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Many problems in KG require adequate and valid triad data for their solution.
Several methods have been proposed to assess the validity of a new triad. Among
these, a common strategy is to apply the embedding model to calculate the score
of a new triad for judging its validity. In this approach, a correct ternary usually
achieves a higher score than an invalid ternary.

Embedding models are a crucial tool in this context. They map triplets to a con-
tinuous vector space, making these vectors semantically relevant. We can determine
the similarity in entities by measuring the distance between them in vector space,
which is crucial for evaluating the effectiveness of new triplets. Most jobs involve
designing specific vector spaces and operations to model relational patterns and
relationship mapping properties (RMP) [9]. For example, TransE embeds entities
and relationships into the same vector space, treating relationships as translations,
thus making it difficult to model symmetric relationships and RMPs. RotateE rep-
resents relationships as rotations on a complex plane to model four relationship
patterns, but it cannot handle RMP due to the distance-preserving nature of ro-
tations. RESCAL [15], DistMult [21], ComplEx [17], SimplE [7], TuckER [2], and
DistMult have changed the relationship of bilinear models with diagonal matrices,
but lack the ability to model asymmetric relationships. Neural network models lack
clear geometric explanations. Rotate3D [6] and QuatE [25] introduce quaternion to
extend rotation to both three-dimensional (3D) and four-dimensional (4D) spaces,
achieving better performance with larger model capacity. Although Rotate3D and
QuatE can capture the modeling ability of RMP well, they lack modeling combi-
nation relationships. In addition, some methods based on quaternion embedding
also lack the ability to model two relationship patterns simultaneously, such as
the introduction of special orthogonal groups [8] and hierarchies [22]. Moreover,
certain combinations of quaternion and convolutional neural networks exist, but
these methods lack a clear geometric explanation for modeling relational patterns
and RMPs [24]. A projection-based approach was proposed in this study to simul-
taneously model relationship patterns and RMP based on quaternion embedding,
aiming to address the lack of simultaneous modeling of relationship patterns and
RMP, which improved the performance of the model under different relationship
patterns and mapping attributes.

Currently, no method can simultaneously model all relationship patterns and
RMPs. This is especially because existing predictions are irreversible transforma-
tions, resulting in modeling failures of inversion and combination patterns and sub-
optimal performance. Therefore, we proposed a quaternion knowledge graph em-
bedding (KGE) based on relational mapping to solve this problem. We introduced
a new reversible projection by modifying the matrix of ordinary household heads
to address the limitations of existing models. We used projection and quaternion
rotation to handle complex relational mapping attributes and achieve superior re-
lational pattern modeling capabilities. This method achieved good results under
different relationship patterns and mapping attributes.

2. Related work

A KG comprises several important relationship patterns and mapping attributes
that describe different ways of connecting and mapping entities (Fig. 1):
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Figure 1. Relationship schema and mapping attributes

(1) Symmetric relationship: A friendship relation is an example of a symmetric
relationship, where if A is a friend of B, then B is also a friend of A.

(2) Asymmetric relationships: The relationship between mother and child is an
example of an asymmetric relationship, where the mother is a role of the child but
the child is not a role of the mother.

(3) Mutual inverse relationship: The relationship between a teacher and a student
is a mutual inverse relationship between the two, where the teacher teaches the
student and the student is taught by the teacher.

(4) Combination: For example, “ is grandmother of” is a combination of “
is father of” and“ is mother of”.

The mapping properties of the relationship: 1:1 relationship: A unique mapping
relationship exists between one entity and another. For example, each person has
a unique ID number.

1:N relationship: One entity can have a mapping relationship with many different
entities. For example, a teacher can teach more than one student.

N:1 relationship: Many different entities can be mapped to the same entity. For
example, multiple students may have the same teacher.

N:N relationships: Many-to-many mapping relationships exist between multiple
entities. For example, multiple students can be enrolled in multiple courses, and
multiple students can be enrolled in a course. Figure 1 briefly describes the impor-
tant relational patterns and mapping attributes in KG. Modeling and understanding
relational patterns in KGs are extremely important for extracting meaningful infor-
mation and knowledge from data. One of the key challenges in KGE is the modeling
of relational patterns (e.g., symmetry, antisymmetry, inversion, and composition)
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and RMPs. Many KG complementation models have been proposed in recent years.
These models are mainly categorized into distance translation-based, bilinear and
tensor, complex vector, and neural network models. However, most of the work in-
volves designing specific vector spaces and modeling these two relationship patterns
through operations.

Translation model based on distance translation: This involves treating relation-
ships in triplets as translations between head and tail entities, where entities and
relationships can be mapped to each other. For example, TransE [3] represents
relationships as translations but fails in symmetric and RMP modeling. Under the
TransE framework, transformation embedding models based on relationship map-
ping attributes, such as TransC [12] and TransX, have been proposed. TransX
represents many variants of TransE, such as TransH [19] and TransR [10]. TransR
models entities and relationships in different spaces, but it lacks the ability to model
inversion and combination relationships. Although the translation distance models
use simple operations and limited parameters to learn embeddings, their embedding
representations exhibit poor performance. For a relationship, TransH uses a joint
representation of the hyperplane normal vector and the vector within the hyper-
plane. The head and tail entities should conform to the minimum triplet distance
in the hyperplane, which can solve the 1:N problem because the projections are the
same.

Bilinear and complex vector models: Tensor models use tensors to represent enti-
ties and relationships, and use tensor decomposition methods to construct mapping
relationships between entities and relationships, such as RESCAL, DistMult, Com-
plEx, SimplE, and TuckER. DistMult changes the relationships of bilinear models
to diagonal matrices, but it lacks the ability to model asymmetric relationships.
ComplEx introduces complex embeddings to better model complex relationships in
KGs, but it cannot model composition patterns. RotateE represents relationships as
rotations on a complex plane to model four relationship patterns, but it cannot han-
dle RMP due to the distance-preserving nature of rotations. Rotate3D and QuatE
introduce quaternions for embedding representation of triples, extending rotation
to both 3D and 4D spaces to achieve better performance with larger model capac-
ity. DualE’s improvement over the QuatE model extends KGE from quaternion
space to dual quaternion space, but DualE [14] cannot capture relationship map-
ping attributes. Although QuatRE [4] enhances the correlation between head and
tail entities based on quaternions, it still cannot model inversion and combination
relationships well.

Neural network models: KG complementation models based on neural network
models can automatically extract features and use the extracted features for en-
tity or relationship prediction, such as R-GCN [16], ConvE [5], Conv-TransE [20],
ConvKB [13], and so forth. R-GCN introduces a neural network of graphs as a
graph encoder. ConvE uses convolutional operations to facilitate score computa-
tion. However, these methods lack an explicit geometric interpretation for modeling
relational patterns and RMP. Detailed description as in the Table 1.

The effectiveness of KGE largely depends on the ability to model intrinsic re-
lationship patterns and map attributes. However, the existing methods can only
capture part of the method with insufficient modeling functions. They cannot fully
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Table 1. Ability of classical models to model relational schemas
and relationship mapping

Model Asymmetrical Asymmetric Invert Combinatorial RMP

TransE × ✓ ✓ ✓ ×
TransX ✓ ✓ × × ✓
TransR ✓ ✓ × × ✓
DistMult ✓ × × × ✓
ComplEx ✓ ✓ ✓ × ✓
RotatE ✓ ✓ ✓ ✓ ×
Rotte3D ✓ ✓ ✓ × ✓
QuatE ✓ ✓ ✓ × ✓
DualE ✓ ✓ ✓ × ✓
QuatRE ✓ ✓ ✓ × ✓

model the intrinsic relationship patterns and imaging properties simultaneously.
Therefore, we proposed a relational mapping quaternion embedding involving: (1)
rotation of quaternions to achieve better possibilities for modeling relational pat-
terns and (2) relational imaging to handle complex relational imaging properties.
Modeling important relational patterns and assignment properties simultaneously
is theoretically possible. The experimental results showed enhanced performance of
our proposed model in completing KGs on known benchmark datasets.

KGE is crucial for effective information extraction and processing. However,
existing methods have limitations in capturing intrinsic relationship patterns and
mapping attributes. Therefore, we proposed a novel relational mapping embedding
model using the concept of quaternions in nature and employing different mapping
strategies. By mapping entities and relationships into quaternion space, we could
better understand their relationships and better solve the problem of polysemy
between entities and relationships. Compared with traditional methods, our model
exhibited better pattern modeling ability and stronger mapping attribute processing
ability. The experimental results showed that our model achieved good results on
various benchmark datasets.

3. Quaternionic KGE based on relational mapping

3.1. Quaternion. Quaternion is a hypercomplex number composed of four real

numbers. The commonly used symbols for quaternions are q=qr+q
i
i+q

j
j+q

k
k , where

qr, qi, qj , qk ∈ Rn, i, j, k Virtual unit ijk = i2 = j2 = k2 = −1.
Quaternions have specific multiplication rules, known as Hamiltonian multipli-

cation. According to these rules, the result of quaternion multiplication can be
obtained by multiplying each quaternion unit with each part of another quater-
nion and then performing the corresponding addition operation. Conjugation: The

conjugation of quaternions Q is defined as: q2 = qr − qii − q
j
j − qkk .
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The quaternion q∆ normalization is calculated as:

(3.1) q∆ =
qr + qii + qjj + qkk√

q2r + q2i + q2k

.

Hamilton product: The Hamilton product of vectors and is calculated as:

(3.2)

q ⊗ p = 1

2
(qr • pr − qi • pi − qj • pj − qk • pk)

+ (qi • pr − qr • pi − qk • pj − qj • pk)i
+ (qj • pr − qk • pi − qk • pj − qj • pk)j
+ (qj • pr − qk • pi − qr • pj − qi • pj)k

where • denotes the product at the element level. The Hamiltonian product is not
exchangeable, that is, q ⊗ p! = p ⊗ q. It determines another quaternion. A spatial
rotation can be modeled using a quaternionic Hamiltonian product. Multiplying
one quaternion p by another quaternion q allows q to be multiplied by the size of
p. Then, a special type of rotation is performed in four dimensions. Thus, we can
also rewrite the aforementioned equation as:

(3.3) p⊗ q = p⊗ |q|
(
q

p

)
.

Inner product: The four inner products of quaternion vectors p and q are obtained
by the inner product between the corresponding scalar and imaginary components.
The inner product is calculated as:

(3.4) q • p = qTr pr + qTi pi + qTj pj + qTT pk.

Quaternion embedding represents a step beyond traditional complex embeddings
by introducing richer hypercomplex representations to more accurately portray the
embedding of entities and relationships in a KG. More specifically, it refers to a
hypercomplex embedding using three imaginary partial quantities; this approach is
used to represent entities in a KG. At the same time, these relationships are also
incorporated into the quaternion space to better model and describe them. The
central idea here is to use the rotation operation of quaternions to represent these
relationships. The quaternion embedding provides a higher-dimensional represen-
tation by introducing additional imaginary partial quantities, thus helping capture
the associations between entities more accurately and making the embedding richer.
Quaternion embeddings have greater expressive power compared with traditional
complex representations because they can contain more information, which is es-
pecially significant when dealing with diversity relationships in KGs. The other
advantages are as follows: (1) The use of Hamiltonian product properly captures
potential interdependencies (between all components) and encourages more compact
interactions between entities and relations. (2) Quaternions can express rotations
in four dimensions with more degrees of freedom than rotations on complex planes.
(3) The proposed framework is a generalization of the hypercomplexity space. Also,
a number of projection operations are proposed to deal with the complexity of the
RMP, and relational projection enables the KGE model to generate a specific rela-
tional representation for each entity.
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Figure 2. Projective mapping and rotation of head and tail entities

3.2. General framework. The model framework proposed in this study is shown
in Figure 2. First, we represented the entities and relationships of triples (h, r, t1)
and (h, r, t2) in the form of quadruple embeddings, that is h, r, t1, t2 ∈ Hn. Next, we
introduced a new relationship mapping method that changed the relative distance
between entities by increasing the distance between positive samples (diamonds) and
negative samples (circles and triangles), besides reducing the distance between the
tail entities t1 and t2 of the two positive samples. This method endowed the model
with the ability to capture mapping attributes. Subsequently, we used relationship
rotation to model relationship attributes and achieved the goal of mapping the
projection head embedding h to the projection tail embedding.

This study mainly introduced Householder reflection transformation as a quater-
nionic mapping. A Householder matrix is often used in numerical algebra, such as
orthogonal decomposition, and so forth. It is used to describe a basic reflection
transformation over the origin hyperplane. Given a Householder matrix of the unit
vector u ∈ Rk, k × k, it is defined as:

(3.5) H(u) = I − 2uuT

where I is the unit matrix. Geometrically, a Householder matrix can provide a
mirror reflection of the superplane of the unit normal vector.

Rotation transformation can effectively model four relationships, as shown in
Table 1. However, because of its strict distance properties, simple relationship rota-
tion, effective replication RMPs, and the introduction of various model relationship
projection transformations, the model loses the ability to represent inverse rela-
tionships and combined modeling. However, these projection transformations are
irreversible, resulting in the loss of inverse relationship and combined modeling abil-
ities. To address this problem, this study introduced a new reversible projection
called the Householder projection.
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More specifically, given a unit variable p ∈ Rk and a real scalar τ , the definition
of the original Householder matrix was slightly modified, and the resulting matrix
M , generated by the variables p ∈ Rk and variables τ , was defined as:

(3.6) M(p, τ) = I − τppT.

3.3. Quaternion embedding. The KGEmodel embedded triples into a low-dimensional
space and defined a scoring function to measure the rationality of the triples. The
number of effective triples was higher than the number of invalid triples. In the
quaternion-embedded representation of a KG, entities and relationships are typi-
cally mapped to the quaternion space. The quaternion embeddings vh, vr, vt ∈ Hn

of h, r, and t are represented as:

(3.7)

νh = νh,r + νh,ii+ νh,jj + νh,kk,

νr = νr,r + νr,ii+ νr,jj + νr,kk,

νt = νt,r + νt,ii+ νt,jj + νt,kk.

Among these, νh,r, νh,i, νh,j , νh,k, νr,r, νr,i, νr,j , νr,k, νt,r, νt,i, νt,j , νt,k ∈ Rn further
associate each relationship with two quaternion vectors as:

(3.8)
νhr = νhr,r + νhr,ii+ νhr,jj + νhr,kk,

νtr = νtr,r + νtr,ii+ νtr,jj + νtr,kk.

3.4. Relational projection. Given that the head and tail entities of a relationship
typically have different implicit types to solve complex RMPs, some projection op-
erations have been proposed and their effectiveness has been demonstrated through
experiments. These relational projection operations provide a method for embed-
ding KGs into models, generating specific relational representations for each entity.
However, existing projection methods are often irreversible, leading to difficulties
in modeling inversion and combination relationships. Therefore, based on quater-
nion embedding, we proposed a new projection method called relational projection,
which allowed each relation r to project the head and tail entities using two inde-
pendent sets of projection parameters. This method enabled the KGE model to
generate specific relationship representations for each entity, thereby solving the
problem of semantic diversity. The projection formula was as follows:

(3.9) q̂ = q − τ ⟨q, p⟩ p

where determines the position of q on the p-axis and is a scalar. q, p is the dot
product denoting the entities and relations represented by quaternion embeddings,
respectively. The and relations are then used to project the head entity and tail
entity to obtain and, respectively, as shown in the following equations:

(3.10)
h▷ = vh − τ⟨vh, vhr⟩vhr,
t▷ = vt − τ⟨vt, vtr⟩vtr.

Next, the normalized was also used to rotate through the Hamiltonian product and
then the quaternion inner product of was used to generate the ternary scores, which
shared the quaternion components of the input vectors during the computation
of the Hamiltonian product. The model in this study was to first use the two
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mappings in Eq. (3.8) for the head and tail entities, respectively. We defined the
scoring function for the ternary (h, r, t) as:

(3.11) f (h, r, t) = ((νh − ⟨νh, νhr⟩ νhr)⊗ νr) • (νt − ⟨νt, νtr⟩ νhr) .
Loss function: We used the Adagrad optimizer to train the proposed model. We
minimized the following loss function and regularized the model parameters θ as
follows:

(3.12)

L =
∑

(h,r,t)∈(G∪G′)

log
(
1 + exp

(
−l(h,r,t) • f(h,r,t)

))
+ λ ∥θ∥22

in which l(h,r,t) =

{
1 for(h, r, t)∈G
1 for(h, r, t)∈G′ .

Among these, we used the l2 regularization rate; G represents the set of correct
triples and invalid triples, and G′ represents invalid triples. Algorithm 1 shows the
KG complementation process using our proposed framework.

Algorithm 1: Embedding quaternion knowledge graph based on relation
mapping

Input: Entity set E, relation set R, and triple set T

Output: Missed triples T

Process:

1. For ei in E do: entityDict ← ei; end for //Build entity dictionary

2. For ri in R do: relationDict ← ri; end for //Build relation dictionary

3. For triplei in T do: tripleDict ← triplei; end for //Build triple dictionary

4. Ventity ← entityDict //Representing entities with quaternions

5. Vrelation ← relationDict //Representing relations with quaternions

6. Vhr, Vht ← relationDict //Associate two quaternion vectors with each

relationship

7. for q = 1, 2, ..., Q in epoch do

8. for i in batch do:

9. Vh, Vr, Vt ← entityDict, relationDict, tripleDict;

10. h▷, t▷ ← h, t; /Entity mapping

11. Vh▷t
⊗←− h▷, Vr //Rotate the head entities

12. ψ(h, r, t) ← dotproduct(Vh▷t), t
▷; //quaternion inner product

13. loss ← (t, ψ(h, r, t)); //Compute loss

14. Minimize loss;

15. Update parameters;

16. end for
17. end for

We abstracted the KG completion task as a prediction task, such as predicting
tail entities based on given head entities and relationships or predicting relationships



1700D. L. CUI, X. W. CHEN, S. Y. LI, Z. P. PENG, Q. R. LI, J. G. HE, J. B. XIONG, AND M. T. ZHENG

based on head and tail entities. Therefore, we sorted the triples in the test set and
used the scores generated by the score function to calculate the results.

We evaluated four well-known benchmark datasets:WN18 [23], FB15k [18],
WN18RR [11], and FB15k-237. The relationship patterns of WN18 included sym-
metric, asymmetric, and inverted relationships. WN18RR removed the reverse re-
lationship and retained the relationship patterns as symmetric, asymmetric, and
combinatorial relationships due to the tendency of reverse relationships to cause
leakage of the reverse relationship set. Similarly, the FB15K dataset contained
symmetric, asymmetric, and inverse relationships. FB15K-237 included symmet-
ric, anti-symmetric, and combinatorial relationships, with the reversal relationship
removed. The characteristics of these four datasets are shown in Table 2.

Table 2. Statistics of datasets

Model Entity quantity Relation Training set Validation set Testing set

WN18RR 409,43 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1345 483,142 50,000 59,071

MRR, MR, Hits@1, and Hits@10 are the evaluation indicators used to evaluate
experimental results. MRR measured the average reciprocal ranking of correct en-
tities in the ranking function. Hits@k was the proportion of three effective rankings
in the first k predictions among the four evaluation indicators. Lower MR, higher
MRR, and higher Hits@k indicated better performance.

Training plan: We set up 100 batches for all datasets. The learning rate values
were 0.02, 0.05, 0.1, with negative triple samples 1, 5, 10 for each training triple,
embedding dimensions 128, 256, 384, and regularization rates of 0.05, 0.1, 0.2, 0.5.
We trained 8000 times on WN18 and WN18RR and 2000 times on FB15k and
FB15k-237. We monitored the scores of WN18 and WN18RR with an interval of
400 epochs, as well as the scores of FB15k and FB15k-237 after every 200 iterations
on Hits@10 Score. We used grid search to select hyperparameters.

3.5. Experimental results. As shown in Tables 3 and 4, the model proposed in
this study achieved good results on all four datasets. It outperformed the QuatE
model in all metrics on the WN18RR dataset. On the FB15k-237 dataset, except for
MR, all other metrics were superior to those of the QuatE model. In terms of metrics
MRR and Hit@1, the improvement rates were 4.8% and 8.0%, respectively. On the
WN18 dataset, the performance of MR and H@10 was superior to that of the QuatE
model. Similarly, on the FB15k dataset, two metrics outperformed the QuatE
model. The aforementioned experimental results demonstrated the effectiveness of
the modeling method proposed in this study.

Our proposed model was compared with QuatE on the dataset FB15k-237 to
further validate our effective modeling of relationship mapping attributes. The
specific results are shown in Figures 3 and Figures 4. Our proposed model exhib-
ited superiority under various mapping attributes. The improvement in our model



QUATERNION-BASED KNOWLEDGE GRAPH EMBEDDING 1701

Table 3. Experimental results for WN18RR and FB15k-237

Model WN18RR FB15k-237

MRR MR H@10 H@1 MRR MR H@10 H@1
DistMult .430 5110 .49 .39 .241 254 .419 .155
Complex .440 5261 .51 .41 .247 339 .428 .158
R-GCN - - - .151 .248 - .417 .151
KBGAN .214 - .472 - .278 - .458 -

ConvTransE .46 - .52 .43 .33 - .51 .24
ConvE .43 4187 .52 .40 .325 244 .501 .237

InteractE .463 5202 .528 .430 .354 172 .535 .263
RotatE .470 3277 .565 .422 .297 185 .480 .205
MuRR .481 - .566 .440 .335 - .518 .243
Rot-Pro .457 2815 .577 .397 .344 201 .540 .246
QuatE1 .481 3472 .564 .436 .311 176 .495 .221
QuatE2 .488 2341 .582 .438 .348 87 .550 .248
DualE .482 - .561 .440 .344 - .518 .237
Ours .493 2042 .591 .440 .365 88 .559 .268

Table 4. Experimental results for WN18RR and FB15k-237

Model WN18 FB15k

MRR MR H@10 H@1 MRR MR H@10 H@1
DistMult .797 655 .946 - .798 42 .893 -
Complex .941 - .947 .936 .692 - .840 .599
TorusE .947 - .954 .943 .733 - .832 .674
ConvE .943 374 .956 .935 .657 51 .831 .558
RotatE .947 184 .961 .938 .699 32 .872 .585
QuatE1 .949 388 .960 .941 .770 41 .878 .700
QuatE2 .950 162 .959 .945 .782 17 .900 .711
DualE .953 - .961 .945 .790 - .881 .734
Ours .937 105 .961 .920 .799 32 892 .738

performance was more significant compared with QuatE, especially when dealing
with complex N:1 relationships (prediction head entities) and N:N relationships.
This performance improvement was due to our effective modeling of relationship
mapping attributes, especially by capturing the complexity between relationships
through the network.

This study evaluated the performance of the model under each relationship in
the WN18RR dataset, as shown in Table 5, to further validate the performance of
the model from a fine-grained perspective. The proposed model exhibited better
performance in most relationships compared with the two representative rotation
models RotatE and QuatE. Among these relationships, Hypernym/Instance Hy-
pernym and Member Meronym/Has Part were the most common representatives
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Figure 3. Performance of Hits@10 on the FB15k-237 dataset for
testing each mapping relationship

Figure 4. MRR’s performance in testing each mapping relation on
the FB15k-237 dataset

of inversion and combination relationships. Compared with QuatE, the method
proposed in this study improved the Hypernym/Instance Hypernym and Has Part
relationships by 10.4%, 4.9%, and 11.4%, respectively. This proved that relational
mapping could better model inversion and combinatorial relationships. In addition,
the model proposed in this study applied to the 1:N relationship member of the
domain region and improved by 39.9% compared with RotatE, verifying superior
modeling capabilities. Better performance could be achieved through relational
mapping.
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Table 5. MRR scores for the WN18RR test set for each relationship

Relationship RotatE QuatE Ours

Hypernym 0.154 0.172 0.190
Instance hypernym 0.324 0.362 0.380
member meronym 0.255 0.236 0.236

synset domain topic of 0.334 0.395 0.500
has part 0.205 0.210 0.234

member of domain usage 0.277 0.372 0.487
member of domain region 0.243 0.140 0.340
derivationally related from 0.957 0.952 0.950

also see 0.627 0.607 0.622
Similar to 1.000 1.000 1.000
verb group 0.968 0.930 0.921

4. Conclusions

In this study, we learned the embedding of entities and relations in quaternion
space using the quaternion KGE method for relational mapping. The quaternions
were rotated to achieve superior relational schema modeling capabilities, and pro-
jections were used to handle complex relational mapping attributes. Our proposed
model displayed better performance for the KG complementation task on well-
known benchmark datasets.
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