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based on the difference in signal propagation speeds between multiple receivers [15].
Although theoretically feasible, solving the TDOA equation system requires special
algorithms and techniques due to its nonlinear characteristics [8].

The TDOA system, characterized by its nonlinear nature, is a set of equations
based on time differences [5]. To solve the nonlinear optimization process of the
target, it is often necessary to convert it into a linear equation system. Traditional
TDOA positioning is mainly solved via analytical algorithms such as the Fang al-
gorithm [4], Chan algorithm [19], Taylor algorithm [7], and Gaussian-Newton (GN)
algorithm [1]. The Fang algorithm is limited to two-dimensional three-base station
or three- dimensional four-base station positioning and cannot fully utilize redun-
dant data [14]. Various methods, such as phase difference compensation and TDOA
estimation based on reference signal integration, have been proposed to enhance ac-
curacy [2]. However, the accuracy of the Taylor and GN algorithms is limited by the
initial position of the series expansion, which may result in non-convergence [16,17].
Recent studies have proposed algorithms such as an indoor 3D positioning algorithm
based on multiple swarm sparrow algorithms [9], and a DV-Hop sensor positioning
algorithm improved by the grey wolf optimization algorithm [12], both of which im-
prove positioning accuracy and convergence speed. Additionally, an improved whale
optimization algorithm has been proposed for solving TDOA, enhancing algorithm
robustness [11].

These algorithms do not require constructing a system of equations but only
need an appropriate fitness functionṪhrough algorithm search strategies, an optimal
estimated position can be achieved, yielding higher positioning accuracy. However,
according to the No Free Lunch (NFL) theory [13], no single intelligent algorithm
is universally applicable to all optimization problems. In the application of TDOA
algorithms, intelligent algorithms often face challenges such as excessive control
parameters, slow convergence in later stages, and susceptibility to local optima.
Therefore, finding a suitable intelligent algorithm model for TDOA positioning and
addressing its shortcomings in a targeted manner is crucial. A new metaheuristic
algorithm, the Dung Beetle Optimizer (DBO), has been proposed, exhibiting fast
convergence speed and high solution accuracy [18].

This article aims to study TDOA localization technology based on an improved
dung beetle algorithm. Firstly, a detailed introduction to TDOA positioning tech-
nology is provided, covering its principles, application areas, and existing problems.
Secondly, an analysis of traditional TDOA positioning algorithms is conducted,
highlighting their limitations. Then, a TDOA localization method based on the
improved dung beetle algorithm is proposed, detailing the algorithm steps and op-
timization strategies. Finally, the advantages of the improved dung beetle algorithm
in TDOA localization are verified through experimental simulation and comparative
analysis. The research results are significant for improving the accuracy and reli-
ability of TDOA positioning technology. By enhancing the dung beetle algorithm,
the search strategy of the localization algorithm can be optimized to improve local-
ization accuracy. Looking ahead, TDOA positioning technology based on improved
dung beetle algorithms can be combined with other positioning technologies to fur-
ther enhance the performance of multi-mode positioning systems and achieve wider
applications.
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2. TDOA positioning model

The TDOA (Time Difference of Arrival) localization model is a time-based method
used to determine the position of a target in two-dimensional or three-dimensional
space. This model relies on measuring the time differences of the target signal
reaching multiple receivers and estimates the target’s position by calculating the
differences in distances. This section focuses on two-dimensional positioning; the
principles can be extended to three-dimensional coordinates. Assuming the coordi-
nates of the target are P (x, y), there are N base stations participating in the local-
ization solution, with their coordinates being R1(X1, Y1), R2(X2, Y2),…Ri(Xi, Yi),
i = 1, 2...N . The actual distance between the test tag and the ith base station is
di. The geometric model of TDOA positioning for multiple base stations is shown
in Fig. 1.

Figure 1. Geometric model of multi base station TDOA positioning.

Assuming there is a target with two-dimensional position coordinates (Px, Py),
and there are N receivers R1(X1, Y1), R2(X2, Y2),…Rn(Xn, Yn). The true time for
the tested tag to send a signal to reach the ith base station is ti. The expression for
ti and di as follows:

(2.1) di = cti =

√
(x−Xi)

2 + (y − Yi)
2.

Between the signal reaching each receiver can be expressed as:

(2.2) ti = (di − dref i) c.

Here, dref i represents the reference distance of the ith point, and c denotes the
signal propagation speed.

The TDOA positioning model needs to consider factors such as the accuracy of
receiver position, sensor clock synchronization, and uncertainty in signal propaga-
tion speed. Due to the presence of noise during signal transmission and ei is the
noise error. The measurement time for the signal to reach base station i is Ti, the
measurement distance is Di, and the expression can be obtained:

(2.3)

{
Ti = ti + ei

Di = cTi = c(ti + ei)
.

Let the distance measurement error be Ei, and the difference between the distance
measurement values between the label distance base station i and base station j is
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Di,j , the expression [10] can be obtained:

(2.4)

{
Ei = cei

Di,j = Di −Dj = cTi − cTj
.

Joint announcement 1-4 can obtain the distance and position relationship between
the target label and the base station:

(2.5) Di,j = c (Ti − Tj) = di − dj + Ei − Ej .

A hyperbolic equation system can be established based on measurement data to
estimate the position of the tested label and construct a fitness function.

3. Improved dung beetle optimization algorithm

3.1. Description of Dung Beetle Optimization Algorithm. The Dung Beetle
Optimizer (DBO) is an intelligent optimization algorithm derived from the rolling,
dancing, breeding, foraging, and stealing behaviors. Based on these behaviors, the
DBO algorithm designs five different update rules [6].

(1) Dung beetle rolling behavior
Dung beetles make a living by rolling dung balls in nature. They use light to

determine their travel trajectory, and their updated position as follows:

(3.1)

{
xi (t+ 1) = xi (t) + α× k × xi (t− 1) + b×∆x

∆x = |xi (t)−Xw| .

Among them, t is the number of iterations, xi (t) is the i dung beetle during
iteration, k is the deflection coefficient, b is a constant, α is the natural coefficient,
Xw is the global worst position, and ∆x is the degree of change in light intensity.

(2) Dancing behavior of dung beetles
When the dung beetle is unable to move forward due to obstacles, it dances to

obtain a new path forward. By simulating dance, use relevant functions to obtain
new rolling directions. Once the new direction is successfully determined, the fecal
ball will continue to roll backwards. Therefore, its position update method can be
expressed as:

(3.2) xi (t+ 1) = xi (t) + tan (θ)|xi (t)− xi (t− 1) |.

Among them, θ For deflection angle, θ ∈ (0, 2π).
(3) Reproductive behavior of dung beetles
For the DBO algorithm, female insects produce one egg in each iteration. Which

can prevent the algorithm from falling into local optima. The position of the incu-
bated fecal balls is also dynamically changing during the iteration process, and its
definition is as follows:

(3.3) Bi (t+ 1) = X∗ + b1 × (Bi (t)− Lb∗) + b2 × (Bi (t)− Ub∗).

Among them, Bi(t) is the position of the i-th incubated egg fecal ball at the t-th
iteration, and b1 and b2 represent sizes of 1 × 2independent random vectors of D,
where D represents the dimension of the optimization problem.

(4) The foraging behavior of dung beetles
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After hatching, newly hatched dung beetles need to ingest nutrients and start
foraging. The foraging area includes a range constraint, and the optimal foraging
area is defined as follows:

(3.4)

{
Lbb = max

(
Xb × (1−R) , Lb

)
Ubb = min

(
Xb × (1 +R) , Ub

).
Among them, Xb is the global optimal position, and Lbb and Ubb are the optimal

foraging area. After the position update method for the dung beetle can be defined:

(3.5) xi (t+ 1) = xi (t) + C1

(
xi (t)− Lbb

)
+ C2 (xi (t)− Ubb ).

Here xi(t) represents the position of the ith beetle at the tth iteration, C1 rep-
resents a random number that follows a normal distribution, and C2 represents a
random vector belongs to (0, 1).

(5) Dung beetle theft behavior
Dung beetles are known as theft behavior. The updated definition of their loca-

tion is as follows:

(3.6) xi (t+ 1) = Xb +X × b3 × |xi (t)−X∗|+ z × b3 × |xi(t)−Xb|.
Among them, Z is a constant, b3 is size of the random vector of 1×D and follows

a normal distribution.

3.2. Fitness function. In the TDOA positioning problem, it is required for the
number N of base stations to be greater than 3, assuming base station R1(X1, Y1)
as the main base station Di,j follows a mean of 0 and a variance of δ2d = 2δ2new of
Gaussian distribution, all measured values that are independent of each other. The
maximum likelihood estimation method is used to determine the position of the
tested label, and its likelihood function is as follows:

(3.7)
L =

∏N
i=2

{
1√
2πδd

exp
[
− (Di,1−di+d1)

2

2δ2d

]}
=

(
1√
2πδd

)N−1
× exp

[∑N
i=2(Di,1−di+d1)

2

−2δ2d

]
.

The coordinate value of the maximum likelihood function can be equivalent to:

(3.8) (x̂, ŷ) = argmin

[
N∑
i=2

(Di,1 − di + d1)
2

]
.

The fitness function can be obtained as:
Among them, (x̂, ŷ) is the estimated position of the label to be tested, where

the “argmin” function represents obtaining the minimum parameter value within
its defined domain.

The fitness function can be obtained as:

(3.9) fitness =

N∑
i=2

(Di,1 − di + d1)
2 .

Face to this situation, the fitness function is designed as follows:

(3.10) Fj =
N∑
i=1

(Di,j − di + dj)
2 .
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Then, j ̸= i, j ∈ {1, 2, . . . , N}.
The improved fitness function calculates the fitness function values for each base

station as the main base station, and then obtains the minimum fitness function
value for each main station, which is used as the improved fitness function and can
be expressed as:

(3.11)

{
fitness = min(F1, F2, . . . , FN )

(x̂, ŷ) = argmin[fitness]
.

The DBO algorithm initializes the position of the population by generating ran-
dom numbers during the population initialization stage, resulting in uneven distri-
bution of beetle positions in the population, which cannot guarantee the algorithm’s
global search ability. This article introduces Bernoulli mapping, incorporating fea-
tures such as randomness, nonlinearity, and traversal, and initializing the population
using its generated chaotic number to achieve better optimization performance. The
mapping expression is as follows:

(3.12) pk+1 =

{ pk
1+λ 0 < pk ≤ 1− λ

pk−(1−λ)
λ 1− λ < pk < 1

.

Among them, pk is the current value of the kth generation chaotic sequence, λ is
a control parameter.

3.3. Improved DBO optimization. DBO optimization improvements were made
to the rolling and stealing behavior of dung beetles, introducing the golden sine
strategy to optimize rolling behavior and the adaptive Levi flight strategy to opti-
mize stealing behavior, increasing local search ability and ensuring the algorithm’s
noise resistance.

(1) Optimizing Rolling Ball Behavior with Golden Sine Strategy
The algorithm utilizes the scanning characteristics of the sine function within

the unit circle, reduces the search space through the golden ratio, improves search
speed and accuracy, and introduces the golden sine strategy to improve the rolling
behavior of beetles in the DBO optimization algorithm. The improved formula is:

(3.13)


xi (t+ 1) = xi (t) |sin (g1)| − g2sin (g1) |g1Xi (t)− g2xi (t)|

g1 = −π + 2π × (1− h)
g2 = −π + 2πh

h =
√
5−1
2

.

Among them, g1 and g2 is the golden ratio coefficient, h is the segmentation rate,
and Xi (t) is the optimal position of the ith dung beetle after t iterations. (2) Adap-
tive Levy Flight Optimization for Theft Behavior By using the Levy flight probabil-
ity distribution model and incorporating high-frequency short distance walks and
low-frequency long distance jumps, flight strategies are typically represented by a
power-law distribution:

(3.14) L (S) |S|−1−β (0 <β< 2).

Among them, S is the step size, and L (S) is the moving step size probability.
Then, the Mantegna method is used to generate a random step size that follows a
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Levy distribution:

(3.15) S =
u

|v|
1
β

.

Among them, u and v follow a normal distribution:

(3.16) σ2
u =

Γ (1 + β)× sin
(
πβ
2

)
2

β−1
2 × β × Γ

(
1+β
2

)


1
β

.

In the formula, β for the scaling factor, σu is the standard deviation of u, with a
value range of N(0, 1) for v and a value range of N

(
0, σ2

u

)
for u. Introducing Levy

flight strategy into dung beetle theft and adding adaptive links to balance search
diversity and convergence accuracy, the improved formula (3.4) is:

(3.17) xi (t+ 1) = Xb + Z × b3 × |xi(t)−X∗|+ Z × b3 × |xi(t)− ζXb |+ ζL(S).

Among them, L (S) is the flight step length, ζ for the adaptive movement factor,
t is the number of iterations.

4. Simulation results and analysis of the experiment

This article investigates the simulation and testing of TDOA localization perfor-
mance using the IDBO algorithm in the Matlab environment. Simulation testing
can help evaluate the accuracy, stability, and robustness of algorithms, and optimize
and analyze different parameter settings.

4.1. Convergence performance analysis. To verify its convergence performance,
Sparrow Algorithm (SSA), Whale Algorithm (WOA), Grey Wolf Algorithm (GWO),
and the unimproved DBO algorithm were compared with the IDBO algorithm.
When the population size is 40 and the noise power is −40dB. When the noise
standard deviation σd = 0.01m, analyze the convergence performance of the algo-
rithm by comparing the changes in its fitness value and root mean square error
(RMSE).

New experiments were conducted to explore the impact of population size on
RMSE values in heuristic optimization algorithms. As shown in Fig. 2, the rela-
tionship between RMSE and population size is illustrated.

Analyzing the graph, it can be seen that the LDBO algorithm converges when
the population size is between 20 and 30, and is less affected by the population
compared to the DBO algorithm; Similarly, the SSA algorithm has relatively stable
localization data when the population size is small, but its RMSE value is slightly
higher than that of the LDBO algorithm; The WOA algorithm and GWO algorithm
require a population size of 80 or even higher to achieve convergence and obtain
relatively stable RMSE values.

As shown in Fig. 3, the RMSE values of each algorithm decrease with increasing
iteration times and then tend to stabilize. Among them, WOA and GWO require
more than 80 iterations to converge, and the RMSE value at convergence is much
higher than other algorithms; The SSA algorithm tends to converge after about
50 iterations, while DBO and IDBO tend to converge after about 20 iterations.
The number of convergence iterations and the RMSE value of convergence indicate
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Figure 2. Relationship
between RMSE and pop-
ulation size.

Figure 3. Relationship
between RMSE and Iter-
ation Times.

Figure 4. Comparison of positioning accuracy under different num-
bers of base stations.

that the IDBO algorithm can achieve good optimization results. Requiring 20-
40 iterations to obtain stable optimization results, and the optimization results
are more in line with the requirements of TDOA solution, with good convergence
performance.

4.2. Precision Analysis. For our first experimentation, the population size was
set to 40 and the number of iterations to 500. To verify the positioning accuracy
of the algorithm, SSA, GWO, WOA, DBO, and IDBO algorithms were selected for
comparison of positioning accuracy.

When analyzing the performance of distance noise standard deviation σd =
0.01m, in addition to the existing 4 base stations, an additional 8 base stations
are arranged. Set the base station (0,0) as the main base station, and the other
three base stations as slave stations. The positions of the near point to be tested la-
bels are (15,15) and the far point to be tested labels are (40,40). Conduct two sets
of experiments, namely, near point distance measurement and far point distance
measurement. The coordinates of the 8 additional base stations are: (0,15), (15,0),
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(35,50), (50,35), (0,35), (35,0), (15,50), and (50,15). Fig. 4 shows the comparison
of positioning accuracy under different numbers of base stations.

As the number of base stations increased from 4 to 12, the RMSE of SSA, WOA,
GWO, DBO, and IDBO decreased by 42.67%, 3.78%, 1.28%, 42.75%, and 89.60%,
respectively. This indicates that compared to other intelligent algorithms, the IDBO
algorithm can better utilize redundant measurement data from excess base stations
and improve measurement accuracy.

Set the measurement distance noise is σd ∈ [0.1, 1.0]m, experimental comparison
of positioning accuracy was conducted for various algorithms in different noise en-
vironments, with 1000 positioning experiments conducted for each group. Set the
base station (0,0) as the main base station, and the other three base stations as
slave stations. The position of the near point test label is (5,5), and the position
of the far point test label is (40,40). As shown in Table 1, the RMSE comparison
table of the near point test label under different noises is presented.

Table 1. Comparison of RMSE under Different Noises (Near Point).

θd RMSE CRLB
WOA GOW SSA DBO IDBO

0.1 1.1739 0.3809 0.3652 0.3712 0.2990 0.0772
0.2 1.0571 0.4837 0.4932 0.4762 0.4231 0.1545
0.3 1.0603 0.5562 0.5799 0.5632 0.5213 0.2318
0.4 1.1780 0.7042 0.6496 0.6609 0.6065 0.3091
0.5 1.1362 0.7161 0.7250 0.7489 0.6838 0.3864
0.6 1.2624 0.7837 0.7919 0.7670 0.7371 0.4637
0.7 1.4146 0.9142 0.8808 0.8291 0.8210 0.5409
0.8 1.3489 0.8735 0.8743 0.8920 0.8423 0.6182
0.9 1.5189 0.9391 0.9436 0.9698 0.9276 0.6955
1.0 1.5297 0.9844 1.0306 1.0258 0.9186 0.7728

As shown in Table 2, the RMSE comparison table for the far point test label
under different noises is presented.

According to Tables 1 and 2, as the distance noise standard deviation increases,
the positioning error of each algorithm also increases. The Chan algorithm has a
large error, while intelligent algorithms have errors below 1.1m, with the IDBO
algorithm having the smallest error. For both near point and far point measure-
ments, the RMSE of the IDBO algorithm remains around 0.02m, whereas other
intelligent algorithms have errors around 0.2m. This indicates that in the IDBO
algorithm, the influence of the main base station is equivalent to that of the slave
stations, resulting in more stable and accurate measurement accuracy compared to
other algorithms.

In summary, the IDBO algorithm achieves higher positioning accuracy in different
noisy environments and positioning positions.
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Table 2. Comparison of RMSE under Different Noises (Far Point).

θd RMSE CRLB
WOA GOW SSA DBO IDBO

0.1 0.5755 0.3701 0.3782 0.3533 0.2811 0.0917
0.2 0.6350 0.4712 0.4755 0.4721 0.3889 0.1835
0.3 0.6693 0.5583 0.5733 0.5549 0.4823 0.2752
0.4 0.7483 0.6550 0.6432 0.6404 0.5732 0.3670
0.5 0.7683 0.7134 0.6872 0.6940 0.6301 0.4587
0.6 0.8433 0.7770 0.7630 0.7461 0.6701 0.5505
0.7 0.9266 0.8288 0.8216 0.8239 0.7650 0.6422
0.8 0.9453 0.8409 0.8346 0.8939 0.8077 0.7340
0.9 0.9914 0.9526 0.9210 0.9180 0.8837 0.8257
1.0 1.0234 0.9625 0.9778 0.9747 0.9288 0.9174

5. Conclusion

To address the issues of insufficient accuracy and slow speed in traditional Time
Difference of Arrival (TDOA) positioning algorithms, this paper enhances the ap-
plication of the Dung Beetle Optimization Algorithm (DBOA) for TDOA position-
ing. The improved algorithm demonstrates good positioning accuracy under various
signal-to-noise ratio and measurement error conditions.

We enhanced the DBOA by introducing a probability distribution function to ac-
count for TDOA measurement errors and refining the algorithm’s evaluation func-
tion. These improvements better consider the impact of measurement errors on posi-
tioning accuracy and increase the algorithm’s robustness. Additionally, an adaptive
weight adjustment strategy was adopted to improve the algorithm’s convergence,
and a dynamic weight adjustment mechanism was introduced to enhance its global
search capability, making it easier to find the global optimal solution.

The effectiveness of the proposed improved algorithm was verified through com-
parative analysis with other commonly used optimization algorithms, showing su-
perior positioning accuracy under various measurement error conditions. Future
work will focus on implementing the algorithm on embedded hardware platforms
to optimize size, power consumption, and hardware filtering capabilities. Addition-
ally, fusion thinking will be used to integrate other positioning sensors with UWB
modules for enhanced positioning.
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