more complex. This approach generally involves
two main components: feature learning and modal fusion. Feature learning typi-
cally involves supervised methods on labeled datasets to learn useful representations
for tasks like classification or regression. Common methods include Convolutional
Neural Networks (CNN) [2] and Recurrent Neural Networks (RNN) [9]. However,
feature-based approaches can be time-consuming and labor-intensive, with poten-
tial issues of feature bias. Modal fusion is key in multimodal sentiment analysis.
Researchers use models to handle modal uncertainty and specific feature represen-
tations for better integration of different modalities [5]. Recent approaches, like
the two-by-two cross-modal insertion attention mechanism, enhance interaction be-
tween multimodal sequences [12]. Despite this, existing methods have limitations.
Using multi-head attention to dynamically weight modes based on relevance can
further enhance multimodal sentiment analysis performance [15].

3. Muiltimodal Sentiment Multi-head Attention Fusion(MSMAF)

(3.1) µ =
1

N

N∑
i=1

xi.

3.1. Modal feature extraction. Features can be extracted by calculating the
statistical characteristics of the modal data (such as mean, variance, maximum,
minimum, etc.), specifically, this formula counts the total sum of the data points xi
in the data sample and divides it by the total number of data samples entered N.
And that gives you the mean of this set of data µ.

3.2. Fusion. Following feature extraction from the three modalities, we proceed to
multimodal fusion, utilizing a multi-head attention mechanism. As shown in Figure
1, extracting features from text, audio, and video fully leverages multimodal cor-
relations, enhancing emotion recognition performance. Feature vectors from these
modalities are first aligned in dimension via a linear layer, then fused by integrating
two modalities and adding a third. The formula for this process is as follows:

(3.2) A⊕B
([
A : B′]+ Segment

)
,

(3.3) B′ = Linear (B)
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where A⊕B is defined as “merging A and B”. [A : B′] represents the joining of
the transpose of matrix A and matrix B to form a new matrix, obtained by Linear
projection B in equation (3.3).

Figure 1. Our proposed of MSMAF

After combining A and B′ based on the sequence length, a segment is introduced
to enhance the accuracy of the analysis. The approximate fusion model is shown in
Figure 1.

3.3. Multihead attention. The multi-head attention mechanism boosts the model’s
ability to understand and integrate relationships across various modalities.

Figure 2. The principle of multi-head attention mechanism

In Figure 2, the vectors Q, K, and V represent the query, key, and value vectors,
respectively, with their attention weights calculated. The outputs of each attention
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head are combined to capture diverse attention results. The multi-head attention
mechanism, an advanced version of self-attention, uses several sets of weight matri-
ces to learn various contextual influences. After training, these matrices project into
different subspaces, allowing each attention head to focus differently and enhancing
the model’s capacity.

(3.4) MuiltiHead(Q,K, V ) = concat (head1, head2, . . . , headn)W
o

where n is the number of attention headn and W o is the weighted matrix from
which the matrix of weights for calculating a particular head can be derived:

(3.5) headi = softmax

(
QWQ

i (KWK
i )T√

dk

)
V.

Q, K, V denote the linear transformations of Query, Key and Value respectively.

WQ
i , WK

i are the linear transformation matrices of each attention headi, and dk is
the dimensions of the query or key.

3.4. MSMAF. By introducing the multi-head attention mechanism, we propose
the MSMAF model. In the process of each interaction between receiving data
and attention, MSMAF can receive data information from each different mode and
dynamically integrate emotional labels and key information to be weighted from
different modes by using the multi-head attention mechanism. Including text, audio,
and video, the formula is shown below:

(3.6) C = MultiHead

(
XWQW

T
i KT

√
d

+ U(MSMAF )XWV

)
.

In Eq.(3.6), C represents the result of prediction, i represents how many parameters
need to be included in the formula for calculation, d represents the dimensionality
proposed by the previous features, and U represents the conversion of MSMAF into
a weight matrix, which facilitates the effective calculation of the formula.

Figure 3. A framework for multimodal fusion multi-head attention mechanism
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In Figure 3, with the application of multi-head attention mechanism, all attention
heads will focus on different key modal information, enabling the model to better
understand the overall multimodal representation.

4. Experimental design

4.1. Experimental Environment. Hardware: Intel Xeon 4210R CPU, Nvidia
RTX 3060 GPU, 16 GB RAM. Software: Linux 64-bit OS, PyCharm, and PyTorch
for deep learning.

4.2. Dataset. In this paper, we perform experiments using two multimodal sen-
timent analysis datasets: the CMU-MOSI [20] dataset and the CMU-MOSEI [19]
dataset, which correspond to experimental datasets that allow for more direct and
efficient experimental evaluation. The CMU-MOSI dataset includes video and blog
content from YouTube, featuring multimodal data–video, audio, and text–on vari-
ous emotions and themes. The CMU-MOSEI dataset, with over 1,000 video clips,
is larger and covers a broader range of topics than CMU-MOSI, making it more
diverse and representative of real-world emotional expression.

Table 1. Introduction to experimental datasets

Dataset Train Valid Test Total

CMU-MOSI 129 220 646 2162

CMU-MOSEI 17216 1621 4792 23629

In Table 1, “Train” indicates the experimental training set, “Valid” indicates the
validation set, “Test” indicates the test set, and “Total” indicates the overall sample
size of the dataset.

4.3. Experimental evaluation indicators. The model’s performance was eval-
uated using accuracy and the F1 score. Accuracy measures how often the model
correctly predicts sentiment in data fragments, while the F1 score, the harmonic
mean of precision and recall, assesses the model’s overall sentiment analysis per-
formance. Accuracy indicates the proportion of true positives among predicted
positives, and recall measures the percentage of actual positives correctly identified
by the model. Execution time was used to compare the model’s efficiency.

4.4. Feature extraction. The emotion-related features of the three models are
extracted, to support the subsequent multimodal emotion fusion analysis.

Table 2. The three modalities dimensions

Dataset L A V

CMU-MOSI 768 74 34

CMU-MOSEI 768 74 35

The experiment extracts features from text (L), audio (A), and video (V). Text
features use a pre-trained BERT model, audio features are obtained via COVAREP,
and video features come from Facet. These features are labeled L, A, and V, re-
spectively, as shown in Table 2.
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4.5. Baseline model. We compared the MSMAF model to other deep learning
baselines in sentiment analysis, utilizing all three modalities: text, audio, and video,
to validate its effectiveness.

• Multi-grained Attention Network (MGAN) [4]: The interaction between sen-
tence and lexical context is learned through coarse-grained and fine-grained
attention mechanisms.

• Modality-invariant and Specific Representations for Multimodal Sentiment
Analysis (MISA) [5]: Information from the three modes is decomposed into
modal invariance and specificity to identify commonalities and characteris-
tics, reducing the gap between modes.

• Multi-Interactive Memory Network (MIMN) [16]: Learning the interaction
of information between specific text and image modalities using a dual mem-
ory network.

• Visual Aspect Attention Network (VistaNet) [11]: Image-text fusion of emo-
tion classification and three-layer pattern architecture, image pattern as the
alignment vector to emphasize the important information of the sentence.

• Tensorfusion Network (TFN) [18]: This model learns to dynamically inter-
act with information across the three modes, aggregating interactions from
endpoint to endpoint.

4.6. Analysis of experimental results. Through experimental comparisons with
other baseline models, all experimental results show that MSMAF outperforms
the baseline model and improves accuracy, F1 emotion scores and other indicators
through its attention mechanism. It is also superior in speed and improves the
efficiency of analysis on multimodal sentiment datasets.

Table 3. Comparison of CMU-MOSI multimodal results

Accuracy

(%)

F1

(%)

Precision

(%)

Recall

(%)

Time

(min)

MGAN 71.52 71.32 71.45 71.12 62.35

MIMN 73.02 73.2 72.95 72.88 63.41

VistaNet 75.91 75.85 75.77 75.65 67.61

TFN 78.81 78.74 78.80 78.71 72.41

MISA 81.12 81.35 81.09 81.31 60.24

MSMAF 82.94 82.89 82.79 83.27 53.58

Table 3 shows the comparison between MSMAF and other baseline models.
Experiments are conducted based on CMU-MOSI multimodal sentiment analysis
dataset, including accuracy, F1, precision, recall, and time, where black and bold
words represent better experimental results. After experimental comparison be-
tween MSMAF and other baseline models, it can be intuitively known that the pro-
posed model is superior to other baseline models in experimental index. Among the
baseline models, MSMAF outperforms others by improving accuracy, F1 emotion
scores, and other metrics by over 1 percentage points with the attention mechanism.
Additionally, it is the fastest, demonstrating improved sentiment analysis efficiency.
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Figure 4. CMU-MOSI experimental data graph

As shown in Figure 4, the experiment uses the bar chart to visually show that
MSFA improves the accuracy, F1 emotion scores and other indicators by at least 1
percentage point through the fusion of multi-head attention mechanism through the
multimodal sentiment analysis model, and the experimental results are significantly
better than the performance of other models in this experiment. In addition, it
is the fastest sentiment analysis model and has proven that it can improve the
efficiency of sentiment analysis on complex multimodal sentiment datasets.

Table 4. Comparison of the CMU-MOSEI multimodal results

Accuracy
(%)

F1
(%)

Precision
(%)

Recall
(%)

Time
(min)

MGAN 75.61 75.51 75.69 75.49 76.54
MIMN 77.51 77.38 77.43 77.24 74.61

VistaNet 78.34 78.24 78.41 78.31 81.45

TFN 80.23 80.13 80.11 80.14 79.62

MISA 81.61 81.54 81.64 81.51 72.48

MSMAF 83.75 83.65 83.43 83.44 64.59

Table 4 shows a comparison between MSMAF and other baseline models. The
experiment is based on the larger and more complex CMU-MOSEI multimodal sen-
timent analysis dataset, including accuracy, F1, precision, recall and time, where
black and bold represent better experimental results. Through the experimental
comparison between MSMAF and other baseline models, it can be intuitively known
that the model proposed in this paper is superior to other baseline models in ex-
perimental indexes. In the baseline model, MSMAF outperformed other models by
improving accuracy, F1 emotion scores, and other metrics by nearly 2 percentage
by using attention mechanisms. In addition, the running efficiency of the proposed
model is the fastest. Through the comparison of running time, it is proved that the
efficiency of sentiment analysis is improved.
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Figure 5. CMU-MOSEI experimental data graph

It can be seen that after adding the attention mechanism to MSMAF, the accu-
racy, F1 emotion scores and other indicators have increased by nearly 2 percentage
points compared to other baseline models. Moreover, among the various models,
the model studied in this paper takes the least time and improves the efficiency of
emotion analysis. The visualized data is presented in Figure 5.

4.7. Ablation experiment. Since the data of CMU-MOSEI is more abundant,
we plan to conduct ablation experiments on this dataset, compare the complete
MSMAF with the model after extracting each mode and the missing key multi-head
attention mechanism in various aspects, and observe whether there are changes in
the experimental indicators.

Table 5. Ablation experiments on the CMU-MOSEI dataset

Accuracy

(%)

F1

(%)

Precision

(%)

Recall

(%)

Time

(min)

MSMAF-L 65.32 64.45 64.89 64.34 54.68

MSMAF-A 61.96 61.32 62.13 62.09 51.25
MSMAF-V 68.41 67.59 68.21 68.04 41.54

MSMAF-ATT 72.22 71.69 72.15 71.39 58.78

MSMAF 83.75 83.65 83.43 83.44 64.59

In terms of the ablation experiment module, we identified four missing modules
for comparison, namely, MSMAF-L containing only the text part of the analysis
data, MSMAF-A containing only the audio part of the analysis data, MSMAF-V
containing only the video part of the analysis data, and the fusion model MSMAF-
ATT after removing the multiple attention mechanism. The four missing modules
are compared with the complete MSMAF, and the results are shown in Table 5.
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As can be seen from the above table, when one of the three modules is indeed
missing, the experimental data of the model proposed in this paper on the predic-
tion of sentiment analysis plummets compared to the previous one. The reason is
that the multimodal sentiment analysis model is not able to play its corresponding
advantages when a certain module is missing, and also corresponds to the lack of
certain key sentiment information when a certain module is missing, which leads to
the experimental index of sentiment analysis is not high.

Figure 6. Comparison of ablation experiment data

In Figure 6, by removing some modules in the whole experiment one by one,
such as retaining only the text module, removing multi-head attention mechanism,
etc., the MSMAF model proposed in this paper has the most stable performance.
In the ablation experiment, if only one module of the three modules is used, the
experimental effect is suboptimal, and the average efficiency is only about 60%.
When the three modules are present at the same time but the multi-head atten-
tion mechanism is missing, the average efficiency reaches 70The above categories
of ablation experiments summarize the experimental performance of our proposed
model approach on multimodal sentiment analysis datasets. By integrating multi-
head attention mechanisms, the relevant performance and indicators of multimodal
sentiment analysis have been improved, which indicates that multi-head attention
mechanisms can effectively help multimodal models obtain relevant important in-
formation between different modes, and help improve the accuracy and effect of
sentiment analysis.



SENTIMENT ANALYSIS BASED ON MSMAF 1795

5. Summary

We perform sentiment analysis on a multimodal sentiment dataset, utilizing three
modalities for feature extraction and incorporating the MSMAF model for multi-
modal sentiment analysis. The performance of the model is further enhanced by
adding a multi-head attention mechanism, which obtains higher accuracy compared
to other baseline models and achieves some new enhancements in various experi-
mental metrics. More efficient algorithms will be designed and integrated into the
model in subsequent studies to build a richer and more efficient model for multi-
sentiment analysis. This attitude of continuous improvement and progress is highly
commendable and helps to continuously improve the performance and effectiveness
of multimodal sentiment analysis tasks.
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