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SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS
USING POWER SERIES METHOD AND SUMUDU TRANSFORM

XTAO YAN, QUNLI ZHANG", ZHAN DENG, AND HONGZHENG QUAN

ABSTRACT. An analytic function can be approximated by its corresponding power
series. The advantage of the Sumudu transform is to turn differential equations
into algebraic equations. Combining the power series method with the Sumudu
transform, the approximation solutions of the fractional differential equations are
studied. The efficient and accuracy results between approximated solutions and
exact solutions are comfirmed with perfect consistency, and it can be affirmed
that the methods are easy to implement with the smaller analytical error by the
several numbercial examles.

1. INTRODUCTION

Throughout the several decades, many scholars have been investigating and de-
bating the linear and nonlinear fractional differential equations in assorted fields,
which engender in the physical sciences as well as in engineering, these kinds of
equations play influential role to evolve mathematical tools to realize fractional
modeling.

Several numerical, analytical methods have been proposed and are widely used
for solving these partial equations. Admit for its performance in solving linear or-
der, nonlinear partial differential equations, the interesting convert it was evidence
in [9,10,16] .The homotopy analysis transform method was one of the more techni-
calities utilize in the solutions for the nonlinear factor [14] . By placing the solution
in a rapid approximation series, HPM paired with the Sumudu transform tool im-
proves the answer in a closed shape [19]. The theoretical formulation of initial
value issues for fractional differential equations may be done in two methods [6]. In
literature [4], the fractional-order power series technique for solving the nonlinear
fractional-order partial differential equation was found to be relatively simple in
implementation with an application of the direct power series method. In [7] used
the adaptive single piecewise interpolation reproducing kernel method to solve the
fractional partial differential equation. This improved method not only improves
the calculation accuracy but also reduces the waste of time. In literature [12], the
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non-conformable double Laplace transform are introduced, studied and applied to
solve some fractional partial differential equations involving the non-conformable
fractional derivative. The study showed that this transform is effective and easy to
apply to create an exact solution for types of fractional partial differential equations.
In [17] combined the Elzaki transform method with the new homotopy perturbation
method for the first time and solve initial value problems numerically and analyt-
ically, such as nonlinear fractional differential equations of various normal orders.
They found that the initial conditions have a big impact on the equations result.
They given three beginning value issues that were solved as precise or approxima-
tion solutions with high rigor to demonstrate the methods power and correctness. It
was clear that solving nonlinear partial differential equations with the crossbred ap-
proach was the best alternative. In literature [20], the residual power series method
was given for solving the approximate analytical solution of the fractional Rosenau-
Haynam equations. The approximate solution of the equations could be obtained by
using the (n—1)a times derivative of the residual function as 0. The results showed
that the residual power series method was a more effective method for solving the
fractional Rosenau-Haynam equation. In literature [5], according to variational
theory, the Lagrange multiplier was calculated and the variational iteration method
scheme was constructed to studied fractional predator-prey model.

Relatively recently, the Sumudu transform have been developed. In literature
[18], the Sumudu transform method was used to solve the equations nonlinear por-
tion. Some basic properties and theorems which help us to solve the governing
problem using the suggested approach were revised. The benefit of this approach
was that it solves the equations directly and reliably, without the prerequisite for
perturbations or linearization or extensive computer labor. In [13] dealt with the
series approximation of 2D and 3D convection-diffusion by Sumudu homotopy per-
turbation method and Elzaki homotopy perturbation method. The accuracy of the
proposed schemes was confirmed with the aid of a graphical match between approxi-
mated results and exact results. The solution of a time-fractional vibration equation
was obtained for the large membranes using powerful homotopy perturbation tech-
nique via Sumudu transform in reference [11]. In [3] offered straightforward com-
putational advantages for approximate range-limited numerical solutions of certain
ordinary, mixed, and partial linear differential and integro-differential equations.
In [8] developed a method to obtain approximate solution of nonlinear system of
partial differential equations with the help of Sumudu decomposition method.

The advantage of the Sumudu transform is to turn differential equations into al-
gebraic equations. Inspired by these literatures, combining the power series method
with the Sumudu transform, we will study the approximate solutions of the frac-
tional differential equations. The advantages of this method is perfect consistency
of comnining power series and Sumudu transform for obtainity exact approximate
results. The several examplees show that its analytical errord are smaller.
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2. PRELIMINARIES

Definition 2.1 ([2]). The Caputo non-integer derivative operator of order p with
respect to t is defined as following

(2.1) DPh(z) = (T(n — p)) ! /0 (a: — )P (4 at,

where p > 0,2 >0,n>pu>n—1,ne N.
The Caputo non-integer derivative operator is a linear operation:

(2.2) D¥(af(x) + Byg(x)) = aD"f(x) + SD* f (),

where o and 3 are constants. We have D*k = 0 for the Caputo derivative, if £ is
constant,

I'(m+1) _
Mo @ M & Noym 2 g,

DHz™ =
0, m € Nog,m < u,
where Ny = {1,2,3,...}.

Definition 2.2 ([2]). For the variable z and coefficients a,,n = 1,2,3,...,00, if
T > xg , the fractional power series about the point xg is defined as

[e.e]
(2.3) Z an(z — £0)™ = ag + ay(x — 20)* + ag(x — 20)* + az(x — z0)>* + - - -,
n=0

where > 0,2 >0,m>pu>m—1,ne N™.

Theorem 2.3 ([2]). Let the radius of convergence for the function with fractional
power series representation

(o]
= Zanx”“,o <z €R,
n=0

be greater than zero. Then, for m > u>m —1,n € NT | the following expression
holds true:

DFh( §:CM Fop s D) oevn
L((n—1p+1)

Note 1. If h(z) = > 7 jana™, n € N*t. then DFh(z) =3 >, an%xn_“.

Definition 2.4 ([13,18]). The Sumudu transform is defined as follows:
1 [ _¢
(24) S = 6) =~ [ e )t € (mm).
over the provided set of functions, A = {f(t)| there existes M,ni,n2 > 0, f(t) <
t

Me" if t€ (—=1) x[0,00),5=1,2 }.
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Theorem 2.5 ([18]). Let f(t) and g(t) be any two functions whose Sumudu trans-
forms exist. Then, for arbitrary constant a and b, we have

(2.5) Slaf(t) +bg(t)] = aS[f(t)] + bS[g(t)].
Theorem 2.6 ([13,18]). The function f(t) = 1, t“, respectively, the Sumudu trans-
form of f(t) is S[1 ] 1, S[t*] =T'(a+ 1)p~.

3. ILLUSTRATIVE EXAMPLE
Example 3.1. Consider the time fractional-order logistic model [5]:
(3.1) Du(t) = 0.2u(t) — 0.1u>(t) + f(t),

where a = 1.5, f(t) = I'(2.5) — 0.2t% +0.1¢?%, with initial conditions u(0) = 0. Exact
solutions of the problem is u(t) = t'.

Let us suppose the approximate solution for the given problem is

(3.2) u(t) =Y amt™,0<me Z.

m=0

Then we have

’I’)’LO& + 1) (m—1)«
(3:3) Z T — a + 1)t ’

gm=Na — .2 amt™*— 0.1 amt™" amt™®
2 e e 22 el 2

+T(2.5) — 0.2t + 0.1%

—OQZamtma—OIZZCL]am W

m=0 j=0
+T(2.5) — 0.2t% + 0.1%“,

Using Sumudu transform on both sides of the above equations on ¢, we have

(3.5) S[Dfu( Z amD(ma + 1)pm=be

m=1

o [o.¢] m
$[0:2 3 amt™ =013 3 ajam- 5t +T(25) — 0.26 + 0.1
m=0 m=0 j=0

—OZZam (ma+ 1)p™« Olzz%amj (ma+ 1)p™

m=0 j=0
+1(2.5) — 0.20 (o + 1)p® + 0.17(2a + 1)p**
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According to the above equation (3.1), we obtain

> aml(ma+ 1)pm = 02> ap(ma + 1)p™

m=1 m=0
o0 m
—0.1 Z Z ajam—;I'(ma + 1)p™*
m=0 j=0
+T(2.5) — 0.20 (e 4 1)p® + 0.1T (2cx + 1)p*°.

Take ag = u(0) = 0. Comparing the coefficients at both sides, we get the following
result according to equations (3.7):

(38) CL1F(20( + 1) = 0.2a9 — 0.1agag + F(25),

(3.7)

(3.9) al'2a+1) =020 (e + 1) — 0.1 - 2apa1 T + 1) — 0.2 (e + 1),

asl'(3a+ 1) = 0.2a2'(2ac + 1) — 0.1 - (2apa2 + a1a1)I'(2a+ 1)

3.10
(3.10) +0.1I'2a + 1),
amI’(ma+1) =0.2ap,m1I'(m — a+1)
m—1
(3.11) —0.1- Y ajam-1-;T((m — a + 1),
j=0
m=4,56,7,...
So the following results are obtained
I'(2.5) MNa+1)
=———*_=1la=——"-(02a; —02) =
U= et 2T Taty P02 =0
'2a+1)
=01—-"2(1-1)=0
“ TGaxn V=0

—1
I'((m—1)a+1) <
an = = Foma +T) (0201~ 0.1- ; aym-1-5) =0,
m=4,56,7,....

We get the first four items of the function u(¢) as following:
up =0+t +0+0=1¢t"".

Comparison plots of exact solutions, approximated solutions is shown in Figure 1.

Note 2. Taking t = 0,0.2,0.4,0.6,0.8, 1, respectively, the results in this paper
compare with those in the literature [5] as following in Table 1 and in Table 2:

Example 3.2. Consider the succeeding nonlinear order structure [2]:

du(z,t)

Drule,t) = 1+ (e, )20 1 u(a, 1),

(3.12)

Dio(z,t) =1 — u(z, t) 28D (2, 1),
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FiGURE 1. Comparison plots of exact solutions, approximated solutions.

TABLE 1. Numerical values for u(t) by [5] for different values of
t=0,0.2,0.4,0.6,0.8, 1.

t u(t) — u(0)] u(t) —ui(t)]
0.0 0.0000 x 10° 0.0000 x 10°
0.2 8.9443 x 1072 3.4629 x 1074
0.4 2.5298 x 107! 2.6503 x 1073
0.6 4.6476 x 107! 8.4205 x 1073
0.8 7.1554 x 107! 1.8488 x 1072

1 1.0000 x 10° 3.2848 x 1072

TABLE 2. Numerical values for u(¢) in this paper for different values
of t = 0,0.2,0.4,0.6,0.8, 1.

t |u(t) — u(0)| u(t) — u(t)]
0.0 0.0000 x 10° 0.0000 x 10°
0.2 8.9443 x 1072 0.0000 x 109
0.4 2.5298 x 107! 0.0000 x 109
0.6 4.6476 x 1071 0.0000 x 109
0.8 7.1554 x 1071 0.0000 x 109

1 1.0000 x 10° 0.0000 x 10°

with initial conditions u(z,0) = e™*, v(x,0) = e*. Exact solutions of the problem
~t when p = 1.

is u(x,t) = "% v(x,t) = e
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Let us suppose the approximate solution for the given problem is

(3.13) w(@,t) = am(@)t™ vz, t) = > by()t".
m=0

m=0

Then we have

(m—l)u,

1

> b

m=1

3

L(mp+1)

(m—Dp+1)
(

(

L(mp+1)

(3.14) Diu(x,t)
(3.15) DFu(z,t) T 1)t<m—1>#

)

Z am(x)r(
@5

L) 0D ) =14 Y b Y )
m=0

(3.16)

(3.17)

Using Sumudu transform on both sides of the above equations on ¢, we have

(3.18) S[D}u(z,t)] = i g ()T (mps + 1)pm=DE,

m

Il
—

b ()T (mp + 1)ptm =D,

WE

(3.19) Div(z,t) =
1

3
Il

1737
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S[l—i—v(x, )du; t>+ xt]—l—i—ZZb )T (mp + 1)p™
(3.20) a0
+ Z am (z)(mp + 1)p™*,
m=0
S[l—u(m,t)W—v(x }—1—22% YT (mp + 1)p™
(3.21) m=07=0

=) b (@)D (mp + 1)p™
m=0

Take ap(z) = u(z,0) = e *,bp(x) = v(x,0) = e*. Comparing the coefficients at
both sides, we get the following result according to equations (3.12):

(3.22)  a1(x)T(p+1) =1+ bo(x)ap(z) + ap(x) =1+ e*(—e )+ e *=e7,

(3.23) bi(z)T(p+1) =1 —ag(z)bj(z) —ap(z) =1 —e "e” — ¥ = —¢7,
ami1 (@)L (m+1Dp+1) = b'(x)a;n_j(x)l“(m +1)
(3.24) i : JZ:; 7 a

b1 (2)T((m A+ Dp+1) = = aj(@)b),_; (@) (mp +1)
(3.25) g=0
— b (x)T(mp + 1)
m=1,2,3,4,
That is
(3.26) (@) = e b)) = e
. a1(z) = —e * bi(x) = — ,
NS A T(p+1)
L(mp+1) -
(327)  amiila) P((mHMH{;J )+ am(@)},
I(mp+1)
2 bm =— b
(3.28) () F((mﬂml{z% )+ b(a) }.
=1,2,3,4,....
We can obtain the following results according to the above recursive relationship:
(3.29) ap(z) =e*
(3.30) bo(z) =e
1 _
(3.31) aj(z) = ——=e°

L(p+1)
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(3.32) bi(z) = _P(u1+ 1)617
1

(3.33) @) = 5o, )¢
(3.34) ba(x) = F(2M1+ 1)eI’

1 . T(2u+ 1)
(335) as(z) = I(3u+1) [e - (2 S T(p+ DT (u+ 1))} ’

1 . r'(2u+1)
(3.36) %5(0) = Fp 1) - (2- F(u+1)F(u+1)>}’
(3.37)

o L TeptY) N ey Tt
a4(w) = T(4p+1) [(3 r(u+1)r(u+1)> (2 F(u+1)F(u+1))}
1 T(2u+1) . I'(2p+1)

(3.38) ba(z) = T(4p+1) [(3 S T(p+1)D(p+ 1))6 - <2 S T(e+ D (n+ 1)”’

In a similar way, we can get the coefficients a,,(z), by, (z) of equations (3.13) and
find, respectively:

(z,t) =e " + s gy £ —x
u(z,t) =e F(,u—i-l)e F(2M+1)6
31 . (20 + 1) )}
(3.39) L(3u+1) [6 ( L(p+ 1) (p+1)
. 4 o T@ptl B
L(4p+1) [< T(p+ 1T M+1)>e
L(2p+1)
<2_ T(u+1)T (u+1))]+ a
_ T (=", (—1)2252“ .
v(z,t) =e +F(H+1)e F(2M+1)e
(=1 7, T(2u+1)
(3.40) BRYETERY [6 " < CT(p+ DT(p+ 1)”

(—1)4¢de - I(2u+1) .
[( F(,u—l—l)F(u—i—l))
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TABLE 3. Numerical values for u(z,t) in [2] for different values of ¢
and g when x = 0.2.

t nw=1 n=0.8 n=0.6 pn=04 n=20.2
0.25 1.051264145 1.177800483  1.376647053 1.690057985 2.190896007
0.5 1.349626476 1.552782962  1.825654773 2.178405687 2.598177788
0.75 1.731407662 1.995745862  2.305360890 2.636753607 2.913559185

2.217395789

2.524361162

2.833631770

3.091314344

3.183670371

If =1, the equations (3.39) and (3.40) will be turned into:

u(z,t) =e ¥+ #e*"j + Leﬂj + Le*x
e I(1+1) r2+1) r3+1)
(3.41) "
' e — ot
+ T4+ 1)6 + e ",
—1)t —1)%¢? —1)3¢3
o) = ¢t 4 D o CU o D
ra+1 r'e+1 I's+1)
(3.42) A
(_1)4t T r—t
e =€
r4+1)

When o = 1, u(x,t) and v(z,t) comparison with the exact solution, as shown in
Figure 2 and Figure 3.

FiGUuRE 2. Comparison plots of exact solutions, approximated solu-
tions for p =1 of u(z,1).

Note 3. Taking x = 0.2 as an example, the results in this paper compare with
those in the literature [2] as following in Table 3, Table 4:
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Ficure 3. Comparison plots of exact solutions, approximated solu-
tions for u =1 of v(z,t).

TABLE 4. Numerical values for u(x,t) in [2] for different values of ¢
and p when x = 0.2.

t p=1 n=0..8 n=20.6 pn=0.4 pn=0.2
0.25 1.051264146 1.177800483  1.376647052 1.690057984  2.190896005
0.5 1.349626476 1.552782956  1.825654772 2.178405687  2.598177789
0.75 1.731407662 1.995745861  2.305360889 2.636753609  2.913559185

1 2.217395790 2.524361162  2.833631770 3.091314345  3.183670371

We may get that the values u(0.2,0.25) = 1.051271096 and (0.2, 1) = 2.225540928
of the function u(z,t) = e!~%, respectively. By comparison, the results in this paper
are better, more effective and higher accurate than those in the literature [2] since
the function u(x,t) = e!~% is increasing on ¢ .

Example 3.3. Consider the following fractional Rosenau-Haynam differential equa-
tion [20] :
Diu(z,t) = u(x,t) Dyggu(z, t) + u(z, t) Dyu(x, t)

+ 3Dyu(z,t)Dygu(x,t),t > 0,

where 0 < a < 1 is fractional-order constant, t is time, x is Spatial coordinate,
Dyppu(x, t) denotes third derivative for u(z,t) on = , with initial conditions u(z,0) =

(3.43)

—%c 0052§ = —%c cos § — %c. The analytical solutions of the problem is given by
u(z,t) = —%ccosz(%(w —ct)) = —%ccos(%(:p —ct)) — %c when a = 1.

Let us suppose the approximate solution for the given problem is

(3.44) u(z,t) = Z am ()t
m=0
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Then we have

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

s I'(ma+1 D
Df‘u(w,t):mz::lam( )F((ﬂg—l;_aj—l) (m—1)a

+3ZZ(I x)tme.

Using Sumudu transform on both sides of the above equations on ¢, we have

(3.50)

That is

(3.51)

o0
Z am ()T (ma + 1)pm—He = Z Za] ay JT(ma + 1)p™
m=1 m= 0] 0
+ Z Z aj(x I'(ma+ 1)p™
m=0 j=0
oo m
+3 Z Z a’y(x)ay, ()T (mao + 1)p™*
m=0 j=0

A1 ()T ((m+ Do+ 1) =Y aj(z)ay_;(z)T(ma+1)
j=0
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Take ag(z) = u(z,0) = —2ccos £ — . Comparing the coefficients at both sides by
the above recursive relationship, we get the same results with the literature [20]:

1 25 . x
(352) ai (CC) = m( — gc ) sin 5,

1 14 T

(353) CLQ(l’) = m(gc ) COS 5,

1 1 T
3.54 :7(7 4) in—,...
(3.54) az(x) TGat 1) ¢ )sing

So the first four terms of the approximate solution of the equation are

4 4 1 2
u(x,t) = (7 Cecos T - gc) +tar(7< - fc2> sing

3 2 1 3
(3.55) a+l)
2 (103) cos = + tgaé (164) Sin = 4
T'(2a+1)\3 2 T(3a+1)\6 2 ‘

Take ¢ = 1, = 1, comparison chart of approximate and actual solutions as shown
in Figure 4.

FiGUure 4. Comparison plots of exact solutions, approximated solu-
tions for c =1 and a = 1.

Example 3.4. Consider the following one-dimensional Fractional Burger’s equation
[15]:

,u2

2

with the initial condition u(z,0), where 0 < a < 0 is Caputo fractional derivative,

t and x are time and space parameters, respectively. v > 0Ois the viscosity constant,
g(z,t) = (% — mttsin(rz) + vr?t?) cos(mz). The exact solution is wu(w,t) =

t2 cos(mz).

(3.56) D&u(,t) + D$< ) = vDgpu + gz, t) , (z,t) € (z,t) x (0,T),
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Let us suppose the approximate solution for the problem is
(o]
(3.57) u(@,t) > am(x)t™.
m=0

Then we have

(3.58) Du(z,t) =) am (1)

)

u? 1
(3.59) Do) = 5 D2 (@ (@) am—s(@) + as(w)al, (@)™,

(3.60) Dy =Y a,(x)t™.

(3.61) 3 2 @ @)an— () + 4@ (@)

Using Sumudu transform on both sides of the above equations on ¢, we obtain
have

o0

> am(@)T(m + 1)p™

m=1

1M , (x ail2)d. - ( m m
(3.62) +2n;)j§(aj($)am7( ) + () an, ()T (m + 1)p

=0 Z al ()T (m + 1)p™ + (2p*~% — 7l(4 + 1)p* sin(7z)

+ vm3T(3)p?) cos(m).

Take ap(xz) = u(x,0) = 0, comparing the coefficients at both sides by the above
recursive relationship, we get the results:

(3.63) ap(z) = 0,a1(x) =0, az(x) = cos(mx), am(z) =0, m =3,4,5,....
So the approximate solution of this equation is
(3.64) u(z,t) =t cos(mzx).

The solution is the same with the exact solution.
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Example 3.5. Consider the following time-space-fractional nonlinear KdV-Burgers
equation [1]:

(3.65) Du(z,t) + u(z, t) DPu(z, t) + Dygu(z,t) + Dygpu(z,t) = 0,

where D u(z,t) denotes third derivative for u(z,t) onz , 0 < a <0, 0 < f <
1,z,t > 0, subject to initial conditions u(z,0) = x.

Let us suppose the approximate solution for the given problem is

(3.66) Z U ()™
Then we have
Pima+1)

) t(m e
(3.67) Z am( “Da+1) ’
(3.68) Z DBy, ()™,

oo
(3.69) Dy u(z,t) = Z an (z)t™e,
m=0
o0
(3.70) Dyppu(z,t) = Z am (z)t™e,
m=0

- T'(ma+1 (m—1)a -
Z—lam(x)r((ﬁi—l)a—)kl Y +ZZ“J ) D am—j(a)t

m=0 j=0

+ Z a// tma + Z /// tmcx —

Using Sumudu transform on both sides of the above equations on t, we have

(3.71)

Zam(a:) ma + 1)pm—He 4 ZZCLJ D am—j(z)I'(ma + 1)p™
(3.72) - m=0j=0

oo o
+ Z ar (z)T'(ma + 1)p™* + Z al (z)T(ma + 1)p™* = 0.
= m=0
The recursive relationship is obtained as following

amt1 () ((m+1)a +1)
(373) + F(ma + 1)(2 a; ($)D§am7](:p) + a”’ ( ) + a///( )) =0,
=0
m=0123 ..



1746 X. YAN, Q. ZHANG, Z. DENG, AND H. QUAN

Take ag(z) = u(z,0) = x. Comparing the coefficients at both sides by the above
recursive relationship, we get the following results:

1 _
(37 “@ = —rarirE—p”
as(x) = 1 I3 —-5) 1 2328
(3.75) 2A0) F2a+1)I(2 - p) KF(B —2p) * r?2- 5))

+ =B -~ 2= B - B,

A 1 I'(3-p) 1 I'(4-28) 1
() = T 3a D) {r 2B (F(3 o3 TT2 = 5)) <r(4 —33) T T2= 5))
N 1 I'2a+1) INGENG)) } 1-38
T2-B)T(2-8)T(a+1)T(a+1)T(3-20)
1 1-p8) 1 2-8 '3 -5) 1 _
T TBat )T —5) [r(z —5 26~ 25)<r(3 —28) T T ﬁ))}l‘l "
1 1-5) I'(3-5) 1
CT(Ba+1)T(2-5) [(3 —26)(2-28)(1 - 2ﬁ)(r(3 —253) +F(2 — 5))
(3.76)
(2-p)0 - B)B]szg
r'e2-p)
1 @-HA-PEB+T) s
C(3a+1) r2-p)
L1 22-P0-HBE+E+2) 53
I'(3a+1) r'(2-p)
1 2=HA=PBEB+)B+2)(B+3) s
I'(3a+ 1) I'(2-p)

So the first four terms of the approximate solution of the equation are
(3.77) u(z,t) = ap(x) + ay(x)t® + az(z)t** + az(x)t>* + - - -

The result is the same with [1], but the coefficients is easier to obtain.

4. CONCLUSION

In this research, in combination with the Sumudu transform and the power se-
ries, the problem of solving the approximate solutions of the fractional differential
equations are turned into algebraic equations, and the coefficients of the power
series are obtained by comparing the degree of the power series. Comparing the ap-
proximate solutions with the exact solutins, the results have been comfirmed with
perfect consistency. At the same time,the method mentioned in this paper also
provide some reference values for solving the approximate solutions of the related
differential equations and the integral equations.
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