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NONLINEAR FUNCTIONAL CONTRACTIONS VIA LOCALLY
FINITELY (-TRANSITIVE BINARY RELATION AND
APPLICATIONS TO ELASTIC BEAM EQUATIONS

EBRAHEM A. ALGEHYNE* AND FAIZAN AHMAD KHAN'

ABSTRACT. This paper comprises a few fixed point theorems for relational non-
linear functional contractions with a wider class of transitive relations. Our find-
ings sharpen and subsume a number of existing results. We offer a few examples
that illustrate the credibility of our findings. We adapt our findings to obtain a
unique solution of a boundary value problem connected to a nonlinear cantilever
beam equation that incorporates Euler-Bernoulli’s hypotheses

1. INTRODUCTION

The strength of metric fixed point theory lies in its wide range of applications
to different areas. For recent works related to applications of metric fixed point
theory, readers are referred to [7,8]. BCP (Banach contraction principle) being a
key of metric fixed point theory continues to generalize in various directions. Alam
and Imdad [2] investigated a new extension of BCP in the setup of relation metric
space. Due to its ingenuity, the result of Alam and Imdad [2] has been enlarged
and expanded by numerous scholars, e.g., [1,3-6,9-11,14,18-20]. The contraction
employed in such results requires met for comparative elements. It is apparent that
relational contractions are still deeper than corresponding usual contractions.

The significance of 4th-order two-point boundary value problems (abbreviated as
“BVP”) lies in analysis and engineering. These BVPs are used in material mechan-
ics, physics, chemical sensors, micro-electromechanical systems, medical diagnostics
and aircraft design to characterize the deflection of the elastic beam under equilib-
rium state. Several researchers are utilized monotone iterative methods to explain
the presence of positive solutions for the elastic beam equations.

Let us consider the general elastic beam equation given as under:

{w””(y) = h(v,w(v),w'(v),w (v),w"(v)), 0<v<l,

(L.1) w(0) = w/(0) =w"(1) =w"(1) =0

where the function A : [0,1] x [0,00)% — [0,00) is continuous. In Eq. (1.1), w
denotes load density stiffness, w”/ () denotes shear force stiffness, w”(v) denotes
bending moment stiffness and w’(v) remains slope of the elastic beam model.

The objective of the article is to investigate new metrical outcomes on fixed
points for certain nonlinear functional contractions via a locally finitely (-transitive
relation. A few examples are supplied to back up our findings. By applying our
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findings, we explore the guarantees of a unique solution of a BVP which remains a
special case of (1.1).

2. PRELIMINARIES

The sets of natural numbers, whole numbers, and real numbers are represented
by their respective standard symbols: N, Ny, and R. A relation on a set H is defined
as a subset of #2. In the continuation, let H be a set, £ a relation on H, d a metric
on H and ¢ : H — H a mapping.

Definition 2.1 ([2]). We say that p,q € H are &-comparative if (p,q) € &, or
(q,p) € & Such a pair is usually denoted by [p, q] € .

Definition 2.2 ([16]). ¢! := {(p,q) € H?: (q,p) € £} is named as inverse of &.
Definition 2.3 ([16]). ¢° := ¢ U&7 is called symmetric closure of £. Obviously,
(p,q) €&° < [p,q €&

Definition 2.4 ([2]). ¢ is named as (-closed if for any p,q € H with (p,q) € &, we
have

(Cp;Cq) €.

Definition 2.5 ([2]). {p,} C H is termed as a &-preserving sequence if (py, Ppy1) €
£V keN.

Definition 2.6 ([3]). (#, d) is termed as {-complete metric space if any -preserving
Cauchy sequence in ‘H converge.

Definition 2.7 ([3]). (¢ is termed as &-continuous if for each p € ‘H and for any
&-preserving sequence {p;,} C ‘H with py, 4, p,

C(pr) —5 C(p).

Definition 2.8 ([2]). ¢ is termed as d-self-closed if each {-preserving convergent
sequence {p,} C H with p, —4, p € T admits a subsequence {pg, } with [py,, p] € €.

Definition 2.9 ([15]). Given K C H, the set &|x := £ N K? being a relation on K
is termed as restriction of £ on K.

Definition 2.10 ([4]). £ is termed as locally (-transitive if for every {-preserving
sequence {q;} C ((#H) with range K = {q, : k € N}, | is transitive.
Definition 2.11 ([12]). Given X € N — {1}, £ is named XN-transitive if for each
DPosDP1s---sPr €T,

(pi-1,p;) € § for each i (1 <i <R) = (py, py) €&
Thus, the ideas of usual transitivity and 2-transitivity are equivalent.

Definition 2.12 ([21]). £ is termed as finitely transitive if 3 X € N — {1} for which
¢ is N-transitive.

Definition 2.13 ([5]). £ is termed as locally finitely (-transitive if for every &-
preserving sequence {q,} C ((H) with range K = {q; : k € N}, &|c is finitely
transitive.
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Remark 2.14. finitely transitivity implies locally finitely (-transitivity. Also, lo-
cally (-transitivity implies locally finitely (-transitivity.

Definition 2.15 ([17]). K C H is termed as &-directed if for any p,q € K, I we H
with (p,w) € £ and (g, w) € €.

Proposition 2.16 ([4]). If £ is (-closed, then & is (*-closed, V k € Ny.

Lemma 2.17 ([21]). If H is a set endued with a relation &, {p,} C Y is -preserving
sequence and & is an N-transitive on K = {p, : k € No}, then

(Prs Prt14om—1)) €& ¥V k,v € No.
Lemma 2.18 ([12]). If a sequence {py} is not Cauchy in a metric space (H,d),
then 3 g9 > 0 and 3 subsequences {py,} and {p,,} of {py} enjoying the properties:
(i) 1<l <k VieN,
(ii) d(p,,pg,) > €0, ¥V k€N,
(iii) d(p,py,) <co, Y vp € {li + L1 +2,... ki —2,k; — 1}.
Moreover, if limy_,o0 d(py,, Ppy1) = 0, then

lim d(p;,, Pk, +v) = €0, V v € Np.
k—o0

The following families of functions were proposed, respectively, by Alam et al. [5]
and Jleli et al. [13]:
Q={0:]0,00) = [0,00) : t € (0,00) = o(t) < t and limsupo(r) < t}
r—t

and
U = {¢:]0,00)" = [0,00) : ¢ is continuous and
Y(t1,ta,t3,ts) =0 < t; =0, for some i = 1,2,3,4}.
Proposition 2.19. Given o0 € Q andp € U, (A) and (B) are equivalent:

(A) d(¢p,Cq) < a(d(p,q)) + ¥(d(p,Cp),d(q,(q), d(p,Cq), d(q,(p)),
Y p,q € H with (p,q) € &.

(B) d(¢p,¢q) < o(d(p,q)) + ¥(d(p,Cp),d(q,¢q), d(p,Cq), d(q,(p)),
V p,q € H with [p,q] € €.

Proof. The conclusion arrives instantly utilising the symmetric character of metric
d. O

3. MAIN RESULTS

This section resolves the fixed point results to meet a relational nonlinear func-
tional contraction.

Theorem 3.1. Let (H,d) be a metric space, ¢ : H — H a map, and & a relation
on H. Also,
(i) 3 po € H satisfying (po,Cpo) € &,
ii) € remains (-closed and locally finitely -transitive,
(iii) (H,d) continues to be £-complete,
(iv) H remains &-continuous, or & continues to be d-self-closed,
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(v) 3o €Q and Y € U verifying

d(¢p,¢q) < a(d(p,q)) +¢(d(p,¢p),d(q,¢q), d(p,¢q), d(q,{p)),
V p,q € H with (p,q) € &.

Then, ¢ admits a fixed point.

Proof. Beginning with py € H, we construct a sequence {p,} C H that fulfills

(3.1) pi = ¢"(po) = (1), VEkEN.
Using (i), (ii) and Proposition 2.16, we get

(Ckpﬂa Ck+1p0) € é‘u
which owing to (3.1) becomes

(3.2) (P> Pr+1) €&, ¥V k€N
This yields that {p,} is a {&-preserving sequence.
Define

di := d(Pg; Prt1)-

If di, = 0 for some ko € Ny, then we have ((py,) = Py, and hence p;, is a fixed
point of . Thus the proof is concluded.

In either case, we have di > 0, V k € Ny. Using (3.1), (3.2) and condition (v),
we get

di = d(pg,Prs1) = d(CPr—1,CPk)
< U(d(pk—la pk)) + ¢(d(pk—17 pk)7 d(pka pk+1)a d(pk—b pk—i—l)a 0)7

which using the property of ¥ reduces to

(3.3) di < o(dg-1), VYV ke N
Utilizing the property of  in (3.3), we get

dip < dg_1, VkeN.
Thus 3 d* > 0 verifying
(3.4) lim dj, = d*.

k—o00
We now claim that d* = 0. In either case d* > 0, letting the upper limit in (3.3)
and employing (3.4) and the definition of €2, we get

d* =limsup dy < limsupo(di_1) = limsupo(dx_1) < d¥,
k—o0 k—o0 dp—lt

which is not possible. Hence
(3.5) lim di = 0.

k—o0

If possible, assume that {p;} is not Cauchy. According to Lemma 2.18, 3 &9 > 0
and 3 subsequences {p } and {p;, } of {p;} satisfying

k<l <k, d(plwpki) >eg > d(pli,p,,k), VkeN, v, € {l1+1,ll+2, .. .,ki—Q,ki—l}.
By (3.4) and Lemma 2.18, we find
(3.6) Jim d(py;, g 10) = €0, V v € No.

—00
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Due to (3.1), we have K := {p;, : k € No} C ((H). Making use of locally finitely
(-transitivity of £, 3 X > 2, such that | is R-transitive.
We have [; < k; and X — 1 > 0, Thus by division algorithm, we have

i — 1= (R—1) (7 — 1) + (R — 6))
Th—1>0, 0<R—0, <N—1

ki—i-@k:li—i-l—i-(N—l)Tk
> 1, 1 <0 <N

Obviously, 6 € (1,X]. Assume that the subsequences {p,} and {p;} of {p;}
(satisfying (3.6)) are chosen such that 6 = 6 is a constant and so

(3.7) U=ki+0=101+14+N—-1)7.

By (3.6) and (3.7), we get

(3:8) lim d(p;,, p;) = lim d(py,; p,4) = €
k—o0 ¢ k—o0

Making use of triangular inequality, we get

d(py41:Pr41) < d(py1, ) + d(pys o) + d(py,s P )

and

d(py;spy) < d(py, Pys1) + APy, Prga) + APy pr)-

Therefore, we have

d(py,» pi;) — d(py,, Piig1) — d(py 1y pi) < d(py,., s Prga)
< d(py41,p1,) + d(py,, pr) + d(pry, Py y1)
which on using £ — oo and by (3.6) and (3.8) reduces to
(3.9) klgrolo d(pli+17pl;+1) =€
Using (3.7) and Lemma 2.18, we find (p;;, py) € &. Denote & := d(py,,p,r ). By
condition (v), we get
d(pli+1’plu,;g+1) = d(Cphj Cp,u,;e)

o(d(py, by )
+¢{d(pll7 (pli)v d(pp,;cv Cpp,gc)a d(plia Cpll;c)’ d(p,ugcv Cplz)}

IN

so that
(310) d<pli+17 pu?@—‘,—l) < U(ék) + w{dlzv d,ugﬁa d(pli7p,4;€+1>7 d(p;;;c7pli+1)}'

Employing limit superior in (3.10) and by Lemma (2.18) and the properties of {2
and ¥, we obtain

eo = limsup d(py, 41, Py 1) < limsup o(dx) + ¢(0,0,€0,£0) = limsup o(t) < &o,

k—oo k—oo tﬁear
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which remains contradiction. Hence {p,} remains Cauchy. But {p,} is also &-

preserving; so by £-completeness of H, 3 p € ‘H such that p; 4, D.

In view of (iv), assuming firstly that ¢ is £&-continuous. Consequently, {p;} being

&-preserving verifying py 4, D, provides py 1 = ((pg) 4, ¢(p). This implies that

¢(p) = p-
Secondly, assuming that & is d-self-closed; therefore {pj, } of {p;} with [p,,p] €
¢, Vi€ N. Utilizing (v), Proposition 2.19 and [py, p] € §, we obtain

d(pg,+1,¢p) = d(Cpg,,CD)
< U(d(pk‘ﬂ p)) + T/}(d(pk”pk;b_i,-l)y 07 d(pk“ p)7 d(pu pki-i,-l))
- U(d(pkl,]_?))
We claim that
(3.11) d(py,+1,¢p) < d(py,,p), VieN.

If for some ko € N, d(pkko,f)) = 0, then we get d(CPkk07Cp) =0, i.e., d(pkkOH, (p) =
0 and hence (3.11) holds for these kg € N. If d(p,,p) > 0, Vi € N, then we have
d(pg,+1,¢P) < o(d(pg,,p)) < d(pg,,p), Vi € N. Thus, the inequality (3.11) is
verified. Letting limit of (3.11) and py, N p, we conclude py. ¢ N ¢(p) and so
¢(p) = p. Therefore, p serves as a fixed point of (. O

Theorem 3.2. In the collaboration to assertions of Theorem 3.1, if ((H) is &5-
directed, then ¢ owns a unique fized point.

Proof. If possible, 3 p, q € H such that

(3.12) ¢(p) =pand ((q) =g
Owing to p,q € ((H), 3 w € H such that
(3.13) [p,w] € ¢ and [q,w] € &.

Set pr := d(p, ¢¥w). By (3.12), (3.13) and (v), we conclude

pr = d(p,¢"w) = d(¢p,¢(¢Fw))
< o(d(p,¢"'w)) + (0, d(¢Ftw, k), d(p, ¢Fw), d(¢Fw, b))
= o(pr-1)
so that
(3.14) pr < 0 (pr—1)-

Firstly, assume that 3 kg € N such that py, = 0. Then py, < pg,—1. Secondly, we
have pr > 0, V k € N. In this case, (3.14) becomes p; < pr—1. Thus in each of the
cases, we conclude

Pk < Pr—1-
Similar to Theorem 3.1, above inequality concludes

(3.15) lim pp = lim d(p,fw) = 0.
k—o0 k—o0
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In the similar manner, we find

(3.16) lim d(g,¢*w) = 0.

k—o00
Combining (3.15) and (3.16), we get
d(p,q) = d(p,¢*w) + d(¢*w,q) = 0 as k — 0
i.e., p = q. This verifies uniqueness of fixed point. O

Remark 3.3. Under the restriction ¥(t1,t2,t3,t4) = 0, Theorems 3.1 and 3.2 de-
duce corresponding theorems of Alam et al. [5].

Remark 3.4. In particular for ¢ (t1,ta, t3,t4) = - min{ty, to,t3,t4} (where r > 0),
Theorems 3.1 and 3.2 deduce the corresponding theorems of Khan et al. [14].

4. EXAMPLES
In demonstrating Theorems 3.1 and 3.2, we go to the following examples.

Example 4.1. Let 1 = [0,00) with usual metric d. On H, define a relation
¢ :={(p,q) € H> : p—q > 0}. Define the map ¢ : X — H by ((p) = #.
Clearly, £ is locally finitely (-transitive and (-closed, (H, d) is {-complete and ( is
&-continuous.

Define the test functions o(t) = HLl and v(t1,te,t3,t4) = titatsty. Then o € Q
and ¥ € U. Now, for any (p, q) € &, we conclude

d(¢p,¢q)

P—q ‘ < _dp.q)
l+p+q+pq|l ~ 1+d(p,q)
o(d(p,q)) +¥(d(p,¢p),d(q,¢q),d(p,¢q), d(q,(p))-

Thus, assertion (v) of Theorem 3.1 is verified. Remaining presumptions of Theorem
3.1 and Theorem 3.2 also hold; so ¢ owns a unique fixed point, p = 0.

IA

Example 4.2. Let # = [0, 1] with usual metric d. On H, define a relation £ :=<.
Consider the map ¢ : H — H defined by

2 .
C(p) = {g ) if pe0,1/4)

, if pe[1/4,1].
Here, ¢ is locally finitely (-transitive, ¢-closed and d-self-closed. Also, (H,d) is
&-complete. Define the test functions o(t) = t/2 and v¥(t1,te,t3,t4) = min{ts,t4}.
Then o0 € Q and ¢ € V. Condition (v) of Theorem 3.1 can easily be verified.
Remaining presumptions of Theorem 3.1 and Theorem 3.2 also hold; so ¢ owns a
unique fixed point, p = 0.

5. SOLUTIONS OF NONLINEAR ELASTIC BEAM EQUATIONS
As an specific case of (1.1), consider the following differential equation:

{w””(u) =h(r,w(v)), 0<v<1,

(5.1) w(0) = w'(0) = w"(1) = w"(1) = 0,
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where A : [0,1] x [0,00) — [0,00) remains a continuous function. Eq. (5.1) is

called cantilever beam in material mechanics. This equation describes the bending

equilibria of elastic beam model having a length 1 with rigidly fastened ends.
Now, we present the existence and uniqueness theorem to compute a solution for

the BVP (5.1).

Theorem 5.1. In a furtherance of the problem (5.1), let us assume that 3 a mono-
tonic increasing function o € ) that fulfills

(52) 0 < h(U,IL’) - h(l/, y) < O'(ZL‘ - y)a
Vvelo,1] andV z,y € R with x > y. If 3 v € C[0,1] such that
1
(5.3) y(v) > / F (v,s)h(s,v(s))ds, ¥V v € [0,1],
0

where Green function F (v,s) is defined as

1{52(3ys), 0<s<v<l,

F(v,s) ==
ws) =5 2@s—v), 0<v<s<l,
then BVP (5.1) owns a unique solution.

Proof. BVP (5.1) is equivalent to the integral equation:

(5.4) w(v) = /1 F (v,s)h(s,w(s))ds, ¥V v € [0,1].
It can be easily verified that ’

(5.5) 0<F(vs) < %I/Qs, Vv,sel0,1].

On H :=CJ[0,1], define a metric d by

d(w,v) = max |w(v) —v(v)|, Vw,veH.
ve0,1]

Also, take a relation £ on H as
(w,2v) el w)>v(v), YVw,veH, Vvelol]
Define a function ¢ : H — H by

1
C(w)(v) = /0 F (v,8)h(s,w(s))ds, Vv e [0,1], VweH.

We now check each of the assumptions of Theorems 3.1 and 3.2.

(i) By (5.3), we have v(v) > ((v)(v) so that (v,(7) € ¢.
(ii) & being transitive relation is locally finitely (-transitive. Now, take w,v € H

verifying (w,v) € £. Using (5.2), (5.4) and the fact that F (v,s) >0, V v,s € [0,1],
we get

1
C(w)(v) = /()F(Z/,s)h(s,w(s))ds

1
> /0 F (v, 8)h(s, v(s))ds
= (W), Vrvelo1],
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so that ({w,(v) € £ and hence ¢ is (-closed.

(iii) Clearly, (H,d) is &-complete.

(iv) If {wp} C H is a {-preserving sequence converging to w € H, then conver-
gence theory in R yields that wy(v) > w(v),V k € Nand V v € [0,1]. It turns out
that (wg,w) € £, V k € N so that £ is d-self-closed.

(v) By (5.2), for all v € [0,1] and for all w,v € H with (w,v) € £, we have

1
(W) () = V)W) = /0F(V,S)(h(&W(S))—ﬁ(S,V(S)))dS

1
F (v,s)o(w(s) — v(s))ds

IA
/\O\

1
F (v, s)ds) (o(d(w,v)) (as o is increasing)
0

a(d(w,v))

4
a(d(w,v))
o(d(w,v)) + ¢ (d(w,(w), d(v, (v), d(w, (v), d(v,(w)),
(where ¢ € U is arbitrary)

(using (5.5))

IA A

so that
d((w,(v) < o(d(w, v)) + ¥ (d(w,(w), d(v,(v), d(w, (v), d(v, (w)).

Moreover, ((H) is {*-directed. All the hypotheses of Theorems 3.1 and 3.2 are
thus met; so 3 a unique W € C([0,1]) such that ((W) = w. Thus, W is a (unique)
solution of (5.1). O

6. CONCLUSIONS

In near past, certain outcomes on fixed points through an amorphous relation
on functional contraction via (c)-comparison function are investigated by Ansari et
al. [10]. Our work utilizes a functional contraction involving yet another control
function. The involved relation in our outcomes being locally finitely (-transitive is
restrictive a relation is required; but the class of functional contraction is weaken. By
means of illustration of the results, we constructed several examples. Our findings
served to find a unique positive solution for certain elastic beam equation, which
shown the efficiency of our findings. In the immediate future, learners might employ
our results for a couple of mappings.
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