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FIXED POINT RESULTS FOR NONLINEAR RELATIONAL
RATIONAL CONTRACTIONS ON DISLOCATED METRIC
SPACES WITH APPLICATION

SHAHBAZ ALI, QAMRUL HAQUE KHAN, ASIK HOSSAIN, AND NIDAL H. E. ELJANEID

ABSTRACT. In this article, we use a binary relation to demonstrate the existence
and uniqueness of fixed points in the context of dislocated metric space under the
new generalized (¢, 1)-rational contraction. Additionally, we present an example
to demonstrate our recently validated findings. Lastly, we provide an application
to fractional differential equation.

1. INTRODUCTION

The Banach contraction [7] theorem is indeed a fundamental result in mathe-
matical analysis with broad applications across various disciplines. It states that a
contraction mapping from a complete metric space to itself has a unique fixed point,
and it has found extensive use in diverse areas such as functional analysis, optimiza-
tion, differential equations, and dynamical systems. The richness and versatility of
the Banach contraction theorem concept have led to a vast literature exploring on
applications and extension, making it an essential tool in modern mathematics. The
expansion of fixed-point theory into the realm of partially ordered metric spaces has
indeed been a significant development in recent years, leading to fruitful applications
in various areas of mathematics.

One early finding in this direction was made by Turinici [22] who explored fixed-
point results in ordered metrizable uniform spaces, laying a foundation for further
investigations in this field. Following this, Ran and Reurings [20] utilized fixed-point
results in partially ordered metric spaces to solve matrix equations, showcasing the
utility of this approach in linear algebra problems. Similarly, Nieto and Rodriguez-
Lopez [19] utilized fixed-point results in partially ordered metric spaces to address
partial differential equations with periodic boundary conditions, highlighting its
relevance in mathematical physics.

In 2015, Alam et al. [2] made a significant contribution by establishing a gen-
eralization of the Banach contraction principle (BCP) using an amorphous binary
relation instead of a partial order. This breakthrough opened up new avenues for
research, leading to the proposal of various relation-theoretic results by several re-
searchers [3,15,16]. Many subsequent works have focused on generalizing the BCP
to encompass a broader range of contractive conditions, often based on one or more
auxiliary functions. Omne notable version of this generalization was proposed by
Dutta and Choudhury [10], which has since been further generalized and improved
by numerous researchers [3], demonstrating the ongoing evolution and refinement of
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these concepts. Additionally, Chandok et al. [9] established results concerning the
existence and uniqueness of fixed points for a certain rational type of contraction en-
dowed with a partial order, contributing to the theoretical framework of fixed-point
theory in partially ordered metric spaces.

Subsequently, Kumar et al. [17] extended the results of Chandok et al. [9] within
the context of complete partial metric spaces, further expanding the applicability
of these findings [3]. Hitzler [12] presented a noteworthy extension of the BCP
by introducing dislocated metric spaces. It is worth noting that dislocated metric
spaces (DMS) are sometimes also referred to as DMS (as observed by Amini-Harandi
[5]). For further insights into DMS, interested readers can refer to works such

s [13,14].

In this article, we use a binary relation to demonstrate the existence and unique-
ness of fixed points in the context of dislocated metric space under the new gener-
alized (¢, 1)-rational contraction. Additionally, we present an example to demon-
strate our recently validated findings. Lastly, we provide an application to fractional
differential equation.

Throughout this manuscript Ng, N, and R, denote the set of whole numbers,
natural numbers, and real numbers respectively.

Definition 1.1 ([11]). Let G be a non-empty set. Then a mapping p : G x G — RF
is said to be a partial metric on G if for all &, s, & € G,

(i) 6 = » <= p(6,6) =p(&, %) = p(>, ),
(i) p(S,6) <p(6, ),
(i) p((?) x) = p(%7 6),
(iv) p(S, %) < p(6,8) +p(&, %) — p(6,8).
The pair (G, p) is called a partial metric space.

Definition 1.2 ([12]). Let G be a non-empty set. Then a mapping d : G x G — R
is said to be dislocated on G if for all &, € G

(i) (6 w)=0 = &=

(i) 3(S, ) = 0, &),

(iii) 3(6, ) < (6, ®) + J(&, »).

The pair (G, ) is called a dislocated ( or metric like ) space. Here it can be pointed
out that all the requirement of a metric are met out except 5(@5, (5) may be positive
for & € G.

Remark 1.3 ([1]). Every metric is a partial metric and every partial metric is a
dislocated but converse implication is not true in general.

Definition 1.4 ([5]). Let {S,} be a sequence in a DMS (G,d). Then we say that

° {Gn} converges to a point S in G if and only if limy, 00 9(6,,6) =9(6,6),

e {&,} is Cauchy in G if and only if lim,, ;00 0(S,,, &) (finitely) exists,

e the DMS (G d) is complete if every Cauchy sequence {&,,} in G converges
to a point & in G with respect to topology 75 generated by 9 (denote as

S, % &) such that limy, e (6, &) = 3(6,6) = lim,, o0 (S, 6).
Definition 1.5 ([11,18]). Let H be a binary relation on G. Then &, » € G,
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(i) The inverse relation H~' = {(&,) € G? : (»%,6) € H} and symmetric
closure H® := H U H~ L.
(ii) & and s are H-comparative if either (&, ») € H or (3c,5) € H. We denote
it by [S, 2] € H.
(iii) A sequence S, C G is called H- preserving if (én, énﬂ) e HVneN,.

Motivated by Alam and Imdad [2], Ahmadullah et al. [1] define relation-theoretic
variants of completeness and continuity in DMS.

Definition 1.6 ([1]). Let (G,d) be a DMS equipped with a binary relation . We
say that (G, 5)V is H-complete if every H-preserving Cauchy sequence {&,} € G,

there is some & € G such that
lim 3(&,, #,) = 8(6,6) = lim (&,,6).

n—o0 n—oo

Recall that the limit of a convergent sequence in DMS need not be unique.

Definition 1.7 ([1]). Let (G,d) be a DMS equipped with a binary relation H.
Then a mapping J : G — G is said to be
e sequentially-continuous at & if for any sequence {én} with &,, =% &, we
have 3(&,) =% J(&). As usual, J is said to be a sequentially-continuous if
it is a sequentially-continuous at each point of G.
o H-sequentially-continuous at & if for any H-preserving sequence {én} with
S, % 6, we have 3(6,) = J(&). As usual, J is said to be a H-
sequentially-continuous if it is an H - sequentially - continuous at each point
of G.

Definition 1.8 ([2]). Let (G,d) be a DMS. A binary relation A defined on G is
called 0”-self-closed if whenever {én} is an H-preserving sequence and G, = 6
then there exists a subsequence {S,,, } of {G,} with [&,,,,&] € H for all k£ € Np.

Definition 1.9 ([2]). Let G be a nonempty set and J a self-mapping on G. A
binary relation H defined on G is called J-closed if for any &, € GG

(6,%) cH = (36,Tx) € H.

Proposition 1.10 ([2]). Let G, J and H be same as in Definition 1.9. H* must
also be J-closed if H is J-closed.

Definition 1.11 ([21]). Let G be a nonempty set and H a binary relation on G.
A subset Y of G is called H-directed if for each &, s € Y, there exists & € G such
that (6,®) € H and (s, 8) € H.

Definition 1.12 ([6]). Given N € Ny, N > 2, a binary relation #H defined on a
non-empty set G is called N-transitive if for any Sp, &1,G9, -+ ,6x5 € G

(éi—h él) €H foreachi(l<i<N) = (éo, éN) cH.

Notice that notion of 2-transitivity coincides with transitivity. Following Turinici
[22], H is called finitely transitive if it is N-transitive for some N > 2.
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Definition 1.13 ([6]). A binary relation H defined on a nonempty set G is called
locally finiltely transitive if for each denumerable subset E of G, there exists NV =
N(E) > 2, such that H|g is N-transitive.

Definition 1.14 ([4]). Let G be a nonempty set and J a self mapping on G. A
binary relation H on G is called locally finitely J-transitive if for each denumerable

subset E of J(G), there exists N = N(E) > 2, such that H|g is N-transitive”.

Lemma 1.15 ([8]). Let (G,d) be a metric space and {S,} a sequence in G. If
{6} is not a Cauchy sequence, then 3 € > 0 and subsequences {S,,_} & {G,, } of
{&,,} such that
(i) ggvmgfngV§€N,
(ii) (S, Gn.) > ¢,
(iii) 5(677%, épg) >e€, Ve € {m§+17 Mey2, ..., Nc—2, ng_1}.
Additionally, if lim, 5(@5n, 6n+1) =0, then

(iv) lime—s00 (S, Gnotp) = € ¥V p € No.

Lemma 1.16 ([6]). Let G be a non empty set, H a binary relation on G and {&,,}
is a H-preserving sequence in G”. If H is a N-transitive on' Y := {&,, : n € Ny}
for some natural number N > 2, then

(én, én+1+T(N71)) S H, V n,r € N().
2. A NEW CLASS OF (®, ¥)-CONTRACTION

Let ® denote the class of the functions ¢ : [0,00) — [0,00) which satisfy the

following assumptions:

®; : ¢ is right continuous;

®y : ¢ is monotonic increasing and ¢(0) = 0.
Let ¥ denote the class of the functions ¢ : [0,00) — [0,00) which satisfy the
following assumptions:

Uy (t) > 0,t> 05

Uy :lim¢,, inf)(r) >0,V r > 0.

Remark 2.1 ([3]). Axiom ¥, is equivalent to the following:
U If 3 t € [0,00) such that ¥(t) =0, then t=0.

Proposition 2.2 ([3]). If there exists a pair of auxiliary functions ¢, : [0,00) —
[0,00), which satisfies azioms ®o and V1 such that V s € [0,00) and t € (0,00),

6(s) < o(t) — (1), thens < t.

Proposition 2.3. Let (G,0) be a DMS and 3 a self mapping on G. If 3 an auziliary
functions ¢, : [0,00) — [0, 00), which satisfies axioms ®o and ¥y respectively, such
that T3 is a (¢, v)-contraction of Alam et al. [3], then T is contractive and hence is
continuous.

Given a binary relation H and a self-mapping J on a non-empty set GG, we use
the following notations:

(i) F(J) := the set of all fixed points of J,
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(ii) ¥(&, 5, H) : the class of all paths in H from & to s,
(iii)

Now, we define the new generalized (¢, 1)-rational contraction as follows:

Definition 2.5. Let (G,d) be complete DMS and J : G — G be a self mapping,
then J is said to satisfy new generalized (¢, 1))-rational contraction if for ¢ € ® and
1 € ¥ such that

H(B(36,T3)) < ¢(M(S, ) —p(N(6, %)) V &, € G with (&, x) € H.

Proposi'gion 2.6. Given a DMS (G, d) equipped with a binary relation H, a map-
ping J: G — G and an auziliary function ¢ € ® and i € U, the following contrac-
tivity conditions are equivalent:
(a) $(0(36,75)) < ¢(M(S, x))
(b) ¢(8(36,75)) < $(M(S, ))

Y(N(S, %)) V &, € G with (&
N(G, »

, %) € H.
V(N(S, )V &, € G with [, »

] e H.

3. MAIN RESULT

Theorem 3.1. Let (G, ) be a dislocated metric space and H a binary relation on
G. Let 3: G — G be a self-mapping satisfying the following conditions.
(i) 3 a subset Y C G with 3G CY such that (Y,d) is H-complete,
(ii) 3 &g such that (S9,3S¢) € H,
(iii) H is J-closed,
(iv) either J is H - sequentially -continuous or H|y is 0-self-closed,
(v) T satisfy the new generalized (p,1)- rational contraction.

Then J has a fized point.

Proof. By condition (ii), 3 &y €@ such that (Sy,36,) € H. Now we define the
sequence Qf Picard iterates G,41 = J6,. If 369 = &( then nothing to prove.
If 36y # Sy then by the condition (iii), we get

(3.1)  (36,3%60), (3760, 360, (3360, 3*Sp) - - - (3" S, I Sp) - - € H.
As (6,,6,41) € H Vn €Ny, ie., {&,,} is H-preserving sequence.

Denote 0, := 0(6,,,6,+1). If 3 ng € Ny such that d,, = 0, then by (3.1), we
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conclude that éno = én0+1 = ﬁ(éno) so that éno is a fixed point of J. Otherwise,
we have 0,, > 0V n € Ny. Applying condition (v), we get

(3-2) ¢(5(émén+1)) = ¢<8(jén—l7j€5n)) < ¢(M(én—laén)) _w(N<6n—1a 671))

where

M(6n71, én)

)

1+ 6(("5”71, én)

= Imax {6(6n—1a Sn), 6(67% én—&-l)a

= max {5(671—1, én); 5(6717 ém—l)}-

Similarly,

n—1, 671)7 6(671—17 jén—l); 8(67’” jén)a
5(én, jén)[l + 5(6,171, jénfl)] 5(én71, jénfl)[l + 6(
14+ 5(én_1, én) ’ 1+ 5((5”_1,

)7 E§(én—lv én)v 8(6717 6n+1)7
(v < < <

6(67“ énJrl)[l 0 671,717 Gn)] 5(6n717 Gn)[l + 6(Gvsnfla én)] }
1+ 5(671—17 én) ’ 1+ 6(671—17 én)

— max {5(én_1, &,),0(6,, én+1)}.

Therefore (3.2) can be rewritten as
$(0n) = $(0(6n, Gnr1))
< ¢(max(8(Sn-1,6y),8(6n, Sp41)))
— Y (max(8(6p-1,6,),0(6n, Gp11)))
< ¢p(max(0p—1,05)) — ¥ (max(0p—_1,0,)).
Now if d,, > 0,,—1 then by equation (3.3), we get

By properties of ®, we get 1)(9,,) < 0, which is a contradiction to condition ¥,.

(3.3)
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Hence we have 9,, < 9,_1 which amount to say that d, is decreasing sequence.
Then equation (3.3) yields that

(3-4) ¢(0n) < ¢(On-1) — P (On-1).
In view of Proposition 2.2 and (3.4) gives rise
Op < 0p_1 Vn € Ng,

which yields that the sequence {9,,} is a decreasing sequence of +ve real numbers.
Since it is bounded below by 0 (as a lower bound ), there is an element x > 0 such
that

(3.5) lim 9,, = k.

n—oo

Now, we claim that k = 0. On contrary suppose that x > 0. Taking upper limit in
Eqn. (3.4), we obtain

lim sup ¢(0,) < lim sup ¢(0n—1) + lim sup [~¢(Tp-1)]
(36) < lim sup ¢(0p—1) — lim inf ¢(0p—1).
n—o0 n—oo
Using (3.5) and (3.6) reduces to
¢(r) < d(k) = lim inf ¢ (3,-1),
n—r00
implying thereby
lim infe)(9,-1) = lim inf(d,-1) <0,
n—o0

Op—K

which contradicts the property of Wo. Therefore we have
(3.7) lim 9, = hm (6, 6,41) = 0.

n—00

Now we show that {&,} to be Cauchy sequence. Let on contrary that {S,} is
not a Cauchy sequence. Therefore, by Lemma 1.15, 3 ¢ > 0 and subsequences
{6,.} & {6, } of {&, }suchthat ¢ < me < ne, 5(6m§,6n§) > eand 9(G,y,, 6y, ) <

€ where p. € {m¢c+ 1, m¢ + 2,. — 2,n. — 1}. Further, using (3.6) and Lemma
1.15, we have
(3.8) lim 3(&,,., 6y 4p) = € ¥p € No.

S—00

As {6,,} is H-preserving and {&,} C J(G) (owing to (3.1)) and hence the range
E = {6, : n € Nyo} (of the sequence {S,}), is a denumerable subset of J(G), By
locally finitely J-transitivity of H, 3 a natural number N' = N'(E) > 2, such that
H|g is N-transitive. As m¢ < ne and N/ —1 > 0, using Division Algorithm we have
ne —me = (N —1)(a¢ — 1) + (N — 5)

ac—1>0,0<N — B <N —1

ne + B = me + 1+ (N = 1)ag

ac>1,1< B <N.

Here above a¢ & fc are natural numbers such that Sc can assume positive integral
value in interval (1, N]. Hence, we can choose subsequences {&,,_} & {G,,_} of {S,}
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satisfying Eqn. (3.8) such that §. remains constant say (, which is independent of
¢. Write

(3.9) m.=ne+B=mc+1+ N —1)ag
where 5(1 < 8 < N) is constant. Owing to (3.8) & (3.9), we get
(3.10) lim (S, Spy) = lim (S, 6n) +B=c

Using triangular inequality, we have
0(Smet1,6m11) < 0(Smt1,6m,) +0(Spmy, Spnr) +0(Spr, Syt 41)
and Ej(éémga émé) < 5(émg7 éngrl) + 6(ém<+1a émé—i—l) + 6(ém’g+1> émé)

therefore, we have

(Sme, Smr) — (Spmes Smt1) — (S = Spr)
<O(Smt1,6mr11) < 0(Smei1,6m,) +0(Smy, Spnr) + 0(Spr, Sy 11)
which on letting ¢ — oo and using (3.7) and (3.10), gives rise
(3.11) nh_)nolo 0(6 m§+1,6m/§+1) =¢

In view of (3.9) and Lemma 1.16, we have 3(&,,_, émé) € H. By using Eqn. (3.1)
and condition (v), we have

$(O(Sm+1,6m11)) = B(0(I6m,,ISm))
< ¢(M(émg7 ém’.)) - w(N(quv ém’ ))
Let M, = M(&,,,,&,y) and N, = N (S,

@<
G-)<
AS\
(s
=
@
=

(3.12) A(O(Smet1: Smy41)) < ¢( <) — (o)
So,
M; =M (S, Spr)
= max {8(G ., Smy), (S, ISm,),
8(S i, 36, (S, ISm;) 4;6(6,712,36%),
0(6m, :

5(677127677124-1) 2 . )
5(ém/§7 Gm +1)[1 + 6(6m§’ GmC‘H‘)} 6(ém§’ ém§+1)[1 + 6(677%7 ém§+1)] }
1+03(Sm,, Smr) ’ 1+03(Sm,, Smr) '

Then taking limit ¢ — oo and using (3.7), (3.10), (3.11) we get
(3.13) M. = max {€,0,0,¢,0,0} =e.
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Analogously,
Ne=N(Sp.,6mr)

6(Gm ,6m +1)[1 + 6(6m§7 éngrl)] 6(ém Gm +1)[1 + 5(6m§, 6m§+1)] }
1+ 0(Sm, St ) ’ 1+ 0(Sm, St )

Then taking limit ¢ — oo and using (3.7), (3.10) and (3.11) we get
(3.14) N, = max {¢,0,0,0,0} = e.
Taking upper limit in Eqn. (3.11), we get
2 Sup B3G5, 41, S 1)) < lim supd(M) + lim sup[-(N,)]
which on using (3.10), (3.11), (3.13) & (3.14) becomes
$(6) < 6(e) — lim infui(c)

yielding thereby

lim inf(e) = gll)rgo infy(e) <0

S—00
which contradicts to the property Wo. It follows that {én} is an H-preserving
Cauchy in Y. By H-completeness of (Y, ), there is s € Y such that the sequence
{G,,} converges to » with respect to topology 75 generated by 0 i.e.,

(3.15) lim O(Sp, ) = 0(s¢, %) = lim 3(6,,6,41) = 0.

~ T5

Firstly suppose that J is H{-sequentially- continuous. Then &,41 = IS, — T, so
that

lim 8(&,41,3%) = lim 8(3&,,Tx)
n—oo n—oo
(3.16) = 0(J5, )
= lim (6, Spt1) = 0.
n—oo
On using triangular inequality, (3.15) and (3.16), we have 0(s¢,Js) = 0, so that s

is a fixed point of J. }
Alternately, if H|y is O-self closed. As {S,} is an H-preserving sequence in Y’

and &,, =% 5, there is a subsequence {S,_} of {&,} with [&,_, %] € H V ¢ € Ny.
In view of condition (v) and Proposition 2.6, we have

A(0(Sn+1,T52)) = ¢(5(3@ 35))
(6n

3.17
(3.17) oM

%)) = P(M(Gy, %)).
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Let M, = M(&,,, ») and N,,_ = N(&,,_, ») then
(3.18) H(0(Snet1,7%)) = (Mp,) = $(Nn,).
So,
M, = M(&,_, )

. 3 ) 56, .3 ; g
:max{5(6n<,%)73(6,1(,36”()76(% ) (6 c,J%)—;— (5,36 <)7

0(5¢, 3)[1 + 8(60, I6,,)] 0(Sn,, IS, )[1 4+ 0(S n7jénc)]}
1+9(6,_, %) ’ 1+03(&,,, )

= max {6(én§’ %)’ 5(én§, én§+1)’ 6(%, j]{)’ 6(671(, J%) —;6(%, Gng_;'_]_) ,

9(5¢,350)[1 + 0(6Gn,, S 11)] 0(Sn.,Spi1)[1 +0(Sy, S i1)] }
14+03(6,,, ) ’ 14+ 03(6,,, ) ’

Taking limit ¢ — oo and using éng 5% 3¢, we obtain
0(s¢,T)

(319)  lim M, = max {0, 0,0(s¢, ),
k—o0 2

L9, 3%),0} — 352, 3%).
Similarly,
No. = N(&,, )
— max {9(&,, ), (6, ISy, ), 8¢, 35),

05, 35)[1 4+ 3(6,,_,36,,.)] 3(6,.,36,)[1+3(& n,jéng)]}

14+ 0(6,,, ) ’ 1+ 03(6,,, )
= max {5(@5n§, »), 5(6%, én§+1), 0(s, ),

6(%7 j%)[]‘ + 6(671«;7 énq+1)] 6(éng7 énq“‘l)[ + 6(6n<7 én§+1)] }
1+93(Sp,, ) ’ 1+0(6n,, )

Taking limit ¢ — oo and using 6571c D% 3¢, we obtain

(3.20) li}m Ny, =max {0,0,0(3,J5),0(3¢, T5),0} = (¢, T2).
S—00

Taking upper limit in equation (3.18), we get
hm sup ¢(d(&,,,Tx)) < hm sup ¢(M,, ) + hm sup[ (Np, )],

which on using (3.19), (3.20) becomes
$(B,35) < 9(0(3,32)) — Tim inf (0 (s, 7)),

yielding thereby
lim inf ¢)(0(5¢,T)) = lgn inf ¥ (0(5¢,T5)) <0,
¢— 00

S— 00

which contradicts to the property Wo. Hence, s = Jsz, that is s is a fixed point of
J. O
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Theorem 3.2. In addition of Theorem 3.1, If 3(G) is H*-directed, then 3 admits
unique fized point.

Proof. Let g‘%, s are two fixed points, i.e., & = & & Js = » then two cases arise.
Case I If (G, ») € H then

(3:21)  ¢(3(6,x)) = ¢(3(36,T5)) < (M(
So, then

\.G) ‘
X
|
=
=
@
X

< $(0(6,5)) — 9 (0(6, ),
yielding there by Y(9(S, %)) < 0, which is a contradiction to the condition Ws.

Hence & = ». 5 § 5
Case II: If (6, ») ¢ H then by J(G) is H*-directed then 3 z € G such that (&,8) €
H and (B, ») € H. Since H is J-closed 3" ® will be related to I"S i.e., (36,76 =

S) € R for any n € Ny. Then by condition (v) of Theorem 3.1, for any n € Ny, we
have

(3.22)

Now,
M(3"'6,7"'6) = max {6(3"*195, 7"716),0(3"18,37"16),0(3" 16,3371 6)
00" 'e,30"16) +0(3" 16,371 8)
2 ’
9("'6,33"16)[1 +0(7" 16,37 1e)]
14 3(3n18,3716)
0(3"'8,33"'8)[1 + (3" 16,377 18] }
)

9

14 3(3n16,3716)
= max {9(3"'®6,6),5(7"'18,7"6),0(6,
S 1

[
2 ’ 14 9(3n18,6)



996 S. ALI, Q. H. KHAN, A. HOSSAIN, AND N. H. E. ELJANEID

3(I" 18, 3"®)[1 + 5(I"1S, II)] }

149(0"16,6)

Similarly, for N(ﬁ”_l(’S, Jn- é) o(" é) Then (3.22) reduces to
(3.23) $(8(3"718,6)) < ¢(8(3" 16, 6)) — ¥(5(3" 16, 6)).

Using Proposition 2.3 we have
9(0"®,6) <3(1" ', 6).
Which amount to say that {8(3"®,&)} is a decreasing of positive real numbers,
which is bounded below by 0, 3 ¢ > 0 such that
(0", 6) =

Our claim is that ¢ = 0, for that let on contrary that ¢ > 0 then taking upper limit
to the equation (3.23) we get

iigbsuquw(’.?"@,é)) < lim sup $(5(3"" 16.68)) + lim sup[—u;(é(j"*les,é))]
< 11m sup<b( ("1, 6)) - hm 1nf¢( ("8, 6))

by right continuity of ¢ we get
¢(s) < ¢(c) = lim inf (<)

which amounts to say that lim,,_, inf ¢/(¢) < 0, which is contradiction to the con-
dition Wy. Hence, lim,_,0,{0(3"®, &)} = 0 means lim,,_,o, 3"® = &. Analogously,
we can proved that lim, ,., J"® = 3. Then by unicity of limit we have S = .
Hence, J admits unique fixed point. O

On setting Y = G in Theorem 3.1, we deduce the following:

Corollary 3.3. Let (G,9) be a DMS equipped with a binary relation H and J a
self-mapping on G. Suppose that the condition (ii), (iii), (v), (vi) together with
following conditions are satisfied:

(vii) : (G,0) is H-complete,

(viti) : either J is H-sequentially-continuous or H is 0-self-closed.

Then J admits unique fized point.

Corollary 3.4. If we replace the contractive condition of Theorem 3.1 and 3.2, by
the following condition

$(0(36,75)) < 9(M(S, %)) — (M (6, »))

where
M (&, ) = max {(8, ), 8(8.36), (. 320), 22 ;W 78)
0(>,3)[1 + 8(6,36)] 9(6,I6)[1 +0(6,36)] }
1—1—5( ) ’ 1_‘_5(6’%) )

forallp € ® and yp € V. Then J has a fixed point.
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Taking ¢ as identity mapping and ¥ (t) = (1 — k)t for & € (0,1). We deduce
the several versions of our newly proved results in the context of metric, universal
relation and rational expression.

Remark 3.5. Under the setting of 3 = p (i.e., partial metric), H = G x G in
Theorem 3.1 then our results deduce to Corollary 2.4 of Kumar et al. [17].

1
Remark 3.6. Under the setting of & = p (i.e., partial metric), # = G x G and

replacing M (&, ») by N(&, ) in Theorem 3.1 then our results deduce to Corollary
2.5 of Kumar et al. [17].

4. APPLICATION TO A FRACTIONAL DIFFERENTIAL EQUATION

Now we are going to find the solution of a fractional differential equation bound-
ary value problem by means of fixed point theorem. Let us consider the problem

(4.1) D&u(é) = \(6,u(6)),0< & < 1
(4.2) u(0) = u(1) = 4/(0) = /(1) = 0,

where 3 < a <4, A € RT, f:[0,1] x R — R is continuous and Df, denotes the

standard Riemann-Liouville fractional derivative. Define a relation X on G as
uHy = u(&) <v(&) VY u,v e C[0,1] and & € [0, 1].

In 2009, Xu et al. [23] transform the above boundary value problem in to an integral
equation, which as follows:

Lemma 4.1. Boundary value problem (4.1), (4.2) is analogous to the integral equa-
tion

1
3 w®) = [ K81 Ge e
0
where
] (é_%)a71+(1—%)a*2ré(z)*2[(%—é)a—2(1—é)%1, if0<x<&<1
K(6,x) = (1—2)2—2&=2[(5— &) —2(1— 6)%] if0<S&<x<1.

(@)

To reduce the problem into more simpler one, Xu et al. [23] introduced another
lemma to bound the value of the kernel of the integral equation (4.3) as follows:

Lemma 4.2. For all 6,5 € (0,1), we have Ay < K(S&,) < Ay, where A; =

a— %2 AL 2&a—2 2 a—2 a—2
(022 (g SO HUSOR gy = S20eO1 By and By =

mazx{a — 1, (a —2)?}.

Now for existence and uniqueness of the solution of boundary value problem we
have following theorem.

Theorem 4.3. Consider the boundary value problem (4.1), (4.2) and assume that
any of the following conditions hold:
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(1) 3 a real number B with 0 < 5 < 1, such that

|f (e, u(30)) = f(52,0(0)| < BIf (52,u(5))| = B sup |u(6))]

0<6<1

for all real valued continuous functions u(s), v(x) defined on [0,1] and
A > 1.
(ii) 3 a real number B with 0 < B < 1, such that

£ (55, u(30)) = f(56,0(5))| < Blu(se) —v(>)]

for all real valued continuous functions wu(x),v(s) defined on [0,1] and
Ao < 1.

Then, the problem has a unique solution in C10,1].

Proof. We know that C[0, 1] with 0 the supremum metric is complete DMS. Define
a selfmap J on C[0, 1] by

1 ~
:)\/0 K (6, 5) f (52, u(5))0,

for u € C[0,1] and & € [0,1]. Then the fixed point of J is the solution of the
boundary value problem (4.1) and (4.2).

Now we will show that all the hypothesis of Theorem 3.1 and contractivity condition
of Corollary 3.4 are satisfied .

To prove that the relation # is J-closed, take u,v € G such that uHuv, i.e., By the
assumption, we have ug = 0 € C[0, 1] such that

~ 1 ~
0=u(G) = )\/0 K (6, 5) f(s,u(s))0s,
< Jup =0,

this implies that ugHJug, implying thereby G(3J,H) is non-empty.
Now we prove that the relation H to be J-closed, choose u,v € C[0, 1] such that
uHwv, then for v(t) > u(t)

K(6,2)f (5 u(>) < #)f(5,0(x))
/K s, u(x))0sx < /K ,0(2))05¢
Ju(G) <

implies that (Ju,Jv) € H. Hence, H is J-closed. Firstly, assume that conditions (7)
holds. Then for v(t) > u(t) we have

MK (S, 50)|f (52, u(52)) — £ (52, 0())]

< BAK(S, )| f (52, u(x))| = BAK(S, ) sup |u(S)].
0<6<1
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So
1 5 1 §
/ AK (6, 30)| f (52, u(30)) — f(5e,0(50))] < / BAK(G, 5)| f (3¢, u(5))|
0 0

1
—/0 BAK (S, %) sup |u(S)|ds.

0<6<1

1
— / INK(&,30)f (e, u()) — MK (&, 30) f (32, 0(30))|
0

1
< / BN (&, 30)| £ (2, u(2))| — ﬁAKAl sup [u(&)[0s.
O<G<1
/ BAK (G, 52)| f (52, u(5¢)) [0 — BAK Ay u(&)|

/ BAK(&, 52)| £ (52, u(3¢))[05¢ — BJu(&)|

gﬁ\/ MK (S, 3) f (52, u( %))5%711(@”.
0
Therefore, for any u,v € C[0,1] and & € [0, 1], we have

(1(30)(8) = @0)()) = A| [ K@ a0foecuie = | (6,000
< [ K21 e ) = o)) o

<] [ AR n a0 u(@)

= BI(Tu)(6) — u(S)|.
So,
0(Ju,Jv) < BO(Ju,u) < M(u,v).
Similarly,
0(Ju,Jv) < BO(Ju,u) < N(u,v).
Now, if we choose the condition (iz), then

~ ~ 1 ~ 1 ~
(1(30)(8) = @0)(S)) = A [ K(&.)fGeulo)e— [ K(S.) (o))
1
<0 [ K. ) = )0

1
< )\ﬁAo/ lu(se) — u(S)|
0
= ABA0(u,v)
< B0(u,v).
Therefore,
0(Ju, Jv) < po(u,u) < M(u,v).
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Similarly,
0(Ju,Jv) < BO(u,u) < N(u,v).
Then for u,v € C[0,1] and the assumption of (i) and (ii) we have

(4.4) ¢(0(Tu, Jv)) < (M (D(u,v))) — (M (0(u,v))).
Using Remark 2.4, we have
(4.5) ¢(0(Ju,Jv)) < ¢(M(B(u,v))) = Y(N(O(u,v))).

For ¢(t) =t and ¥(t) = (1 — B)t, equation (4.3) holds true. Then we can say that
J satisfy the contractive condition of the Theorem 3.1.

For H to be O-self closed, consider {u,} a H-preserving Cauchy sequence con-
verging to u € C[0,1]. As {u,} is H- preserving, we have

up(6) < ur(6) <up(6) < -+ <un(6) < 6,41(6) <--- <w(6) Selo,1],

then we have u,Hu Vn € N. Therefore, H is 0- self closed.

Hence, we verify that all conditions of Theorem 3.1 are satisfied. Hence J has a
fixed point, which amounts to say that the integral equation (4.3) has a solution.
Finally we can say that the fractional differential equations (4.1) & (4.2) have a
solution in C0, 1]. O

Now we can give an example in support of Theorem 3.1.

Example 4.4. Suppose G = [0, 1] and define 0 : G x G — R+ by
66 if & =x
max{&, »}, elsewhere.

0(6, ») = {

and define binary relation H by H = {(&,%) € G? : » > & and » < 1}, Then
(G,0) is a mevtric—like space which is neither a pagtial metric space nor a metric
space. Also (G, 0) is a H-complete DMS. Take J: G — G defined by

j(é) — 6 Z‘f G? € [07 1)
0, if 6 =1.
Then # is J-closed. Let {&,} be an arbitrary sequence such that Vé” SNNG (for
some 6 € (), e, {Gy} is a sequence in [0,1) such that &, < &,41 V n with
limy, 00 0(6,,6) =0(6,6). Then for & € [0,1) and
< 1 < <
=6 = (0(6,8))
1 < <
= —(lim 0(6,,6))

n—oo

I 66, if S, =5
= —| lim ( < )
6 \ n—oo \ | max{&,, »}, elsewhere.

= lim {66671 if Sn =

o | Qu
o | G

0(36,36) = 6(

I

Su 21 elsewhere.

n—oo max{ 6

76
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= lim 6(36,,36).

n—oo

This shows that Jg‘iin SN 36 and hence J is an H-sequentially-continuous. Now, for
any (6, ) € Gx G with (&, ) € H, one can easily verify that $6(S, ») < M (S, »)
and %9(@5, x) < N(G, x), then we have

>

0(36,35) = (
max{
66 if &=

max{&, »}, elsewhere.

N—

d
6

G cn\ G

if &=

%, %}, elsewhere.

I
= A

L
1, [§16(S, )
= 69(6,%)— L 10

SO(TS,Tx) < ¢(M(S,5)) —h(N(S, )

which implies that J satisfies the assumption (v) of Theorem 3.1 for ¢(t) = t and
P(t) = gﬂ Consequently all the conditions of Theorem 3.1 are satisfied and hence

0

J has fixed point namely & = 0. Further the fixed point is also unique.
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