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findings, we explore the guarantees of a unique solution of a BVP which remains a
special case of (1.1).

2. Preliminaries

The sets of natural numbers, whole numbers, and real numbers are represented
by their respective standard symbols: N, N0, and R. A relation on a set H is defined
as a subset of H2. In the continuation, let H be a set, ξ a relation on H, d a metric
on H and ζ : H → H a mapping.

Definition 2.1 ( [2]). We say that p, q ∈ H are ξ-comparative if (p, q) ∈ ξ, or
(q, p) ∈ ξ. Such a pair is usually denoted by [p, q] ∈ ξ.

Definition 2.2 ([16]). ξ−1 := {(p, q) ∈ H2 : (q, p) ∈ ξ} is named as inverse of ξ.

Definition 2.3 ([16]). ξs := ξ ∪ ξ−1 is called symmetric closure of ξ. Obviously,
(p, q) ∈ ξs ⇐⇒ [p, q] ∈ ξ.

Definition 2.4 ([2]). ξ is named as ζ-closed if for any p, q ∈ H with (p, q) ∈ ξ, we
have

(ζp, ζq) ∈ ξ.

Definition 2.5 ([2]). {pk} ⊂ H is termed as a ξ-preserving sequence if (pk, pk+1) ∈
ξ, ∀ k ∈ N.

Definition 2.6 ([3]). (H, d) is termed as ξ-complete metric space if any ξ-preserving
Cauchy sequence in H converge.

Definition 2.7 ([3]). ζ is termed as ξ-continuous if for each p ∈ H and for any

ξ-preserving sequence {pk} ⊂ H with pk
d−→ p,

ζ(pk)
d−→ ζ(p).

Definition 2.8 ([2]). ξ is termed as d-self-closed if each ξ-preserving convergent

sequence {pk} ⊂ H with pk
d−→ p ∈ Υ admits a subsequence {pki} with [pki , p] ∈ ξ.

Definition 2.9 ([15]). Given K ⊆ H, the set ξ|K := ξ ∩ K2 being a relation on K
is termed as restriction of ξ on K.

Definition 2.10 ([4]). ξ is termed as locally ζ-transitive if for every ξ-preserving
sequence {qk} ⊂ ζ(H) with range K = {qk : k ∈ N}, ξ|K is transitive.

Definition 2.11 ([12]). Given ℵ ∈ N − {1}, ξ is named ℵ-transitive if for each
p0, p1, . . . , pℵ ∈ Υ,

(pi−1, pi) ∈ ξ for each i (1 ≤ i ≤ ℵ) ⇒ (p0, pℵ) ∈ ξ.

Thus, the ideas of usual transitivity and 2-transitivity are equivalent.

Definition 2.12 ([21]). ξ is termed as finitely transitive if ∃ ℵ ∈ N−{1} for which
ξ is ℵ-transitive.

Definition 2.13 ( [5]). ξ is termed as locally finitely ζ-transitive if for every ξ-
preserving sequence {qk} ⊂ ζ(H) with range K = {qk : k ∈ N}, ξ|K is finitely
transitive.
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Remark 2.14. finitely transitivity implies locally finitely ζ-transitivity. Also, lo-
cally ζ-transitivity implies locally finitely ζ-transitivity.

Definition 2.15 ([17]). K ⊆ H is termed as ξ-directed if for any p, q ∈ K, ∃ w ∈ H
with (p,w) ∈ ξ and (q,w) ∈ ξ.

Proposition 2.16 ([4]). If ξ is ζ-closed, then ξ is ζk-closed, ∀ k ∈ N0.

Lemma 2.17 ([21]). If H is a set endued with a relation ξ, {pk} ⊂ Υ is ξ-preserving
sequence and ξ is an ℵ-transitive on K = {pk : k ∈ N0}, then

(pk, pk+1+υ(ℵ−1)) ∈ ξ, ∀ k, υ ∈ N0.

Lemma 2.18 ([12]). If a sequence {pk} is not Cauchy in a metric space (H, d),
then ∃ ε0 > 0 and ∃ subsequences {pki} and {pli} of {pk} enjoying the properties:

(i) i ≤ li < ki, ∀ i ∈ N,
(ii) d(pli , pki) ≥ ε0, ∀ k ∈ N,
(iii) d(pli , pνk) < ε0, ∀ νk ∈ {li + 1, li + 2, . . . , ki − 2, ki − 1}.

Moreover, if limk→∞ d(pk, pk+1) = 0, then

lim
k→∞

d(pli , pki+υ) = ε0, ∀ υ ∈ N0.

The following families of functions were proposed, respectively, by Alam et al. [5]
and Jleli et al. [13]:

Ω = {σ : [0,∞) → [0,∞) : t ∈ (0,∞) ⇒ σ(t) < t and lim sup
r→t

σ(r) < t}

and

Ψ = {ψ : [0,∞)4 → [0,∞) : ψ is continuous and

ψ(t1, t2, t3, t4) = 0 ⇔ ti = 0, for some i = 1, 2, 3, 4}.

Proposition 2.19. Given σ ∈ Ω and ψ ∈ Ψ, (A) and (B) are equivalent:

(A) d(ζp, ζq) ≤ σ(d(p, q)) + ψ(d(p, ζp), d(q, ζq), d(p, ζq), d(q, ζp)),
∀ p, q ∈ H with (p, q) ∈ ξ.

(B) d(ζp, ζq) ≤ σ(d(p, q)) + ψ(d(p, ζp), d(q, ζq), d(p, ζq), d(q, ζp)),
∀ p, q ∈ H with [p, q] ∈ ξ.

Proof. The conclusion arrives instantly utilising the symmetric character of metric
d. □

3. Main results

This section resolves the fixed point results to meet a relational nonlinear func-
tional contraction.

Theorem 3.1. Let (H, d) be a metric space, ζ : H → H a map, and ξ a relation
on H. Also,

(i) ∃ p0 ∈ H satisfying (p0, ζp0) ∈ ξ,
(ii) ξ remains ζ-closed and locally finitely ζ-transitive,
(iii) (H, d) continues to be ξ-complete,
(iv) H remains ξ-continuous, or ξ continues to be d-self-closed,
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(v) ∃ σ ∈ Ω and ψ ∈ Ψ verifying

d(ζp, ζq) ≤ σ(d(p, q)) + ψ(d(p, ζp), d(q, ζq), d(p, ζq), d(q, ζp)),

∀ p, q ∈ H with (p, q) ∈ ξ.

Then, ζ admits a fixed point.

Proof. Beginning with p0 ∈ H, we construct a sequence {pk} ⊂ H that fulfills

(3.1) pk := ζk(p0) = ζ(pk−1), ∀ k ∈ N.
Using (i), (ii) and Proposition 2.16, we get

(ζkp0, ζ
k+1p0) ∈ ξ,

which owing to (3.1) becomes

(3.2) (pk, pk+1) ∈ ξ, ∀ k ∈ N0.

This yields that {pk} is a ξ-preserving sequence.
Define

dk := d(pk, pk+1).

If dk0 = 0 for some k0 ∈ N0, then we have ζ(pk0) = pk0 and hence pk0 is a fixed
point of ζ. Thus the proof is concluded.

In either case, we have dk > 0, ∀ k ∈ N0. Using (3.1), (3.2) and condition (v),
we get

dk = d(pk, pk+1) = d(ζpk−1, ζpk)

≤ σ(d(pk−1, pk)) + ψ(d(pk−1, pk), d(pk, pk+1), d(pk−1, pk+1), 0),

which using the property of Ψ reduces to

dk ≤ σ(dk−1), ∀ k ∈ N0.(3.3)

Utilizing the property of Ω in (3.3), we get

dk < dk−1, ∀ k ∈ N.
Thus ∃ d∗ ≥ 0 verifying

lim
k→∞

dk = d∗.(3.4)

We now claim that d∗ = 0. In either case d∗ > 0, letting the upper limit in (3.3)
and employing (3.4) and the definition of Ω, we get

d∗ = lim sup
k→∞

dk ≤ lim sup
k→∞

σ(dk−1) = lim sup
dk→l+

σ(dk−1) < d∗,

which is not possible. Hence

lim
k→∞

dk = 0.(3.5)

If possible, assume that {pk} is not Cauchy. According to Lemma 2.18, ∃ ε0 > 0
and ∃ subsequences {pki} and {pli} of {pk} satisfying

k ≤ li < ki, d(pli , pki) ≥ ε0 > d(pli , pνk), ∀ k ∈ N, νk ∈ {li+1, li+2, . . . , ki−2, ki−1}.
By (3.4) and Lemma 2.18, we find

lim
k→∞

d(pli , pki+υ) = ε0, ∀ υ ∈ N0.(3.6)
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Due to (3.1), we have K := {pk : k ∈ N0} ⊂ ζ(H). Making use of locally finitely
ζ-transitivity of ξ, ∃ ℵ ≥ 2, such that ξ|K is ℵ-transitive.

We have li < ki and ℵ − 1 > 0, Thus by division algorithm, we have

ki − li = (ℵ − 1)(τk − 1) + (ℵ − θk)

τk − 1 ≥ 0, 0 ≤ ℵ − θk < ℵ − 1

⇐⇒

{
ki + θk = li + 1 + (ℵ − 1)τk

τk ≥ 1, 1 < θk ≤ ℵ.

Obviously, θk ∈ (1,ℵ]. Assume that the subsequences {pki} and {pli} of {pk}
(satisfying (3.6)) are chosen such that θk = θ is a constant and so

l′i = ki + θ = li + 1 + (ℵ − 1)τk.(3.7)

By (3.6) and (3.7), we get

lim
k→∞

d(pli , pl′i) = lim
k→∞

d(pli , pki+θ) = ϵ.(3.8)

Making use of triangular inequality, we get

d(pli+1, pl′i+1) ≤ d(pli+1, pli) + d(pli , pl′i) + d(pl′i , pl′i+1)

and

d(pli , pl′i) ≤ d(pli , pli+1) + d(pµk+1
, pl′i+1) + d(pl′i+1, pl′i).

Therefore, we have

d(pli , pl′i)− d(pli , pli+1)− d(pl′i+1, pl′i) ≤ d(pµk+1
, pl′i+1)

≤ d(pli+1, pli) + d(pli , pl′i) + d(pl′i , pl′i+1)

which on using k → ∞ and by (3.6) and (3.8) reduces to

lim
k→∞

d(pli+1, pl′i+1) = ϵ.(3.9)

Using (3.7) and Lemma 2.18, we find (pli , pl′i) ∈ ξ. Denote δk := d(pli , pµ′
k
). By

condition (v), we get

d(pli+1, pµ′
k+1) = d(ζpli , ζpµ′

k
)

≤ σ(d(pli , pµ′
k
))

+ψ{d(pli , ζpli), d(pµ′
k
, ζpµ′

k
), d(pli , ζpµ′

k
), d(pµ′

k
, ζpli)}

so that

(3.10) d(pli+1, pµ′
k+1) ≤ σ(δk) + ψ{dli , dµ′

k
, d(pli , pµ′

k+1), d(pµ′
k
, pli+1)}.

Employing limit superior in (3.10) and by Lemma (2.18) and the properties of Ω
and Ψ, we obtain

ε0 = lim sup
k→∞

d(pli+1, pµ′
k+1) ≤ lim sup

k→∞
σ(δk) + ψ(0, 0, ε0, ε0) = lim sup

t→ε+0

σ(t) < ε0,
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which remains contradiction. Hence {pk} remains Cauchy. But {pk} is also ξ-

preserving; so by ξ-completeness of H, ∃ p̄ ∈ H such that pk
d−→ p̄.

In view of (iv), assuming firstly that ζ is ξ-continuous. Consequently, {pk} being

ξ-preserving verifying pk
d−→ p̄, provides pk+1 = ζ(pk)

d−→ ζ(p̄). This implies that
ζ(p̄) = p̄.

Secondly, assuming that ξ is d-self-closed; therefore {pki} of {pk} with [pki , p̄] ∈
ξ, ∀ i ∈ N. Utilizing (v), Proposition 2.19 and [pki , p̄] ∈ ξ, we obtain

d(pki+1, ζp̄) = d(ζpki , ζp̄)

≤ σ(d(pki , p̄)) + ψ(d(pki , pki+1), 0, d(pki , p̄), d(p̄, pki+1))

= σ(d(pki , p̄)).

We claim that

(3.11) d(pki+1, ζp̄) ≤ d(pki , p̄), ∀ i ∈ N.

If for some k0 ∈ N, d(pkk0 , p̄) = 0, then we get d(ζpkk0
, ζp̄) = 0, i.e., d(pkk0+1, ζp̄) =

0 and hence (3.11) holds for these k0 ∈ N. If d(pki , p̄) > 0, ∀ i ∈ N, then we have
d(pki+1, ζp̄) ≤ σ(d(pki , p̄)) < d(pki , p̄), ∀ i ∈ N. Thus, the inequality (3.11) is

verified. Letting limit of (3.11) and pki
d−→ p̄, we conclude pki+1

d−→ ζ(p̄) and so
ζ(p̄) = p̄. Therefore, p̄ serves as a fixed point of ζ. □

Theorem 3.2. In the collaboration to assertions of Theorem 3.1, if ζ(H) is ξs-
directed, then ζ owns a unique fixed point.

Proof. If possible, ∃ p̄, q̄ ∈ H such that

(3.12) ζ(p̄) = p̄ and ζ(q̄) = q̄.

Owing to p̄, q̄ ∈ ζ(H), ∃ w ∈ H such that

(3.13) [p̄,w] ∈ ξ and [q̄,w] ∈ ξ.

Set ρk := d(p̄, ζkw). By (3.12), (3.13) and (v), we conclude

ρk = d(p̄, ζkw) = d(ζp̄, ζ(ζk−1w))

≤ σ(d(p̄, ζk−1w)) + ψ(0, d(ζk−1w, ζkk), d(p̄, ζkw), d(ζk−1w, p̄))

= σ(ρk−1)

so that

(3.14) ρk ≤ σ(ρk−1).

Firstly, assume that ∃ k0 ∈ N such that ρk0 = 0. Then ρk0 ≤ ρk0−1. Secondly, we
have ρk > 0, ∀ k ∈ N. In this case, (3.14) becomes ρk < ρk−1. Thus in each of the
cases, we conclude

ρk ≤ ρk−1.

Similar to Theorem 3.1, above inequality concludes

(3.15) lim
k→∞

ρk = lim
k→∞

d(p̄, ζkw) = 0.



NONLINEAR FUNCTIONAL CONTRACTIONS 979

In the similar manner, we find

(3.16) lim
k→∞

d(q̄, ζkw) = 0.

Combining (3.15) and (3.16), we get

d(p̄, q̄) = d(p̄, ζkw) + d(ζkw, q̄) → 0 as k → ∞

i.e., p̄ = q̄. This verifies uniqueness of fixed point. □

Remark 3.3. Under the restriction ψ(t1, t2, t3, t4) = 0, Theorems 3.1 and 3.2 de-
duce corresponding theorems of Alam et al. [5].

Remark 3.4. In particular for ψ(t1, t2, t3, t4) = r ·min{t1, t2, t3, t4} (where r ≥ 0),
Theorems 3.1 and 3.2 deduce the corresponding theorems of Khan et al. [14].

4. Examples

In demonstrating Theorems 3.1 and 3.2, we go to the following examples.

Example 4.1. Let H = [0,∞) with usual metric d. On H, define a relation
ξ := {(p, q) ∈ H2 : p − q > 0}. Define the map ζ : H → H by ζ(p) = p

p+1 .

Clearly, ξ is locally finitely ζ-transitive and ζ-closed, (H, d) is ξ-complete and ζ is
ξ-continuous.

Define the test functions σ(t) = t
t+1 and ψ(t1, t2, t3, t4) = t1t2t3t4. Then σ ∈ Ω

and ψ ∈ Ψ. Now, for any (p, q) ∈ ξ, we conclude

d(ζp, ζq) =

∣∣∣∣ p− q

1 + p+ q+ pq

∣∣∣∣ ≤ d(p, q)

1 + d(p, q)

≤ σ(d(p, q)) + ψ(d(p, ζp), d(q, ζq), d(p, ζq), d(q, ζp)).

Thus, assertion (v) of Theorem 3.1 is verified. Remaining presumptions of Theorem
3.1 and Theorem 3.2 also hold; so ζ owns a unique fixed point, p̄ = 0.

Example 4.2. Let H = [0, 1] with usual metric d. On H, define a relation ξ :=≤.
Consider the map ζ : H → H defined by

ζ(p) =

{
p2, if p ∈ [0, 1/4)

0, if p ∈ [1/4, 1].

Here, ξ is locally finitely ζ-transitive, ϕ-closed and d-self-closed. Also, (H, d) is
ξ-complete. Define the test functions σ(t) = t/2 and ψ(t1, t2, t3, t4) = min{t3, t4}.
Then σ ∈ Ω and ψ ∈ Ψ. Condition (v) of Theorem 3.1 can easily be verified.
Remaining presumptions of Theorem 3.1 and Theorem 3.2 also hold; so ζ owns a
unique fixed point, p̄ = 0.

5. Solutions of nonlinear elastic beam equations

As an specific case of (1.1), consider the following differential equation:

(5.1)

{
w′′′′(ν) = ℏ(ν,w(ν)), 0 ≤ ν ≤ 1,

w(0) = w′(0) = w′′(1) = w′′′(1) = 0,
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where ℏ : [0, 1] × [0,∞) → [0,∞) remains a continuous function. Eq. (5.1) is
called cantilever beam in material mechanics. This equation describes the bending
equilibria of elastic beam model having a length 1 with rigidly fastened ends.

Now, we present the existence and uniqueness theorem to compute a solution for
the BVP (5.1).

Theorem 5.1. In a furtherance of the problem (5.1), let us assume that ∃ a mono-
tonic increasing function σ ∈ Ω that fulfills

(5.2) 0 ≤ ℏ(ν, x)− ℏ(ν, y) ≤ σ(x− y),

∀ ν ∈ [0, 1] and ∀ x, y ∈ R with x ≥ y. If ∃ γ ∈ C[0, 1] such that

(5.3) γ(ν) ≥
∫ 1

0
𝟋(ν, s)ℏ(s, γ(s))ds, ∀ ν ∈ [0, 1],

where Green function 𝟋(ν, s) is defined as

𝟋(ν, s) =
1

6

{
s2(3ν − s), 0 ≤ s ≤ ν ≤ 1,

ν2(3s− ν), 0 ≤ ν ≤ s ≤ 1,

then BVP (5.1) owns a unique solution.

Proof. BVP (5.1) is equivalent to the integral equation:

(5.4) w(ν) =

∫ 1

0
𝟋(ν, s)ℏ(s,w(s))ds, ∀ ν ∈ [0, 1].

It can be easily verified that

(5.5) 0 ≤ 𝟋(ν, s) ≤ 1

2
ν2s, ∀ ν, s ∈ [0, 1].

On H :=C[0,1], define a metric d by

d(w,v) = max
ν∈[0,1]

|w(ν)− v(ν)|, ∀ w,v ∈ H.

Also, take a relation ξ on H as

(w,v) ∈ ξ ⇔ w(ν) ≥ v(ν), ∀ w,v ∈ H, ∀ ν ∈ [0, 1].

Define a function ζ : H → H by

ζ(w)(ν) =

∫ 1

0
𝟋(ν, s)ℏ(s,w(s))ds, ∀ ν ∈ [0, 1], ∀ w ∈ H.

We now check each of the assumptions of Theorems 3.1 and 3.2.
(i) By (5.3), we have γ(ν) ≥ ζ(γ)(ν) so that (γ, ζγ) ∈ ξ.
(ii) ξ being transitive relation is locally finitely ζ-transitive. Now, take w,v ∈ H

verifying (w,v) ∈ ξ. Using (5.2), (5.4) and the fact that 𝟋(ν, s) > 0, ∀ ν, s ∈ [0, 1],
we get

ζ(w)(ν) =

∫ 1

0
𝟋(ν, s)ℏ(s,w(s))ds

≥
∫ 1

0
𝟋(ν, s)ℏ(s,v(s))ds

= ζ(v)(ν), ∀ ν ∈ [0, 1],
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so that (ζw, ζv) ∈ ξ and hence ξ is ζ-closed.
(iii) Clearly, (H, d) is ξ-complete.
(iv) If {wk} ⊂ H is a ξ-preserving sequence converging to w ∈ H, then conver-

gence theory in R yields that wk(ν) ≥ w(ν), ∀ k ∈ N and ∀ ν ∈ [0, 1]. It turns out
that (wk,w) ∈ ξ, ∀ k ∈ N so that ξ is d-self-closed.

(v) By (5.2), for all ν ∈ [0, 1] and for all w,v ∈ H with (w,v) ∈ ξ, we have

|ζ(w)(ν)− ζ(v)(ν)| =

∫ 1

0
𝟋(ν, s)(ℏ(s,w(s))− ℏ(s,v(s)))ds

≤
∫ 1

0
𝟋(ν, s)σ(w(s)− v(s))ds

≤
(∫ 1

0
𝟋(ν, s)ds

)
(σ(d(w,v)) (as σ is increasing)

≤ σ(d(w,v))

4
(using (5.5))

≤ σ(d(w,v))

≤ σ(d(w,v)) + ψ(d(w, ζw), d(v, ζv), d(w, ζv), d(v, ζw)),

(where ψ ∈ Ψ is arbitrary)

so that

d(ζw, ζv) ≤ σ(d(w,v)) + ψ(d(w, ζw), d(v, ζv), d(w, ζv), d(v, ζw)).

Moreover, ζ(H) is ξs-directed. All the hypotheses of Theorems 3.1 and 3.2 are
thus met; so ∃ a unique w ∈ C([0, 1]) such that ζ(w) = w. Thus, w is a (unique)
solution of (5.1). □

6. Conclusions

In near past, certain outcomes on fixed points through an amorphous relation
on functional contraction via (c)-comparison function are investigated by Ansari et
al. [10]. Our work utilizes a functional contraction involving yet another control
function. The involved relation in our outcomes being locally finitely ζ-transitive is
restrictive a relation is required; but the class of functional contraction is weaken. By
means of illustration of the results, we constructed several examples. Our findings
served to find a unique positive solution for certain elastic beam equation, which
shown the efficiency of our findings. In the immediate future, learners might employ
our results for a couple of mappings.
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FR-contractions with applications to solution of nonlinear matrix equations, J. Fixed Point
Theory Appl. 19 (2017), 1711–1725.
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