o2 Py

% -
Journal of Nonlinear and Convex Analysis % mmm P"”’She's

Volume 26, Number 6, 2025, 1759-1783 K-% mﬁ) JSSN 1880-5221 ONLINE JOURNAL
“ © Copyright 2025

Yok, %

ADAPTIVE NEURAL NETWORK OPTIMIZATION USING
INFORMATION ENTROPY FOR DYNAMIC PARAMETER
TUNING

QIN GAO, JINGSONG ZHANG, XUEDING TAO, WEISHANG GAO*, LIJIE SUN,
YUE CHEN, AND PENG HE

ABSTRACT. The adaptability of neural network tuning to specific problems and
sample conditions is one of the key factors influencing regression performance.
This study aimed to design an evolutionary optimization algorithm with a dy-
namic adjustment mechanism of population size and search area to address the
tuning complexity of neural networks. The information entropy calculated us-
ing the relative magnitude of fitness and fitness increment adaptively carried out
a trade-off between exploration and exploitation in the optimization algorithm.
Entropy coefficients were modified in a timely manner when calculating the size
and distribution area of the new generation. Consequently, the distribution trend
and population density of the next generation were effectively controlled. In ad-
dition, a shrinking mechanism based on the shrinkage coefficient was suggested
to redefine a smaller but more dominant region for the next generation. The
performance of the proposed method compared with the existing techniques in-
dicated that the new optimization algorithm was the first to achieve a more
accurate solution. Thus, the structural parameters of the neural network could
be adjusted efficiently using the improved optimization algorithm. Despite its
high computational complexity and cost, the proposed approach could effectively
improve algorithm performance. Experiments confirmed that the adjusted neural
network achieved excellent results in the case of small-sample learning.

1. INTRODUCTION

Over the last few years, artificial intelligence [19,21] has proven to be a promising
approach to solving complex engineering problems. Intelligent optimization [29,33]
and pattern recognition technology [13,32] have been widely used in industrial
processing [4, 9], agricultural production [17,27], transportation [3, 8], commercial
operation [7,31], social services [14,15], and other fields, and are developing rapidly.
Especially, artificial neural networks [25,28](ANN) and support vector machines [6,
16](SVM) have received extensive attention in data mining and modeling as classical
pattern recognition algorithms. However, the parameters of pattern recognition
algorithms need to be adjusted appropriately [22,30] to adapt them to different
complex problems, but a proper adjustment is difficult to obtain because of the
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complexity and variability of data features. Mostly, extensive adjustments need to
be first estimated by professionals based on experience and knowledge and then
used in a specific modeling process after several experiments and comparisons. The
obtained parameters differ significantly from the optimal ones due to low efficiency
and limited time for manual adjustment.

An optimization algorithm can be used to adjust the parameters by rapidly it-
erating through a wider range of feasible parameters to improve the efficiency and
effect of parameter optimization [20,34]. To date, swarm intelligence optimization
algorithms [10, 12] have gained immense attention and have been applied widely
because of their advantages in complex optimization [11,24]. In most cases, the
optimization model of the recognition algorithm is relatively complex, and using
the mathematical analytical optimization method to solve the problem is difficult.
Although traditional swarm intelligence optimization algorithms possess a unique
solution for complex optimization problems [5,26,35], the trade-off between explo-
ration and exploitation [1,22] is a key and difficult issue for algorithms to adaptively
adjust their performance. Therefore, a novel evolutionary optimization algorithm,
the dynamic diversity evolution algorithm-2 (DDEA-2), characterized by strong
adaptability, was proposed in this study. It was applied to optimize artificial neural
network parameters.

Information entropy and its correlation coefficients on the basis of multiple agent
evolution were introduced to make the proposed algorithm achieve more appropri-
ate exploration and exploitation. The exploration—exploitation trade-off under the
effect of entropy coefficients was adjusted according to the emergence of optima.
As a result, the distribution of individuals increasingly evolved toward superior re-
gions. Meanwhile, a shrinkage method for the search area was developed based on
optimization sampling analysis to further improve the optimization efficiency. The
shrinking mechanism led swarm sampling toward a better trend and facilitated the
emergence of optima more efficiently during the optimization iteration process by
redefining a smaller but more dominant region for the next generation.

The experimental results showed that DDEA-2 effectively solved benchmark opti-
mization problems. The parameters of ANN were adjusted adaptively by combining
the optimization algorithm with the ANN, and the recognition effect was improved
gradually. The improved ANN algorithm not only obtained excellent results in
small-sample recognition experiments but also demonstrated the effectiveness of
DDEA-2. This study introduced DDEA-2, a novel optimization algorithm that
combined dynamic population size and search area adjustment, information en-
tropy, and a shrinking mechanism to achieve superior performance compared with
traditional methods. We demonstrated its effectiveness by applying it to optimize
the parameters of artificial neural networks, which led to significant improvements
in recognition accuracy.

2. RELATED WORKS

This study included two aspects: intelligent optimization algorithm design and
artificial neural network parameter optimization. First, we proposed DDEA-2 as
an optimization algorithm with better performance to solve complex optimization
problems. Second, the optimization algorithm was combined with the parameter
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settings for ANN by constructing appropriate objective functions to obtain better
recognition results.

2.1. Optimization algorithms. The particle swarm optimization (PSO) algo-
rithm is a frequently used swarm intelligence optimization algorithm with fast con-
vergence and more flexible changes [2,8,18]. The dynamic update mechanism of
PSO is shown in Equation (2.1).

Y

(2.1) { Vi = Wi+ 00,608 (Fi—70) + U(0,00) © (Fy — 74)

i+l = it Vit

where ¥, and ¥; represent the steps of the current individual in the (i+1)th
and ith generations [8], respectively; 7z‘+1 and 7, represent the sampling positions
of the current individual in the (i+1)th and ith generations, respectively [8]; w
represents the system inertia, particularly the degree to which the current individual
maintains the original step size [8]; the function U (0, ¢) generates a random weight
coefficient from 0 to ¢, increasing the diversity of the swarm [8]; ® represents the
influence of the weight coefficient and is generally treated as multiplication [8]; and
71- and ?g represent the personal best positions of the current individual and the
global best position of the current swarm, respectively [8]. Using Equation (2.1),
individual sampling directions of particles can be updated one by one based on both
personal best and global best information [8].

According to the dynamic Equation (2.1) of the PSO, the position evolution
of each particle is attracted by both individual and global optima, making the
population quickly converge to the current optimal region. The convergence of all
individuals and mining of more precise optima in PSO results in strong exploitation
. However, PSO tends to fall into local optima [8] due to overconvergence, which
is a consequence of its strong exploitation. Fig. 1(A) shows that the particles
represented as different colors [12] fall into a local optimum nearby point (0,0),
which is the global optimum.

Genetic algorithm (GA) is a swarm intelligence optimization algorithm with a
wide search range and expansive population changes [8]. Its core dynamic updating
mechanism is based on the crossover and mutation of chromosomes [8,23,36]. On
the one hand, the crossover of excellent individuals preserves some superior features
while avoiding excessive convergence in the dominant region [8]. On the other hand,
individual random mutation preserves the global exploration mechanism throughout
the evolution process [8]. These factors improve the optimization reliability of the
GA. However, the evolutionary direction of the individuals after their crossover
and mutation is not easy to control, introducing some difficulties that can affect the
convergence of the algorithm [8]. Fig. 1(B) shows that the chromosomes represented
as different colors [12] are scattered everywhere, and exploration rarely converges
to optima. Compared with PSO, GA has slower optimization speed but higher
reliability.

DDEA-2 was suggested as a swarm intelligence optimization algorithm with bet-
ter comprehensive performance in this study. Dynamic transitions between explo-
ration and exploitation were achieved by introducing diverse agents for multimodal
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(A) Unconstrained behavior (B) Unconstrained behavior
of PSO. of GA.

FIGURE 1. Trajectories of swarm evolutionary behavior. (Trajecto-
ries in (A) and (B) are formed by PSO and GA, respectively, with
benchmark function Schaffer [12]).

evolution during optimization sampling. Information entropy was proposed to adap-
tively perform a trade-off between exploration and exploitation based on the fitness
value and growth in DDEA-2. Particularly, the entropy coefficient was modified in
a timely manner when calculating the size and distribution area of the new genera-
tion, effectively controlling the distribution trend and density of the population in
the next generation. Taking inspiration from the fast convergence of PSO, we intro-
duced a shrinking mechanism with subregions to improve the speed of the optima ’
S emergence.

2.2. Parameters setting. The parameter setting for ANN includes two aspects:
parameter selection and setting method. ANN has many adjustable parameters, and
generally, only the main parameters with a significant impact on recognition perfor-
mance are selected as the adjustment objects during the design process. Therefore,
the appropriate selection of adjustment parameters directly influences the final de-
sign effect. Manual and automatic settings are currently the main parameter-setting
methods, among which automatic setting is usually combined with optimization al-
gorithms. The automatic setting of parameters requires a higher comprehensive
ability of the optimization algorithm because of the different characteristics of the
optimization objective function brought about by different parameter selections.

The frequently used adjustable parameters of ANN include the number of nodes in
each layer, weights between nodes, learning rate in feedback, and so forth. Too many
input layer (IL) nodes reduce the generalization ability of the ANN, whereas too few
IL nodes tend to lose important information. In addition, the learning rate directly
influences the training effect of the ANN. Thus, the number of nodes in the input
layer and the learning rate in feedback were proposed as the adjustment parameters
to be optimized in this study. We also transformed the problem of selecting the
number of IL nodes into the problem of selecting the number of sampling rows for
image recognition.
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The efficiency and adaptability for parameter setting are improved by combining
the setting process with an optimization algorithm. The automatic setting method
is more suitable for combining with optimization algorithms because of the necessity
to repeatedly test whether the fitness functions corresponding to various parame-
ters are optimal. The speed, accuracy, and generalization ability of optimization
algorithms directly affect the quality of parameter settings. In addition, construct-
ing the objective function can indirectly influence the effectiveness of parameter
settings. Thus, DDEA-2 with better comprehensive performance was introduced to
optimize the parameter setting for ANN by constructing an appropriate objective
function, achieving wonderful results.

2.3. Comparative summary. A comparative summary of previous studies is pro-
vided in Table 1. We compared previous studies from three aspects, efficiency, ac-
curacy, and adaptability, and then roughly divided them into the following three
relative levels to assist in explanation: high (H), medium (M), and low (L). The
comparison results may not be comprehensive, but they can provide an overview of
the general situation from various aspects.

TABLE 1. Comparative summary of previous studies

Previous studies Efficiency Accuracy Adaptability
PSO H M M
GA L M M
ANN: manual tuning L M H
ANN: optimized tuning H H M

3. OPTIMIZATION ALGORITHM

The design of DDEA-2 includes three main aspects: evolutionary method, infor-
mation entropy, and adaptive adjustment. We defined a single sample and other
information derived from it as an agent during swarm optimization. Each agent
contained not only the sampling coordinates and fitness of the current individual
but also the size of the fitness change, the distribution parameters of its offspring,
and so forth. The optimization task was achieved through the continuous evolution
of these agent populations.

3.1. Evolutionary method. We introduced a three-layer agent mode, including
partition management (PM), basic agents (BAs), and creation agents (CAs), into
the sampling control developed in DDEA-2. Reasonable trade-off between global
and local exploitation is the essence of improving the accuracy and rapidity of the
swarm optimization algorithm. The optimization algorithm used uniform PM and
randomly distributed BAs in the initial evolutionary stage to ensure the diversity
of the population and avoid falling into local optima. CAs were generated around
each BA as the next generation to carry out local exploitation. Then, the remaining
CAs were converted into BAs in the next iteration through an elimination mecha-
nism. After each iteration, the scope of the agents in the next generation shrank
gradually to increase the degree of exploitation. The degree of global exploration



1764 Q. GAO, J. ZHANG, X. TAO, W. GAO, L. SUN, Y. CHEN, AND P. HE

¢ Exploration ‘ Exploitation |

L]
Step 1 Step 2 Step 3

F1GURE 2. Evolutionary process of population distribution.

° .. [ ] —
[ ] [ ] . ° [ ] [ ]
° L] L] ° [ ] . ° .. ..
o . ® . o
° ° ¢ [ ] [ ] ¢ ° [ ] ¢ ... .
[ ] [ ] [ J
L] [ ) ° L ] ° L ]
[ ] [ ] [ ]
® - o o
° [ ]
L ] .. [ ] ° [ ] ° ° .. .. °
° ° [ ] .. [ ] [ ] [ ]
L] [ ]

Generation 1 Generation 2 Generation 3

FiGure 3. Convergence process of population distribution.

was controlled by adjusting the number and times of partition. The degree of local
exploitation was controlled by setting the number of alternate iterations between
BAs and CAs.

The evolutionary process of populations in an iteration cycle is presented in Fig.
2. First, the regions were divided by the black dotted lines, and BAs were randomly
generated in each region, shown as red dots in step 1. The range and scale of agents
in the next generation were calculated based on the fitness of these BAs. The
red dotted boxes around some BAs shown in the figure are the ranges of agents
born in the next generation. Second, CAs were randomly generated around each
BA according to the range and scale of agents as shown in Fig. 2(step 2). The
green individuals represent CAs generated as sub-generation agents around the red
base—generation agents. The range and scale of agents that would be born in the
next generation were calculated according to the fitness distribution characteristics
of all the current agents, and the results were stored temporarily as the individual
attributes of the current agents. Third, better individuals were selected and retained
to enter the next iteration based on the survival of the fittest mechanism. The
yellow individuals in Fig. 2(step 3) are the winning agents, and they enter the next
cycle iteration as new BAs. The hollow dotted-line individuals are the eliminated
agents, and they no longer enter the next cycle process. Then, the algorithm judged
whether the region needed to be re-divided in the next iteration based on the current
conditions. If necessary, it looped to step 1 to enter the next iteration. If not, it
looped to step 2 to enter the next iteration. When the termination conditions were
met, the algorithm exited the loop and ended the program.
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Fig. 3 shows the changes in the distribution of BAs between various generations.
Obviously, the scope of sub-agents continued to narrow as the iteration progressed,
and the agent groups converged gradually to realize fine exploitation of the target
in more optimal regions. On the contrary, region division limited the excessive
convergence of some agents to the current optimum, maintaining a better individual
diversity. Thus, the algorithm achieved extensive exploration in the global region
and prevented the population from falling into a local optimum.

The effective acquisition of heuristic information is the key to improving the
search ability of swarm intelligence optimization algorithm. The heuristic informa-
tion mainly originates from the coordinates of individuals with better fitness, which
is constantly revised and eventually converges to a better direction as the population
evolves in iterations. In this study, we introduced an analysis of fitness improvement
and considered using the coordinate region of the population with faster fitness im-
provement to create new heuristic factors, thereby guiding the evolution direction
of the population jointly. The aforementioned two heuristic factors were generated
from the mutual comparison of groups. The heuristic effects were recorded and
used as different attributes of optimization individuals, updating continuously in
the optimization iterations.

To sum up, the adaptive adjustment in DDEA-2 was formed by the automatic
adjustment in the distribution trend of the optimization group guided by multi-
ple heuristic factors. The heuristic intensity was quantified using the information
entropy coefficients, including fitness entropy coefficient (fe.) and fitness growth
entropy coefficient (ge.). Then, the derivative range and scale of the next gener-
ations were adjusted using fe. and ge., respectively, playing an important role in
characterizing the trend of population distribution. Thus, the adaptive regulator
was established based on information entropy.

3.2. Information entropy. Information entropy is defined here as a measure of
fitness distribution, that is, the degree to which a better target might appear. The
physical meaning of the analogy “entropy” is a measure of the degree of confusion
in a system. Analogously, this study introduced the concept of information entropy
to reversely characterize the degree of clarity of the optimal solution. Considering
the involvement of several heuristic factors in the emergence of a better target,
the information entropy is also composed of a variety of coefficients. This study
suggested the fitness entropy coefficient (fe.) and fitness growth entropy coefficient
(gec) to describe the information entropy in current optimization sampling.
The fitness entropy coefficient is defined as Equation (3.1),

2(f = fmid)
(31) fec = e fmaz—Fmin
where fiaz, fmin, and fmyiq represent the current maximum fitness, minimum fit-
ness, and median fitness, respectively. The fitness entropy coefficient indicates the
optimal degree of the current agent in its group. The higher the f.. the more dom-
inant the region where the current agent is located. The optimization sampling
range is narrowed in dominant regions to enable targeted small-scale exploitation,
reducing invalid sampling in inferior regions and improving the utilization of agent
sampling resources.
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The growth entropy coefficient is defined as Equation (3.2),
2(9—9mid)

(3.2) Gec = € 9maz  if g>0

where gpmar and gmiq represent the current maximum fitness growth and growth
mid-value, respectively. The growth entropy coefficient indicates the complexity of
fitness change in the region where the current agent is located. The higher the ge.
is, the greater the increment speed and increment space of the region where the
current agent is located. The number of sub-agents in the complex regions needs
to be increased to improve the precision of the search, preventing the optimization
process from missing potential advantage regions and improving the reliability of the
distribution of agent sampling resources. The generation scale on which sub-agents
are generated is set to a minimum if g < 0.

3.3. Adaptive adjustment. The derivative range and scale of agents in the next
generation were adjusted according to Equations (3.3) and (3.4),

(3:3) ris1 =B X {(1 —a) + ;} X 7

ec

(3.4) Sit1 = [(1 — @) + @ X gee| X 8i

where 7; and 7,11 represent the range of agents in current and next generations,
respectively; [ is a specified shrinkage coefficient set to 2/3 in this study; « is a
learning rate affecting the adjustment speed of dynamic parameters; and s; and
s;+1 represent the scale of agents in current and next generations, respectively.

The range of sub-agents produced in the next generation by an agent decreases
with the improvement in the fitness of the current agent. The scale of sub-agents
produced in the next generation by an agent mainly increases or decreases accord-
ing to the fitness growth of the current agent. The optimization sampling in the
dominant region should be more emphasized, although both the rate of increase
and decrease in fitness can indicate the complexity of fitness change. Therefore, the
scale of sub-agents around an agent with a fitness growth of less than zero was set
to a minimum in this study. The range and scale of sub-agents worked together to
dynamically adjust the sampling density.

A priority feasible region was suggested to deal with the optimization problems,
characterized by a fitness distribution similar to that of convex optimization. The
fitness distribution is generally centered on the optimum and shows a trend of
deterioration to the surroundings in most optimization problems. The difference
is that the fitness fluctuates to varying degrees during the intermediate transition.
Therefore, the orientation of the optimal region can be generally analyzed after a
period of optimization sampling. If the optimization range is appropriately narrowed
to an optimal region, the emergence speed of the best solution can be effectively
improved. Fig. 4 shows the emergence of a priority feasible region by adjusting the
range and scale of offspring.

When the algorithm progressed to re-partition regions, a cutoff fitness value was
inferred from the current agent population and the agents with fitness greater than
this value were screened. Then, a subregion was redefined as a priority feasible
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FIGURE 4. Priority feasible region caused by derivative range and
scale.

region based on the maximum and minimum coordinates of the retained advan-
tageous individuals. As the iteration progressed in DDEA-2, the priority feasible
region shrunk gradually to the optimal region during optimization.
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FIGURE 5. Flowchart of DDEA-2.

The flowchart of DDEA-2 is shown in Fig. 5. First, the algorithm sequentially
enters the PM, BA, and CA layers from top to bottom. Second, the conversion
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from CAs to BAs forms an inner loop, and the conversion from the BAs to the
PM forms an outer loop. Finally, the algorithm returns and ends the process after
passing through the PM layer. Overall, the algorithm divides the process into three
levels, from the outside to the inside, by integrating a three-layer agent model. The
outer layer focuses on global exploration, whereas the inner layer focuses on local
exploitation. Combined with information entropy, this approach led to a dynamic
adjustment and alternation between exploration and exploitation. The shrinking
mechanism was arranged in the outer loop and guided by the advantageous BAs in
the current iteration, aiming to converge the next round of population to a dominant
region.

4. ANN OPTIMIZATION

4.1. Structural parameters. The artificial neural network and training model to
be optimized in this study are shown in Fig. 6. A given image is sampled inter-
mittently and expanded into a one-dimensional vector as the IL nodes of the neural
network, as shown in the left part of Fig. 6. Each IL node outputs information to
the hidden layer (HL) nodes after weighting. The HL nodes are weighted and out-
put to output layer (OL) nodes. The output and true values are comprehensively
compared and processed, and the error is fed back to correct the weights between
each layer. The degree of feedback correction is controlled by a learning rate (eta),
making the current output converge to the true value.

Learning factor: eta Feedback

') O - Difference -

True value

) Picture/ N

FI1GURE 6. Proposed ANN structure and training model.

In this model, the sparsity of image sampling in the input phase can be controlled
by setting the number of rows and columns (Ir and Ic) for sampling. Too many
sampling rows and columns reduce the generalization ability of the model, while too
few sampling rows and columns lead to the loss of important information. This in-
dicates that inappropriate Ir and Ic reduce the accuracy of the model in identifying
new samples. In addition, the learning rate (eta) also directly affects the training
effect of the entire model during the training of the neural network. Therefore, this
study took Ir, Ic, and eta as the optimization parameters of the neural network.
The number of sampling rows and columns was set to the same value in this study
to reduce the amount of optimization computation. Thus, the original optimization
problem was reduced to a two-dimensional optimization problem by determining Ir
and eta as optimization parameters.
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4.2. Fitness function. For combining the optimization problem of ANN parame-
ters with the optimization algorithm, the optimization parameters should be used
as independent variables to design a fitness function that reflects the training qual-
ity of the neural network. Generally, samples are divided into training and testing
sample sets to complete the training and testing of the ANN model, respectively.
During ANN reinforcement learning, different selections of sampling row and col-
umn numbers and learning rates produce different training effects. The training
effect is reflected in the recognition rate of not only the current training sample
set but also the test samples, which is called the generalization ability of a pattern
recognition algorithm for the samples that have not participated in the training.
Therefore, the fitness function proposed in this study was mainly designed based
on test samples, as shown in Equation (4.1).

F (Ir,eta) = E{P[T (Ir,eta, Szy),TSx], TSy}
(4.1) = EA{P [wij,wjr, T'Sx], TSy}
= E{Py, TSy}

The construction process of the fitness function is shown in Equation (4.1). First,
function T' was used in the training process to obtain the network weights, w;; and
wjk, with “Szy” as the training samples. Ir and eta were used as training parameters
of ANN and decision variables of DDEA-2 in this study. Second, function P was
used by the trained ANN in prediction to obtain the recognition result of “ Py”
based on the test samples “ TSz ”. Third, the difference between the recognition
result “Py” and the real test sample result “T'Sy” was used to calculate the current
fitness. In this study, a column vector result “py, ” was obtained for recognizing
the nth test sample, and the modulus of the difference between the column vector
and the actual vectors “tsy, ~ was used as the recognition error for the current
sample. The fitness of decision variables was defined based on the recognition errors
for test samples as shown in Equation (4.2).

N 2
(4.2) f (Ir, eta) = \/ L=t ‘P% — tsynl

On the contrary, not all test samples were used for the design of the fitness func-
tion in this study. The parameters of the neural network were adaptively adjusted
through the optimization algorithm; that is, the test samples were used to indirectly
guide the design of the neural network model. In practical applications, an ANN is
generally used to recognize new targets whose features may not be identical to the
samples in previous training and testing. Only the model with good generalization
ability can extend the good recognition effect to the unknown target recognition.
Therefore, some samples should be retained for verifying the actual generalization
ability of a new ANN. These samples do not participate in either neural network
training or optimization of neural network parameters.

4.3. Discrete seeking. The decision variables processed using the DDEA-2 in this
study used values in continuous space; however, the row parameter of the neural
network required integer data. A method of discrete seeking was introduced into the
fitness calculation of the original optimization algorithm in this study to extend the



1770 Q. GAO, J. ZHANG, X. TAO, W. GAO, L. SUN, Y. CHEN, AND P. HE

application scope of DDEA-2 from continuous optimization to discrete optimization
problems. When the new location coordinates of the optimization agents were
determined, the discrete parameters were rounded, and the agents with the same
location appeared. Before the fitness calculation, whether DDEA-2 had ever sought
the position of each agent was judged. If information about the same position was
obtained in seeking history, the fitness in the history was directly assigned to the
current agent. If not, the fitness was calculated according to Equation (3.2), and
the position and the fitness were added to the seeking history. Thus, computing
resources were saved, and computing efficiency was improved to a certain extent.

5. EXPERIMENTS AND ANALYSIS

Swarm intelligence optimization algorithms are generally tested using benchmark
functions [8] to demonstrate the advantage of the new algorithm and thus objec-
tively analyze the effectiveness of the algorithm [8]. We validated the superior
performance [8] of DDEA-2 using nine well-known benchmark functions. We com-
pared it with five state-of-the-art algorithms: PSO, GA, variable particle swarm
optimization (VPSO), flexible grid optimization (FG), and rain forest algorithm
(RFA). Statistical data related to the optimization results were analyzed to demon-
strate the reliability of the proposed approach. Then, we verified the actual appli-
cation effectiveness of DDEA-2 in terms of solving regression optimization problems
for ANN in the learning and recognition of digital samples.

5.1. Experimental design. We set up nine benchmark optimization problems and
one ANN parameter optimization problem in the following experiments. The first
nine experiments were divided into three groups, each with a different distribution
in fitness, to fully verify the comprehensive performance of DDEA-2 by compar-
ing it with other state-of-the-art algorithms. The fitness distribution of Cross-
in-Tray, Griewank, and Rastrigin is shown in Fig. 7(1-3) for the first three test
functions, respectively. Their global optimal coordinate was (4 1.3491, + 1.3491),
(0,0), and (0,0), respectively. The corresponding optimal fitness was -2.06261, 0,
and 0. These functions presented many local minima, resulting in many challenges
for optimization algorithms to avoid falling into local optima. The fitness distribu-
tion of Langermann, Needle-in-Haystack, and Schaffer is shown in Fig. 7(4-6) for
the middle three test functions, respectively. Their global optimal coordinate were
(2.00299219, 1.006096), (0,0), and (0,0), respectively. The corresponding optimal
fitness was -5.1621259, -3600, and 0. The global optimization of these functions was
extremely concealed, leading to strong challenges for optimization algorithms to
avoid premature convergence and conduct global exploration. The fitness distribu-
tion of Levy, Rosenbrock, and Shubert is shown in Fig. 7(7-9) for the middle three
test functions, respectively. Their global optimal coordinate was (1, 1), (1,1), and
multiple solutions, respectively. The corresponding optimal fitness was 0, 0, and
-186.7309. These functions had a relatively flat distribution around their global or
multiple optima over a large range, challenging fast convergence and local exploita-
tion.
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FIGURE 7. Fitness distribution of three benchmark functions.

The distribution characteristics of these benchmark functions in each group were
similar but not identical. Therefore, while reflecting the performance of the opti-
mization algorithms in terms of speed and accuracy, these tests also reflected the
adaptive ability and universality of the optimization algorithms in practical appli-
cations to a certain extent.

The latter experiment was to verify the effectiveness of DDEA-2 in improving
the recognition performance of ANN in application. The number of sample rows
and the learning rate for the ANN were selected as the parameters to be optimized.
Each agent ’ s coordinate generated during the iterative optimization process of the
DDEA-2 represented a combination of sample rows and learning rate for the ANN.
These two parameters were used in the training on ANN, and the comprehensive
recognition error in testing was calculated as the fitness of the current agent.
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In these tests, we compared and analyzed DDEA-2 with five state-of-the-art
algorithms: PSO, GA, VPSO, FG, and RFA. The dimension of decision variables
was selected as 2 in each objective function; that is, two independent variables (z1,
z2) existed in each optimization problem. For DDEA-2, the initial population size
of the algorithm of DDEA-2 was set to 16 (4 X 4), the learning factor was set to
0.5, the number of external cycles was set to 6, the number of internal cycles was
set to 4, the truncation rate was set to 0.3, the lower limit of population size was
set to 4 (2 X 2), and the upper limit was set to 25 (5 X 5). For PSO, the initial
population size was set to 100, the individual optimal weight coefficient was set to
1.49445, the global optimal weight coefficient was set to 1.49445, and the maximum
number of iterations was set to 1000. For GA, the initial population size of the
GA algorithm was set to 100, the chromosome coding length was set to 15, the
mutation probability was set to 0.05, and the maximum number of iterations was
set to 1000. The initial VPSO population was set to 40 random individuals, the
interval for population variation was set to 51, and the settings of the remaining
parameters were the same as for PSO. The initial FG population was set to 49 (7
X 7) even individuals, the learning factor was set to 0.38, the number of external
cycles was set to 50, the number of internal cycles was set to 20, the lower limit of
the population size was set to 25 (5 X 5), and the upper limit was set to 81 (9 X
9). The initial RFA population was set to 36 (6 X 6) even individuals, the learning
factors were set to 0.5, the number of external cycles was set to 4, the number of
internal cycles was set to 6, and the lower limit of population size was set to 9 (3
X 3), with no maximum population limit.

5.2. Results and analysis.

5.2.1. Optimization effect. The results of the comparison between DDEA-2, PSO,
GA, VPSO, FG, and RFA using the nine benchmark functions are shown in Fig.
8-10. The red, blue, green, cyan, yellow, and magenta solid lines in these figures
represent the optimization curves generated by DDEA-2, PSO, GA, VPSO, FG, and
RFA, respectively. Each optimization algorithm displayed different performances,
which were attributed to the various distribution characteristics of the objective
functions. DDEA-2 did not always show the fastest and most accurate emergences
in all tests, but it performed relatively well in most of them. Both DDEA-2 and
PSO explored the optimal region and exploited the optimal value more quickly
and stably in most cases; DDEA-2 performed better in terms of the rapidity and
accuracy of optimization. These multiple tests confirmed that DDEA-2 had better
adaptive ability, laying a strong foundation for the application of DDEA-2 in ANN
optimization.

DDEA-2 enhanced its exploration due to the low information entropy in the
early stage of optimization for Cross-in-Tray and Rastrigin, thus capturing the
optimal region earlier in the first 500 and 3000 samples; also, the optimal result
emerged more quickly. When the information entropy was high in the later stage,
DDEA-2 enhanced its exploitation, thus accelerating the emergence of optima in the
middle and later stages and approaching the global optimum before 2500 samples for
Griewank. The shrinkage mechanisms were also added to improve the optimization
efficiency and accuracy.
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The low information entropy in the early stage of optimization for Langermann
and Needle-in-Haystack also made DDEA-2 enhance its exploration, thus capturing
the optimal region earlier in the first 2000 samples; also, the optimal result emerged
more quickly. This accurate exploration for the global optimal region directly accel-
erated the exploitation effect, approaching the global optimum earlier before 1000
samples for Schaffer.
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The low information entropy in the early stage of optimization for Levy and
Rosenbrock DDEA-2 enhance its exploration, thus capturing the optimal region
comparable to PSO, VPSO, and FG; also, the optimal result emerged quickly.
Although DDEA-2 did not perform extremely well for Shubert, its adaptive ad-
justments in the exploration—exploitation network made its performance relatively
stable. The high information entropy in the middle and later stages made DDEA-2
enhance its exploitation and approach the global optimum before 5000 samples for
Shubert.

Fig.8-10 show all random test results. This study involved 100 tests for each
algorithm and benchmark function above, totaling 100 X 6 X 9 experiments, to
further demonstrate the reliability of DDEA-2. The mean and standard deviation
(SD) of the optimal results obtained using each optimization algorithm are shown
in Table 2-4.

TABLE 2. Statistical data for reliability experiments in Group 1

Algorithm Cross-in-Tray Griewank Rastrigin

Mean SD Mean SD Mean SD
DDEA-2 -2.0626 0.0000 0.0003 0.0013 0.0585 0.2204
PSO -2.0626 0.0000 0.0014 0.0030 0.0497 0.2179
GA -2.0626 0.0000 0.0028 0.0026 0.7990 0.5012
VPSO -2.0626 0.0000 0.0012 0.0028 0.0199 0.1400
FG -2.0626 0.0000 0.0031 0.0040 1.0646 0.6205
RFA -2.0618 0.0004 0.0761 0.0250 2.0619 0.0808

In the first set of experiments, DDEA-2 achieved the minimum mean and SD in
tests for Cross-in-Tray and Griewank, as shown in Table 2. The mean minimum
achieved by DDEA-2 for Rastrigin was slightly larger than that achieved by PSO
and VPSO. However, the SD achieved by DDEA-2 for Rastrigin was below 0.3,
indicating that the stability and reliability of DDEA-2 were comparable to that of
some state-of-the-art algorithms.

In the second set of experiments, DDEA-2 achieved the minimum mean in tests
for Needle-in-Haystack and Schaffer, as shown in Table 3. The SD achieved by
DDEA-2 for Needle-in-Haystack was also minimal. The mean and SD achieved by
DDEA-2 for Langermann were larger, indicating that Langermann presented strong
challenges for DDEA-2.

In the third set of experiments, the means and standard deviations achieved by
DDEA-2 were all close to the minimums, as shown in Table 4. The algorithms
that performed the best were different from each other in optimizing these three
benchmark functions, indicating that stability and reliability were challenges for
each algorithm.

5.2.2. Recognition effect. The regression and recognition of a recognition algorithm
can be adjusted adaptively based on the specific situation of various problems by
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TABLE 3. Statistical data for reliability experiments in Group 2

Algorithm Langermann Needle-in-Haystack Schaffer

Mean SD Mean SD Mean SD
DDEA-2 -4.0969 1.5184  -3600.0 0.0319 0.0013 0.0087
PSO -5.1405 0.2162  -3102.5  446.7192 0.0042 0.0048
GA -5.0797  0.0715  -3595.6 4.5957 0.0074  0.0032
VPSO -5.1621 0.0000  -3353.8 387.2647  0.0022 0.0041
FG -4.7834  0.8628  -3592.6 73.8779 0.0092 0.0021
RFA -1.8010 0.6461 -3483.1 19.5322 0.0024 0.0014

TABLE 4. Statistical data for reliability experiments in Group 3

Algorithm Levy Rosenbrock Shubert

Mean SD Mean SD Mean SD
DDEA-2 0.0000  0.0000  0.0005  0.0014  -186.6953  0.0405
PSO 0 0 0 0 -183.0419  5.6780
GA 0.0040  0.0047  0.1954  0.2141  -186.7023  0.0312
VPSO 0 0 0.1864  1.4944  -182.4767  5.9570
FG 0.0000  0.0000  0.0517  0.0957  -186.7309  0.0000
RFA 0.0059  0.0006  2.6842  0.5504  -185.6250  0.1709

combining its parameters with an optimization algorithm. Combining DDEA-2
with ANN improved the structural parameters of ANN and verified the practical
application ability of DDEA-2 in this study. The number of sample rows and the
learning rate for the ANN were selected as the parameters to be optimized. The
coordinates of each agent generated during the iterative optimization process of the
DDEA-2 represented a combination of sample rows and learning rate for the ANN.
These two parameters were used in the training on ANN, and the comprehensive
recognition error in testing was calculated as the fitness of the current agent. After
optimization iteration, better parameters gradually emerged from the evolution of
the population, and the ANN achieved satisfactory regression and recognition effects
using these optimal parameters.

Three different feasible ranges were used to conduct the tests. The result curves
are shown in Fig. 11, 12, and 13, respectively. The red, blue, green, cyan, orange,
and magenta lines in these figures represent the optimization curves generated by
DDEA-2, PSO, GA, VPSO, FG, and RFA, respectively. The “Times” in the
horizontal axis refers to the sum of the samples distributed until the current gener-
ation, that is, the total number of fitness calculations in the decision space through
the previous optimization process. The recognition error of the ANN optimized
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by DDEA-2 in each test dropped below 0.2. The optimal parameters obtained by
DDEA-2 in the tests were relatively consistent because of the adaptive adjustment.
DDEA-2 showed a more sustained and robust emergence process in each test.

PSO displayed a fast convergence speed in these tests, but the emergence of
optima in the later stage was affected by the dropping into local optima. GA showed
relatively stable optimization characteristics in these tests, which benefited from its
higher exploration ability. However, the emergence speed of optima in the later
stage was affected by its lower exploitation ability. Overall, DDEA-2 performed
better on the trade-off between exploration and exploitation and showed flexible
adaptation under different optimization conditions.

Optimization and Emergence Process for ANN Recognition Effect
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FIGURE 11. Optimization and emergence process in Test 1.

In Test 1, the feasible range of the decision variable Ir was set between 3 and
40, and the feasible range of the decision variable eta was set between 0.1 and 10.
Most optimization algorithms quickly reduced the error to below 0.3; especially FG
and GA showed faster emergence in the beginning. GA used its stronger explo-
ration capabilities to obtain a smaller error below 0.25 before 300 samples, which
was similar to the effect of FG with stronger exploitation capabilities. This result
indicated that the dispersed search brought by exploration could sometimes assist
in improving the convergence progress of exploitation toward the global optimum.
Hence, DDEA-2 exceeded FG before the 7000th sampling, thus achieving a smaller
error.

In Test 2, the feasible range of the decision variable Ir was set between 3 and
15, and the feasible range of the decision variable eta was set between 0.1 and
10. All six optimization algorithms quickly reduced the error to about 0.25 in the
beginning in the presence of a reduced search range. When most algorithms fell
into local optima, DDEA-2 was the first to jump out of the local optimum before
7000 samples to achieve a smaller error.

In Test 3, the feasible range of the decision variable Ir was set between 4 and
10, and the feasible range of the decision variable eta was set between 0.01 and
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Optimization and Emergence Process for ANN Recognition Effect
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FIGURE 12. Optimization and emergence process in Test 2.
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FIGURE 13. Optimization and emergence process in Test 3.

7. All six optimization algorithms quickly reduced the error to below 0.25 in the
beginning, with a further narrowing of the search range. In a smaller search range,
PSO and FG with stronger exploitation showed the advantage of rapid convergence,
that is, faster emergence and better optimizing results. DDEA-2 also achieved an
optimization result comparable to that of FG and PSO in the later stage.

The emergence processes conducted by DDEA-2 were more sustained and ro-
bust in the aforementioned three tests. First, it was because DDEA-2 enhanced
its exploration when the information entropy was low in the early stage, making
its emergence processes comparable to those of PSO and FG, whose optimization
was faster. Second, information entropy continued to increase in the middle and
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later stages. Therefore, the DDEA dynamically adjusted exploration—exploitation
network not only avoids falling into local optima but also makes the emergence of
optimal values more efficient. Overall, DDEA-2 performed better on the trade-off
between exploration and exploitation and showed flexible adaptation under different
optimization conditions.

Table 5 shows the results and statistics for ANN optimization by DDEA-2 with
different ranges of decision variables. The results showed that the smaller the fea-
sible range we set, the smaller the recognition error achieved for ANN . This can
be attributed to the generation of more exploitation samples in the smaller feasible
range for the emergence of optima. The initial population was generated randomly
in each test, but the optimal Ir and eta obtained in the end were similar. Among
the three tests, all the optimal results of Ir were between 6 and 7, and the better
results of eta were between 3 and 5. Similar results indicated that DDEA-2 had
strong adaptability to various feasible regions. The three smaller SDs of errors also
indicated the high stability and reliability of DDEA-2 in ANN optimization. The
difference in minimum errors indicated that the proposed approach was susceptible
to the range setting, requiring further improvement in future research.

TABLE 5. Results and statistics for ANN optimization

Test Ir range eta range Min error Mean error SD of errors Ir eta
1 3-40 0.1-10 0.1802 0.1922 0.0092 6-7 3.2518-5.2328
2 3-15 0.1-10 0.1712 0.1879 0.0114 6-7 2.9113-5.1107
3 4-10 0.01-7 0.1699 0.1854 0.0111 6-7 3.3787-5.3391

Fig. 14-16 show the state change of the population distribution converging to
better regions before and after the optimization in the three tests. The results
indicated that the population distribution shrank to a similar area in these tests,
with more individuals approximately near point (7, 2) where the fitness was higher.
Multiple sets of experiments comprehensively showed that DDEA-2 had an excellent
adaptive adjustment for complex optimization problems of ANN.

The initial scattered sampling distribution resulted from enhanced exploration
by DDEA-2 because of lower information entropy. When the optimal orientation
was unclear in the early stages, DDEA enhanced the dispersion of sampling points
to more fully explore the optimal region globally. In the later stage, the informa-
tion entropy continued to increase with an increase in sampling and the gradual
appearance of the optimal orientation. The DDEA sampling population dynami-
cally adjusted to form a trend of convergence toward the global optimum, aiming
to accelerate the exploitation.

5.2.3. Generalization capability. The generalization capability discussed in this study
included the ability to expand the application for both the optimization algorithm
and modeling recognition algorithm. For DDEA-2, the optimization results were
obtained more accurately by adaptive adjustment of population distribution, irre-
spective of whether the optimizations were different types of a nominal problem or
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a specific application on neural network parameter tuning. For ANN, the recogni-
tion effect for learning samples was extended successfully to that for new samples
using the optimization algorithm while adjusting the parameters in the recognition
models.

6. CONCLUSIONS

This study introduced DDEA-2, a novel optimization algorithm that combined
dynamic population size and search area adjustment, information entropy, and a
shrinking mechanism to achieve superior performance compared with traditional
methods. We demonstrated its effectiveness through its application to optimize the
parameters of ANN, leading to significant improvements in recognition accuracy.
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The statistical analysis indicated that the performance of DDEA-2 was relatively
stable and reliable.

DDEA-2, featuring a dynamic adjustment mechanism of population size and
search area, was introduced in this study. This optimization algorithm was also
combined with ANN to adjust parameters for achieving excellent study and recog-
nition effects.

Information entropy was proposed and adaptive trade-off was performed between
exploration and exploitation according to the fitness value and growth. The entropy
coefficient was determined to calculate the size and distribution area of the new gen-
eration, and the distribution trend and density of the next-generation population
were effectively controlled. During this process, the sampled information was fully
used, and the subsequent population evolution mode was effectively inspired and
adjusted based on the actual situation of the fitness distribution. Thus, the adap-
tive adjustments of exploration and exploitation were realized with the information
entropy. The population distribution density after the search iterations exhibited
obvious optimization characteristics, as demonstrated in the experimental results.
In addition, a shrinking mechanism for feasible ranges was suggested to improve
the speed and accuracy of the emergence of optimal parameters. Remarkable ra-
pidity and accuracy were obtained by DDAE-2 in the optimization results for three
different nominal problems.

The structural parameters of an ANN were adjusted efficiently using the DDEA-2
in this study. A specialized objective function based on the recognition error for
new samples was designed to help the ANN achieve better generalization capability
in the case of small-sample learning. DDEA-2 was combined with ANN through
the specialized objective function, and the tuning direction was more focused on
the generalization recognition for new samples. Experiments confirmed that the
combination was effective and achieved remarkable results in the case of small-
sample learning.

We aim to further discuss the scalability of the proposed approach in the future
through the following aspects: (1) testing the universality of DDEA-2 using more
complex standard optimization problems; (2) selecting or adding other adjustable
parameters of ANN as optimization decision variables to improve recognition per-
formance; and (3) combining DDEA-2 with other modeling methods to address
potential limitations of the approach and expand its variability to various regres-
sion applications.
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