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dynamic information systems and their reduct update in the following three aspects
to fill this gap [2, 3, 11–13,15,17].

Firstly, the object variation aspect was explored by Liang et al. [14], who devel-
oped an incremental approach to updating the reduct of a dataset under the change
of some objects. Alternatively, Jing et al. [9] designed an incremental tool for cal-
culating the reduction of an information system under object variation conditions.
Besides, Xu et al. [25] developed an incremental method for updating the reduct of
a decision table under the change of some objects.

Secondly, the feature variation aspect was studied by Shu et al. [18], who pre-
sented an incremental method to compute the reduct of the dataset under feature
variation conditions. In addition, Wang et al. [20] designed an incremental means
to calculate the reduct of information systems under a variation of features.

Thirdly, the feature value variation aspect was investigated by Wang et al. [23]
and Jing et al. [10], who independently developed incremental means to calculate
the reduct of the information system under a variation of feature values.

While the above research efforts promoted the development of a reduction of
dynamic information systems, they did not cover dynamic dominant datasets. This
paper aims to fill this gap.

The rest of this paper is structured as follows. Some notations of the dominance
rough set approach and a reduction approach of DRST are reviewed in Section
2. The incremental mechanisms of dominant conditional entropy and dominant
matrix are introduced, and an incremental reduction method based on dominant
conditional entropy is proposed in Section 3. The experimental analysis results are
provided in Section 4. The research results and future tasks are summarized in
Section 5.

2. Preliminaries

This section reviews some notations and the correlation theory of the dominance
RST approach [5, 16].

2.1. The major notations of dominance RST.

Definition 2.1. Suppose IS = (U,A, V, f) be an information system. It must
comply with:

(1) U = {u1, u2, . . . , un};
(2) A = C ∪D;
(3) V = ∪a∈AVa;
(4) f : U × (C ∪D) → V .

where U is described as samples, A is described as features,C is described as
condition features, D is described as decision features, V is described as domain of
feature A, f called information function.

Definition 2.2. Suppose DIS = (U,A, V, f) be a dominant data set. ∀b ∈ (C∪D),
ui, uj ∈ U, 1 ≤ i, j ≤ n. If f(uj , b) ≥ f(ui, b), then uj dominates ui, represented by
uj ⪰a ui. In addition, if f(uj , b) ≤ f(ui, b), then uj is inferior to ui, denoted by
uj ⪯a ui.
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To keep it simple, DIS = (U,A, V, f) can be written as DIS below.

Definition 2.3. Suppose DIS be a dominant data set and feature set E is a subset
of condition attribute set C, ∀a ∈ A, us, ut ∈ U, 1 ≤ s, t ≤ n. Then us-dominating
set [us]

≥
E and us-dominated set [us]

≤
E are described as:

(2.1) [us]
≥
E = {us | ut ⪰a us} , [us]≤E = {us | ut ⪯a us}

Definition 2.4. Suppose DIS be a dominant data set. The decision feature D
has a preference order, and U/D = {dl1, dl2, . . . , dln} is decision classes. [dl]≥s is
upward unions of [dl]s , [dl]

≤
s is downward unions of [dl]s. Then, [dl]

≥
s and [dl]≤s are

described as:

(2.2) [dl]≥s = ∪t≥sdlt, 1 ≤ t, s ≤ n, [dl]≤s = ∪t≤sdlt, 1 ≤ t, s ≤ n

Definition 2.5. Suppose DIS be a dominant data set and feature set E is a subset
of C. The upper approximation set P ([dl]≥s ) of [dl]≥s and lower approximation set
P ([dl]≥s ) of [dl]

≥
s are described as:

(2.3) P ([dl]≥s ) =
{
x ∈ U | [ui]≥E ⊆ [dl]≥s

}
, P ([dl]≥s ) =

{
x ∈ U | [ui]≤E ∩ [dl]≥s ̸= ∅

}
Definition 2.6. Let DIS be a dominant data set and feature set E is a subset
of C. The upper approximation set P ([dl]≤s ) of [dl]≤s and lower approximation set
P ([dl]≤s ) of [dl]

≤
s are described as:

(2.4)
P ([dl]≤s ) =

{
x ∈ U | [ui]E ≤⊆ [dl]≤s

}
,

P ([dl]≤s ) =
{
x ∈ U | [ui]E ≥ ∩[dl]≤s ̸= ∅

}
Definition 2.7. Suppose DIS be a dominant data set and feature set E is a subset
of C, U/E = {[u1], [u2], . . . , [um]}. Then, dominant entropy [DH ]≥E is described
as [7, 8] :

(2.5) [DH ]≥E(U) = − 1

|U |

m∑
i=1

log
|[ui]≥E |
|U |

where | · | denotes the cardinality.

Definition 2.8. Suppose DIS be a dominant data set and feature set E is a subset
of attribute set A, E ⊆ A, D ⊆ A,|n| = |U |. Then, dominant conditional entropy

[DH ]≥D|E(U) is described as [7, 8] :

(2.6) [DH ]≥D|E(U) = − 1

n

m∑
i=1

log
|[ui]≥E ∩ [ui]

≥
D|

|[ui]≥E |

where [ui]
≥
E ∩ [ui]

≥
D = [ui]

≥
E∪D.

Definition 2.9. Suppose DIS be a dominant data set. E is features, ui, uj ∈
U, 1 ≤ i, j ≤ n, Mn×n is dominant matrix of U in feature E, mij is element of
Mn×n. Then, mij is described as:

mij =

{
1, f(uj , E) ≥ f(ui, E)
0, f(uj , E) < f(ui, E)

1 ≤ i, j ≤ n
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Definition 2.10. Suppose DIS be a dominant data set. A are features, ui, uj ∈
U, 1 ≤ i, j ≤ n. M ′n×n is dominant matrix of U in feature A, (m′ij) is element of

M ′n×n. Then, m
′
ij is described as:

m′ij =

{
1, f(uj , A) ≥ f(ui, A)
0, f(uj , A) < f(ui, A)

1 ≤ i, j ≤ n

Definition 2.11. Suppose DIS be a dominant data set and feature set E is a
subset of attribute set A, B ⊆ A, D ⊆ A,n = |U |. Then, dominant conditional

entropy [DH ]≥D|E is described as:

(2.7) [DH ]≥D|E(U) = − 1

n

m∑
i=1

log

∑n
j=1 |sum(m′ji)|∑n
j=1 |sum(mji)|

Definition 2.12. SupposeDIS be a dominant data set and feature set E is a subset
of condition attribute set C, ∀a′ ∈ E. Then, inner significance of a′ is described as:

(2.8) SiginnerU (a′, E,D) = [DH ]≥D|(E−{a′})(U)− [DH ]≥D|E(U)

Definition 2.13. SupposeDIS be a dominant data set and feature set E is a subset
of condition attribute set C, ∀a′ ∈ E. Then, outer significance of a′ is described as:

(2.9) SigouterU (a′, E,D) = [DH ]≥D|E(U)− [DH ]≥D|(E∪{a′})(U)

Definition 2.14. Suppose DIS be a dominant data set and feature set E is a
subset of condition attribute set C. Then, E is reduct of DIS. It must comply
with:

(1) [DH ]≥D|E(U) = [DH ]≥D|C(U)

(2) ∀a′ ∈ E, [DH ]≥D|(E−{a′})(U) ̸= [DH ]≥D|E(U).

2.2. A reduction approach of DRST. In the subsection, a reduction approach
of DRST is introduced.

3. Incremental reduction method

The incremental mechanisms of dominant conditional entropy and the dominant
matrix are analyzed, and an incremental reduction method is proposed.

3.1. Incremental mechanisms of dominant conditional entropy. In the sub-
section, some incremental mechanisms of dominant conditional entropy are intro-
duced.

Definition 3.1. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix Qt×n = (qij)t×n of U ′ and U in attribute
set C is described as:

qij =

{
1, f(un+i, C) ≥ f(uj , C)
0, f(un+i, C) < f(uj , C)

1 ≤ i, j ≤ t
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Algorithm 1: A reduction approach of DRST
Input: A dominance information system DIS.
Output: A reduct PREDU

.
1 begin
2 PREDU

← ∅
3 for i=1 to |U | do

4 compute [DH]≥
D|C(U)

5 end
6 for each ak ∈ C do

7 calculate [DH]≥
D|(C−{ak})

(U),Siginner
U (ak, C,D)

8 if Siginner
U (ak, C,D) > 0 then

9 PREDU
← (PREDU

∪ {ak})
10 end
11 Let E ← PREDU

;
12 end

13 while [DH]≥
D|E(U) ̸= [DH]≥

D|C(U) do

14 for each ak ∈ (C − E) do

15 calculate SigouterU (ak, E,D)

16 a′ = max
{
SigouterU (ak, E,D)

}
17 E ← (E ∪ {a′})
18 end
19 end
20 PREDU

← E;
21 return PREDU

.
22 end

Definition 3.2. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix Q′t×n = (q′ij)t×n of U ′ and U in attribute
set A is described as:

q′ij =

{
1, f(un+i, A) ≥ f(uj , A)
0, f(un+i, A) < f(uj , A)

1 ≤ i, j ≤ t

Definition 3.3. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix Zt×t = (zij)t×t of U

′ in attribute set C is
described as:

zij =

{
1, f(j, C) ≥ f(ui, C)
0, f(j, C) < f(ui, C)

1 ≤ i, j ≤ t

Definition 3.4. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix Z ′t×t = (zij)t×t of U

′ in attribute set A is
described as:

z′ij =

{
1, f(uj , A) ≥ f(ui, A)
0, f(uj , A) < f(ui, A)

1 ≤ i, j ≤ t

Definition 3.5. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix Wn×t = (wij)n×t of U and U ′ in attribute
set C is described as:

wij =

{
1, f(uj , C) ≥ f(un+i, C)
0, f(uj , C) < f(un+i, C)

1 ≤ i, j ≤ t

Definition 3.6. SupposeDIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Then, dominant matrix W ′n×t = (w′ij)n×t of U and U ′ in attribute
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set A is described as:

w′ij =

{
1, f(uj , A) ≥ f(un+i, A)
0, f(uj , A) < f(un+i, A)

1 ≤ i, j ≤ t

Theorem 3.7. Suppose DIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Let F = U ∪ U ′, we can get the dominant matrix Wn×t, Mn×n,
Qt×n and Zt×t. Then, dominant matrix Un′×n′ of F in attribute set C is described
as:

Un′×n′ =

[
Mn×n Wn×t
Qt×n Zt×t

]
Theorem 3.8. Suppose DIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added to DIS. Let n′ = |U ∪U ′|, n = |U |, we can get the dominant matrix W ′n×t,
M ′n×n, Q

′
t×n and Z ′t×t. Then, dominant matrix H ′n′×n′ of F in attribute set A is

described as:

H ′n′×n′ =

[
M ′n×n W ′n×t
Q′t×n Z ′t×t

]
Theorem 3.9. Suppose DIS be a dominant data set. U ′ = {un+1, un+2, . . . , un+t}
is added into a dominant information system DIS. Let F = U ∪U ′, n′ = |U ∪U ′|,
n = |U |, the dominant conditional of U entropy is [DH ]≥D|B(U). We can get the

dominant matrix Wn×t, Mn×n, Qt×n, Zt×t, W
′
n×t, M

′
n×N , Q′t×n and Z ′t×t . Then,

the dominant conditional entropy [DH ]≥D|C(F ) is described as:

(3.1)

[DH ]≥D|C(F ) = − n

n′
[DH ]≥D|C(U)

− 1

n′

( n∑
i=1

log

∑n
j=1 |sum(m′ji) + sum(w′ji)|∑n

j=1 |sum(m′ji)|

+

n∑
i=1

log

∑n
j=1 |sum(mji)|∑n

j=1 |sum(mji) + sum(wji)|

+
n∑

i=1

log

∑n
j=1 |sum(q′ji) + sum(z′ji)|∑n
j=1 |sum(qji) + sum(zji)|

)
3.2. Incremental reduction method when many objects are added to the
dominant dataset. This subsection proposes an incremental reduction method of
DRST according to the incremental mechanisms of dominant conditional entropy
and the dominant matrix.

4. Experimental evaluations

To verify the efficiency and reliability of the incremental algorithm (further re-
ferred to as Algorithm 2) and its superiority of non-incremental one (called Algo-
rithm 1), we perform some experiments using four dominant datasets from the UCI.
In testing, the dominant data are illustrated in Table 1. The Car dataset of Table
1 is a heterogeneous dominant dataset, while the remaining three ones are numer-
ical dominant datasets. Furthermore, there are values in some dominant datasets



AN INCREMENTAL ALGORITHM FOR DOMINANT DATA 1755

Algorithm 2: An incremental reduction method of DRST
Input: A dominance data set DIS, PREDU

, new object set U ′, let F = U ∪ U ′ .
Output: A new reduct PREDF

.
1 begin
2 E ← PREDU

3 calculate [DH]≥
D|E(F ), [DH]≥

D|C(F )

4 if [DH]≥
D|E(F ) = [DH]≥

D|C(F ) then

5 go to 16
6 else
7 go to 9
8 end

9 while [DH]≥
D|E(F ) ̸= [DH]≥

D|C(F ) do

10 for each ak ∈ (C − E) do

11 compute Sigouter
(F )

(ak, B,D)

12 a′ = max
{
Sigouter

(F )
(ak, B,D)

}
13 E ← (E ∪ {a′})
14 end
15 end
16 PREDF

← E;
17 return PREDF

.
18 end

and some characters in others that need to be added. Hence, both algorithms can-
not directly process these datasets. To ensure the experiment’s validity, we must
deal with them before the experiment. For some data with some missing values,
we directly delete these objects. For some data with some characters, we replace
characters with numbers. The codes for computing reduction are written in Java,
and the codes for computing classification accuracy are written in Python. The
programs are executed with a 64-bit Win10 operation system, 3.2GHz CPU AMD
Ryzen 7 5800H with Radeon Graphics, and random-access memory of 16.0 GB.

Table 1. A overview of dominant data set
Dominant data samples Condition features Decision attributes

1 BCW 699 9 2
2 Dermatology 366 34 6
3 Spectf 267 45 2
4 Car 1728 6 4

4.1. Comparison of execution times for Algorithms 2 and 1 when adding
some objects. The main objective is to investigate the relevance of the incremental
reduction algorithm’s function to the objects’ sizes. Each dominant dataset in Table
1 is divided into two identical partitions. One partition is the original dominant
dataset, while the second is subdivided into one, two, three, four, and five dominant
data. That with 1 dominant data is described as the 1st incremental dataset,
the combination of 1 dominant data and 2 dominant data is described as the 2nd
incremental dataset, . . . , the combination of all five dominant data is described as
the 5th incremental dataset. We compute the execution time of reduct obtained
by Algorithms 1 and 2 when the 1st, 2nd, 3rd, 4th, or 5th incremental dataset is
appended into the original dominant dataset, respectively. The operation times of
Algorithms 1 and 2 with growing sizes of dominant data are shown in Fig. 1, where
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Figure 1. A
comparison execution time between Algorithm 2 and Algorithm 1 when adding

some objects.

the abscissa and ordinate indicate sizes of dominant datasets and execution time,
respectively.

Figure 1 shows that the execution times of both algorithms grow with the in-
creasing size of each dominant dataset, but that of Algorithm 2 increases slower
than that of Algorithm 1, reaching much lower values as a result. Hence, Algorithm
2 is a more efficient method for updating the reduct of dynamic dominant datasets.

4.2. Comparison of classification accuracies. Numerous tests were performed
in this study to compute the classification accuracy of reducts obtained by Algo-
rithms 1 and 2, respectively. In the process of testing, each dominant dataset in
Table 1 is divided into two identical partitions: basic and new dominant datasets.
Then, we compute the reduction of each dominant dataset in Table 1 by Algorithms
1 and 2 when the new dominant dataset is added to the basic ones. Finally, the
classification accuracy of each dominant dataset in Table 1 is calculated by 10-
fold cross-validation and the Bayes criterion. The 90% and 10% of data of each
dominant dataset in Table 1 are used as training and testing samples, respectively.
Computed results are represented in a percentage in TableTable 2, indicating that
the classification accuracy of reducts obtained by both algorithms is similar. How-
ever, the execution time of the incremental reduction approach based on dominant
conditional entropy is much lower than that of the non-incremental one, making it
more effective in reducing dynamic dominant datasets’ calculation.

Table 2. A Comparison of Classification Accuracy.
Dominant data sets Raw data sets Algorithm 1 Algorithm 2
BCW 97.35 97.35 97.35
Dermatology 95.45 98.12 98.12
Spectf 92.98 96.98 96.98
Car 92.34 92.67 93.56

5. Conclusions

The evolution of various object sets and datasets requires policy-makers to mod-
ify their strategies frequently. DRST is a useful mathematical tool for describing
and analyzing multi-criterial problems and has been extensively applied to feature
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selection and recognition. In the paper, some incremental mechanisms of domi-
nant conditional entropy are analyzed when some objects are added to dominant
datasets. Then, the fusion techniques for the dominant matrix and incremental
reduction approach are developed. Finally, execution times and classification accu-
racies of non-incremental and incremental approaches (defined as Algorithm 1 and
Algorithm 2) are computed for the four information systems from UCI, proving the
latter’s supremacy. The main limitation of the latter proposed approach is that it
cannot directly process attribute reduction of big dominant data. For this purpose,
a parallel incremental reduction method will be developed in the follow-up study.
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