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PROBABILISTIC DEGENERATE JINDALRAE AND
JINDALRAE-STIRLING POLYNOMIALS OF THE SECOND KIND

WASEEM AHMAD KHAN, UGUR DURAN, AND NAEEM AHMAD

ABSTRACT. In recent studies, probabilistic forms of some special polynomials
and numbers such as probabilistic Bernoulli, probabilistic Euler, probabilistic
Bell, probabilistic Fubini, and probabilistic Stirling numbers and polynomials as-
sociated with random variables have been introduced and studied in detail. In
this work, we consider a probabilistic form of the degenerate Jindalrae-Stirling
polynomials of the second kind and a probabilistic form of the degenerate Jindal-
rae polynomials. Then, we derive some of their properties and formulas, including
explicit expressions, symmetric identity, recurrence relations, and summation for-
mulas. Moreover, we investigate diverse correlations with the probabilistic degen-
erate Stirling numbers of the second kind associated with 7', the Stirling numbers
of the first kind, the partial Bell polynomials, the derangement polynomials, the
degenerate Bernoulli polynomials of the second kind, and the degenerate Euler
polynomials. Finally, we consider probabilistic forms of the higher-order degen-
erate Bernoulli and Euler polynomials and then provide some properties and
relations.

1. INTRODUCTION

Special functions have various importance in a good many areas of engineering,
physics, mathematics, and other linked disciplines involving issues such as quantum
mechanics, mathematical physics, functional analysis, numerical analysis, differen-
tial equations, and so on (cf. [1-22,24-29]). In the family of special functions,
the family of special polynomials also possesses intensive study fields. Recently,
some probabilistic special polynomials (with their corresponding numbers) including
probabilistic Bell, probabilistic Fubini, probabilistic Bernoulli, probabilistic Euler,
and probabilistic Stirling polynomials (and numbers), are among the most studied
families of special polynomials (cf. [1-3,6-8,15-17,19,21,23,26-29]). For example,
probabilistic Stirling numbers of the second kind in [1-3], probabilistic degenerate
Stirling polynomials of the second kind in [19], probabilistic Bell polynomials in [27],
probabilistic degenerate Bell polynomials associated with random variables in [15],
probabilistic degenerate central Bell polynomials in [7], probabilistic derangement
polynomials in [17], probabilistic Bernoulli and Euler polynomials in [6,16], proba-
bilistic degenerate Bernoulli and degenerate Euler polynomials in [23], probabilistic
type 2 poly-Bernoulli polynomials in [21], probabilistic Fubini polynomials in [26],
probabilistic degenerate Fubini polynomials in [29] and probabilistic Bernstein poly-
nomials in [8] have been considered and many of their relations and properties have
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been examined and investigated. Motivated by these types of studies, here we con-
sider a probabilistic degenerate Jindalrae-Stirling polynomials of the second kind
and a probabilistic degenerate Jindalrae polynomials, and then we research their
relations and properties. To do this, we first review some needed definitions and
notations.

The Stirling numbers of the second kind (’second kind’ is abbreviated by ’s.k.”)
are defined, for u > 0 (see [1-3,5,12,18,19]) as

P

(1.1) Zuusg P, 7' = (e* —1)v
The Bell polynomials are provided by (see [11,13,15,22,24,27])

(12) > 0ply) Sy = D,

The corresponding numbers of ¢,(y) are derived by taking y = 1, namely ¢, =
Pp(1)-

For A € R, the degenerate model of the exponential function is given by (cf.
[5,7,9-15,19,20, 22,23, 29])

(1.3) Z Y)pr p —I—)\z)%
p=

where (y)px = y(y — N)(y —2X) ... (y — (p — 1)A) for p > 1, with (y)on = 1. Note
that e}(z) :=ex(z) = (1 + )\z)% = Z;io(l)p,A%' The function logy(z) is defined
to be the compositional inverse of ey(z), which is termed the degenerate logarithm
function, fulfilling ey (logy z) = log,(ex(z)) = z, provided as follows (see [6,9,21])

(1.4) log, (14 2) := iv—l(np&j = %((1 +2)2 —1).
p=1 ’

It is readily seen that limy_,log, z = log z.

The degenerate models of the Bernoulli and the Euler polynomials, defined by
Leonard Carlitz [5], are provided as follows

= 2P ze§ 2P 2¢9(2)
1. E - = /\7 E E, P N
- p=0 P (v) P! -1 and A oea(z)+1

The corresponding numbers of 8, x(y) and E,\(y) are derived by taking y =
0, namely 5, := B,(0) and E, := E,(0), respectively. Also, the classical
Bernoulli and Euler polynomials are obtained when X approaches to 0 as
limy 0 Bpa(y) = By(y) and limy 9 E, A (y) = E,(y).
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Also, the degenerate models of higher-order Bernoulli and the Euler polynomials
are provided as follows (see [5,6,9,10,16,23,24])
(1.6)

Zﬁ(“) 46 (o) and gE%)j ~a6 (2)

The corresponding numbers of B(a)( ) and E'goi\) (y) are derived by taking y = 0,

namely ,8/()&)? = ,ga;( ) and E! )? = E(a)( 0), respectively.
For a € N, the degenerate h1gher order model of Bernoulli polynomials of the
s.k. is defined by (cf. [10])

(o ¢] p Py (6%
1. s = (— 2 1 Y.
o 2.1 (Emtea) 0+
The corresponding numbers of bg’)‘; (y) are derived by taking y = 0, namely bg’xg =
by (0).
The degenerate model of Bernoulli polynomials of the s.k. is provided as (see [10])
z(1+ 2)Y
1. by =——
4 Z A3t = oy (145

The corresponding numbers of b, \(y) are derived by taking y = 0, namely b, ) :=
bpv)\(o)'
The degenerate Stirling numbers of the s.k. are defined by (see [5,12,18])

(1.9) > saation) 5 = 2= )
j=u '

u!

The fully degenerate model of Bell polynomials of the s.k. is defined by (see
[11,13,22])

o0

(1.10) S B = l(ez) — 1),
p=0 P

satisfying the following relation

oay) = Z(y)u,,\sz,,\(p,u) (p>0).
u=0

The corresponding numbers of Bj \(y) are derived by taking y = 1, namely B\ =
B*(1).
2

The degenerate model of derangement polynomials dﬁ)?;) (y) of order « € N is
defined by (see [20])

(1.11) id“ = Ll(z)

ol 1— )’
po p (1-2)
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The corresponding numbers of dfj‘; (y) are derived by taking y = 1, namely dl(f;) =

d\)(1).
PA

The degenerate form of the derangement polynomials d, (y) is defined by (see
[20])

o] y—1 p
(112) >ty = 2,

For u > 0, the partial Bell polynomials are provided by (see [11])
() 00 N\ U
zP 1 z
(113) ZBp,u(ylay%"wyp—u—i-l)ﬁ = a <Zyzl|> 5
p=u ’ " \i=1 :

which yields

p!
(114) Byu(yn, o, - - Ypus1) = 3 SRS

D) S Ry
i+t +Hlp—ur1=u 12 putl
li+2lg+ -+ (p—ut+D)lp_yy1=p

l —u+1
L (Y2 2 Yp—u+1 :
<o (5)" - (G2em)
For u > 0, the degenerate model of Jindalrae-Stirling numbers of the s.k. is given
by (cf. [4])

(1.15) S ulSR (o) = (ealealz) — 1) — 1)".
p!
p=u
The degenerate model of Jindalrae polynomials is provided (see [4]) as follows

(1.16) D Jonw) 5 = eXlealea(z) — 1) = 1)).
p=0 p:
When y =1, J, » := J, (1) are called the Jindalrae numbers.

Let T be a random variable (random variable’ is abbreviated by 'r.v’). The
moment generating function (abbreviated by 'm.g.f.”) of T' (see [1-3,6-8,15-17,19,
21,23,25-29]) is given by

oo
(1.17) =Y E[T")=, (0< 2| < a).

p=0
Assume that (7j);>1 be a sequence of mutually independent copies of the r.v. T,
and Sy =Ty +To +--- 4+ T, for u € N with Sy = 0. The probabilistic degenerate
Stirling numbers (denoted by SQT)\(p, u)) of the s.k. related to r.v. T are provided
as follows (see [1-3])

(118) ST\(p.u .Z( ) VIE((S))pal: (02 w2 0),
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which is equivalent to (see [1-3])

u

(1.19) E[(Su)pal = (?)j!b’g}(p, u).

J=0

The generating function of ST 1 (p,u) is provided as follows

%) T — 1)
(1.20) Zﬁmmjzw“ﬁ]”.
p=u

In the case T' = 1, the numbers S | (p, u) become the numbers S ) (p, u) in (1.9). We
abbreviate the probabilistic degenerate Stirling numbers of the s.k. as the PDSNSK
numbers. When A — 0, the numbers SI, (p,u) become the probabilistic Stirling

numbers of the s.k. S% (p,u) given by
(Ele*T] - 1)”
u! ’

0 p
(1.21) > 85 (pu) =
p=u )

The probabilistic degenerate model of Stirling polynomials of the s.k. associated
with the r.v. T is considered by (see [19])

> e’ (z el —1)"
(1‘22) ZS%:/\(P»“W);T — )\( )(E[ )\( )} 1) ]

u!

When y = 0, the polynomials S;A(p, u|y) reduces to the polynomials Sg’)\(p,u) in
(1.20).

The probabilistic degenerate model of Bell polynomials d)i 1 (y) associated with
r.v. T is defined as follows (see [15])

> zp e Z)|—
(1.23) Zoqz%(y)p! — V(B (2)]-1)
p:

In the case A — 0, the polynomials qbg 1(y) become the probabilistic Bell polynomials
qb?,;(y) associated with r.v. T given by (see [15])

> zP 2T _
(1.24) Zgbg(y)ﬁ — y(BleT]-1)
p=0

The corresponding numbers of q&f(y) are derived by taking y = 1, namely QS;F =
d)f(l). When T = 1, the polynomials qﬁ; 1(y) becomes the degenerate Bell polyno-
mials ¢, x(y) provided by

[e'e) 4P -
S byl = )
p=0

We see from (1.20) and (1.23) that

P
u=0
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The probabilistic fully degenerate model of Bell polynomials of the s.k. associated
with r.v. T which are given by

> *,T 2P
(1.25) S B (1) = e (Ele] ()] - 1).

p=0 P
For T = 1, we have IBSS;\T) (y) = B} \(y) in (1.10). The corresponding numbers of
IB%E:’AT) (y) are derived by taking y = 1, namely IB%E:’AT) = IB%E:;\T)(l).

We observe that
P
*,T
BEM '(y) = > W)unSsa(p, ).

u=0
The probabilistic degenerate model of Fubini polynomials associated with r.v. T
are defined by (cf. [29])

0o T ip _ 1
(1.26) ;Fp,x(y) Pl 1—y(BElel(z)]-1)

We abbreviate the probabilistic degenerate Fubini polynomials as the PDF poly-
nomials. The corresponding numbers of FpT)\ are derived by taking y = 1, namely

Fg:/\ = FPT7/\(1). From (1.20) and (1.26), we provide that

p
Fl(y) =Yy ulSy\(p,u),
u=0

for p > u > 0. Some other detailed properties and relations of the PDF polynomials
were derived in [29)].

2. PROBABILISTIC DEGENERATE JINDALRAE AND JINDALRAE-STIRLING
POLYNOMIALS OF THE SECOND KIND

In this part, we introduce a probabilistic degenerate Jindalrae-Stirling polynomi-
als of the s.k. and a probabilistic degenerate Jindalrae polynomials. Then, we derive
some of their properties and formulas, including explicit expressions, recurrence re-
lations, and summation formulas. Moreover, we investigate diverse correlations
with the probabilistic degenerate Stirling numbers of the s.k. associated with T,
the Stirling numbers of the first kind, the partial Bell polynomials, the derangement
polynomials, the degenerate Bernoulli polynomials of the s.k. and the degenerate
Euler polynomials.

Along the study, we suppose that T is a r.v. such that the m.g.f. of T is given
as follows

BleT] = 3 BT, (|2l < a)
p=0 P

which exists for some 0 < o. We assume that
(21) So=0and S, =T1 +Tr+---+ T, forueN

where (Tj);>1 is a sequence of mutually independent copies of the r.v. T'.
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Let

u!

(2.2) =S Tr(pu).
p=u p:
Theorem 2.1. For p > u > 0, we possess
p
(2.3) Tr(p,u) =Y Sa(p,u)S3 (p, ).
p=u
Proof. Utilizing (1.21) and substituting z by E[e*T] — 1 in (1.1), we observe that

(=1 = S e (BT - 1
=

u!
= > Sy(uu) Z S2 (o)
p=u =

21 - 3 (S stnston) 5
p=u \p=u
As a consequence, by (2.2) and (2.4), we discover the asserted result (2.3). O

Theorem 2.2. For p1,...,py > 0 with p1 + p2 + -+ + py, = p, we possess

1 P P
n=u

" prtpetetpu=p

Proof. By utilizing (1.14) and (2.2), we possess

]. E[ ZT}—l >’LL ]. > TZp

il e ~-1) = = adll

u! (e u! ;% p!
9.5 RS P T T\ %
(2.5) 7!2 Z Ol Pu ¢p1"' Pu ﬁ

p1tp2+-+pu=p

u

As a consequence, by (1.24) and (2.5), we discover the desired equation in the
theorem. ]

We observe from (1.21), (1.24) and (2.2) that

ZSQ ps ’ (le).

For uw > 0, as an extension of the notion of the probabilistic degenerate Stir-
ling polynomials of the s.k., we define a probabilistic degenerate Jindalrae-Stirling
polynomials of the s.k. associated with r.v. T by

(ex(Blef ()] = 1) = 1)" Z e o

o (pyu:y) — o

(2.6)
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The corresponding numbers of S( \ )( p,u : y) are derived by taking y = 0, namely
SF],A )(/77 u) = 5(2 T)(P,u 0) given as

(2‘7) (e)\(E[e)\ (z)] - 1) ZS ;p‘

u! P

We abbreviate the probabilistic degenerate J mdalrae—Stlrhng polynomials and num-
bers of the s.k. as the PDJSPSK polynomials and PDJSNSK numbers, respec-
tively. We note from (2.7) that when 7" = 1, the new polynomials and numbers
SS?;\T) (p,u :y) reduce to the degenerate Jindalrae-Stirling polynomials and num-

bers of the s.k., provided (cf. [18]) by

(6)\(6)\(2) - 1) - 1)uel>/\ (Z) _ ng?;\ (p,u . y) ;p

u!

and

(6)\(6)\(2) — 1) — 1)“ s (2) P
> s T

u!
p=u

Now, we analyze some properties and relations for the PDJSPSK polynomials and
PDJSNSK numbers by the consecutive theorems (with their detailed proofs) given
below. We first state a relation between the PDJSNSK numbers and the PDSNSK
numbers.

Theorem 2.3. For p>u >0, we possess
(28) SED o) = 3 Sanls ST, 1)

n=u

Proof. In view of (1.20) and (2.7), we acquire

%(eA(E[eEC(z)] ~-1)-1)" = ZSQ,A(M,u)ngjA(p,M i
p=u p=

(2.9) = > (Z S22 (1, 1)S3 5 (s M)) ,;P‘

p=u \p=u
As a consequence, by (2.7) and (2.9), we discover the equality in the theorem. [

When u =1 in (2.7), we possess

Z e * z e * zp
ZSW P, :eA(E[eEC(z)]_n_l:ZOB ;T) 1—2153( ,f)p'?
p:

Whlch gives the following relation.

Corollary 2.4. For p > 1, we possess

A

210) S (p.1) ZB 252)\ 1, 1)S3 5(ps 11) ZSQA Py 1)(
pn=1
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A correlation between the PDJSPSK polynomials and PDJSNSK numbers is
given as follows.

Theorem 2.5. For p > u >0, we acquire
P

5(2 D (pyuy) = > <p> 5(2 " (o, 1) (W) p—pir -
pu=0 H
Proof. By (2.6) and (2.7), we have
= 2P ex(Elef(2)] -1) - 1)"
>osB iy S i ( _— ) ex (2)

0 ot o P
S-SR (p,u) EZ@)M ol
p=u p=0
- " (p (2,7) 2P

= S X (O)E e e |
p=0

' Y
p=0 P
which yields the claimed equality in the theorem. O

Theorem 2.6. For p1,...,py >0 with p1 + p2 + - - - + pu = p, we have
(2.11)

(2 T) 1 P (+,T) (+,T)
Six (o) = ul Z <p1 pu>Bm,A BN —252 (1, u) S0 (s 1)
prtpatetpu=p N p=u

Proof. By utilizing (1.25) and (2.7), we have

u

! w 1 G * zP
(Bl @ -1 -1 = [ SBDE

! |
ut \ = p!

1 o p (+,T) 1)\ 2’
(2.12) lZ( Z <p17_”7p)Bp1, "'Bpu,A ;

=u \p1+p2+-+pu=p
As a consequence, by (1.14) and (2.12), we establish the equality (2.11). O

Note that S73"(p,1) = 32, Sa(, 1)ST5 (p, ) for p > 1.

Theorem 2.7. For p > u > 0, we have

(2.13) S (p,u ZS” [, u Z( > ) B[(85)p]-

j=0

Proof. Substituting z by Elel(2)] — 1 in (1.9), we have

el _
L (e E @) - 1) ZSW, Eal =1
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]:0
© (1 2 L » P
I EDSENRTDS <j)<—1>“ BT+ T+ Tl | 5
p=0 p=u 7=0
< (1 L L » L
R S D SEURT) i (4 [ VT T et
p=0 p=u j=0
and
1
(2.15) —(e(EeX ()] - 1) ZS (o
By (2.14) and (2.15), we discover the equality (2.13). O

Now, we define the probabilistic degenerate Jindalrae polynomials associated with
the r.v. T by

(2.16) > I = & (B @] 1) - 1).

Note that T' = 1, then Jgj/\(y) = Joa(y) in (1.12). In the case y =1, JZA = JZ/\(l)
are called the probabilistic degenerate Jindalrae numbers associated with the r.v.
T.

Theorem 2.8. For p > u > 0, we have
P

(2.17) IT @) =Y WunSH (0, ).

u=0
Proof. We observe from (1.10) and (2.16) that

e (ex(Blel(2)] = 1) — 1) = 1

Wur— (ex(BleX(2)] = 1) = 1)"
UAZS P, U

O_o £ 2.7 2P

> (Z( JurSS (o ,u>> 0

p=0 \u=0
From (2.18), we discover the equality (2.17). O

WE

u=0

tnqg

o

e

(2.18)
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In particular, for y = 1, we have
P

(2.19) I =3 (0urSE (o, ).

u=0
Theorem 2.9. For p>pu >0, we possess

(2.20) ZB Y)S3a(p, ).
Proof. We observe from (2.16) that

e (ex(Blel ()] - 1) 1) =Y Bz;,xy);w[e{(zn —1y
p=0 ’

o0 . o0 P
=Y Bi()> S5,(p.n)
pu=0 p=p

Zp
(2.21) —Z ZBw\ S2)\ ps ) F
As a consequence, by (2.21), we discover the equahty (2.20). O
In particular, from (2.20), we have
p
(2.22) Ton = BiaSia(p, ).
n=0

Theorem 2.10. For p > > 0, we have

[e.9]

(2.23) JIN 'Z Y f:() D IE((S}) p)-

7=0
Proof. We observe from (2.16) that

o0

A EFE] =1 - 1) = 3 B) g (BAE)] - 1"

pu=0

=2 1ZB;,A(Q)Z(l%>(_1)u_jE[<T1+T2+"'+Tj)p:)\} ¥
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. 2P
(2.24) =;) ZB Z(J)(—le[(Sj)p,A] =

7=0
As a consequence, by (2.24), we discover the equality (2.23). O

Theorem 2.11. For py,...,py > 0 with p1 + p2 + - - + pu = p, we have
p

TN =Y WunSH (0, u)

u=0

1Y (*,T) (*,T)
(2.25) = Z u>\ " Z (Pl,u-,Pu)Bph)\ BN

p1t+p2+-tpu=p
Proof. By utilizing (1.14) and (1.25), we have

& (BRG] 1) = 1) = S W y(ea(Bled (2)] - 1)~ 1)

u=0
U

= Z_%(y)mi! ZBS;T)Z—I)

p=1 ot

p (*7T) (*’T) Zp
(2.26) _Z u)\ulz ( Z <p1,...’pu>Bp1,)\ '-.Bpu,)\> E.

p1t+p2+-+pu=p

As a consequence, by (1.14), (2.16), and (2.26), we find the equality (2.25). O
Theorem 2.12. For p > u > 0, we have
P P
JZ:A(y1+y2) :Z <U>JT)\(Z/1 pP—UA y2 Z < > p u/\(yl)
u=0 u=0

Proof. Now, we observe that

2P
)

D T +w) = ) (en (B (2)] — 1) — 1)
p=0

= OELEI =) =) (EE =) -
- Z ) Z )

=0

o0 p p .
(2.27) -y (Z( )JTA@l)Jp mm) =
p=0 \u=0 u p:

As a consequence, by (2.27), we discover the asserted equality in the theorem. O

Theorem 2.13. For p > u > 0, we have

(2.28) Z( ) WinSH (0 — u, )
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=Bu (Jg:)\(y), 2J1T,,\(y)a 3J27j>\(y)7 J(p—u+ 1)Jp u A(?J))
Proof. We consider that

(229) 2l (ex(BlL()] —1) 1) =2 J,&&@)j =S I
p=0 ) p=1

By (2.16), we acquire

[e.e]
zP u
ZPJpT—l,)\(y)ﬁ = (2¢} (ex(Blex (2)] = 1) — 1))
p=1 '
j 1 j
= =Y WOl Fed ] -1 -
_ Zuj Z 2T)
J=0 p=j
; T
= S W @)nsE 00 | =
p=0 \ j=0 P
o fpmu o) e
= Z Zu](y)j,/\SL:\ (p—u,j) -
p=u \ j=0 p
N[ = (P ; 2,7) 2P
(2.30) = Z Z ( )u!uj(y)j)\SJ)’\ (p—u,j) —-
: u ’ p!
p=u \j=0
From (1.14) and (2.30), we note that
Z Z( ) F]A )(P—%J) T ZJJ]'T_LA(Z/)f,
pl ul | 4 j!
p=u \ =0 j=1
2P
(231) ZBPU - ) 2Jl /\( )73J§A(y)7"'7(p_u+1)‘]5711,)\(3/)) F
As a consequence, by (2.31), we discover the equality (2.28). O
Theorem 2.14. For p > u > 0, we have
Bp,u (‘]gj)\(y)ﬂflzj)\(y))‘]g)\(y)a p u)x ZSQX Jyu ]ASSA )(pa//“)
Proof. We observe from (1.14) and (2.31) that
Zp

ZBP’ JO/\ J2)\< )7Ji’z:)\(y)7"' Jl? )‘(y))ﬁ



954 W. A. KHAN, U. DURAN, AND N. AHMAD

= % (&% (ea (B} (2)] = 1)~ 1))"
_Zsm, Doy (B ()] = 1) = 1)

- ZSM(J} MZS“T ':‘f

p

(2.32) = Z (Z o, w)®);nSSA (o )) %'

By comparing the coefficients of z on both sides of (2.32), we discover the claimed
equality in the theorem. O

Theorem 2.15. For p > u > 0, we have
Ep P ) ( (o)

<U>S§>\(U,a p— u)\ ZZ ( ) u, )/B,u,)\ (y) ng)\(p—u,u),
U=« u=a =0

Proof. Substituting z by Elel(2)] — 1 in (1.6), utilizing (1.20), (1.25), and (2.6), we
acquire

e el(z) — :Oo(a)ieTz_
(Bl ()] 1) — 1 (Flalz) 1) ;mmmwmn 1y

ol
(AEE @] =1 = 1D ), o Z”
- - S BRW Y SiAe S
: =0 p=n &
0o oo p
2 « 2P
=Y B )= YN B WIS
U= " p=0pu=0 P
> P P\ o(2,7) () T 2F
u \ u=o p=0 ‘
and
(B[] (2)] ~ 1)° S S g ()
[ a!] ) & (EEflz) -1) = Y S{/ﬂu@)a BE))\T)(y)H
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_ - . P\ T (1) ip
(2.34) = Z Z " 5’27)\(u,a)183p7u’)\(y) o

p=u \u=o

From (2.33) and (2.34), we discover the claimed equality in the theorem. O

Theorem 2.16. For p > u > 0, we have
p

Z <Z>S£A(u’a p*Z)A ZZ( ) (a) SJ,\( ,M)S;C,\(u,a).

u=a u=a u=0

Proof. Substituting z by ex(E[el(2)] — 1) — 1 in (1.7), utilizing (1.20) and (1.25),
we acquire

ex(Elef(2)] —1) —1\“ > a 1
< A( }_g[éf((z)'])] — i ) e (Elex](z) — 1) = %b&i(y)m(ww[e{(g)] 1) — 1)

—

L (BT - 1) S 6 ) LD PE
u=0 p=

a!
00 Su o] N e
_ Y shwa)s Y 4T
u=a u'p 0 p=0 ’O

(2.35) -y (ZZ (7)o w)sato - ,mSgT,A(u,a)) -

p=u \u=a u=0
and

L (@EEE - 1) - 1) (Bl - 1) = 3 ST a) S S B

=0
00 p - P ’
(2.36) = Z (Z ( )SJ/\(“ Q)B;*iu,))\ (?J)> o

—U U=

As a consequence, by (2.35) and (2.36), we discover the claimed equality in the
theorem. ]

Theorem 2.17. For p > pu > 0, we have

P

S (= 1)r (1L (1) ZZ( )EUSu bl 0) -1 o=,
pn=0 u=0 pu=0

Proof. Substituting z by 1 — E[e?,(2)] in (1.11), utilizing (1.20) and (1.25), we
acquire

BERET Zd%

(BleA(2)] = D"
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e S d) ) S
pn=0

[e.9] Zu o0 o o0 Zp
= 2 B4 Tod o Tadual g D d ) (~1)" Z S3aloo)

Blef)(2)] = 1)

u=0 n=0
- @ 2
:ZE[(TI+T2+‘ sz ﬂSQ Ao )=
u=0 ! p=0 pu=0 p'
[e'S) N 4P
ean =S (2% ( ) A A ) (11T (o —w ) | 2
p=0 \u=0pu=0 P
and
_ > 1
LB = S - D (1 — Bl ()"
p=0 w
_ .- I 1 T M
= D (= D=1 = (Blel\(2)] - 1)
p=0 e
= Z( - 1 #>\ ZSQ - p7
n=0
o0 P Zp
(2.38) = > D - 1)ua(=1"S5 (o, 1) o
p=0 \ pu=0 ’
From (2.37) and (2.38), we discover the claimed equality in the theorem. O

Theorem 2.18. For p > u > 0, we have
p

ZZ( ) B SEals 1B w) = 0 B () ST ),

u=0 pu=0 n=0

Proof. Substituting z by Elel (z)] —1 in (1.6), then we note from (1.21), (1.25), and
(3.2) that

: Y (Bl ZE(“) Bl ()] - 1)

(«a(E[e{u)} —1)+ 1) A
=SB S Sn)
u=0 p=pu

(2.39) = Z (Z E(a) )S55(p, 1t )) Zpl;

and
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=S BN (Bl ()] - 10 B )
! pur p!

M# 1M

p 0o
e 2P *, T 2P
STEXST (p.n) o STBY )(y)ﬁ

p=0 \ p=0 p=0

SNES 1) oy | 2
20 =3 (23 (D)ERshemE o)) 5

p=0 \u=0p=0 P

As a consequence, by (2.39) and (2.40), we discover the claimed equality in the
theorem. 4

3. FURTHER REMARKS

In this part, the probabilistic higher-order degenerate Bernoulli and Euler poly-
nomials are provided and some properties and relations are then provided.

The probabilistic forms of the higher-order degenerate Bernoulli and the Euler
polynomials are introduced as follows:

iﬂ,ﬁ 2 (W)m

), 2 ’
and ZE <E[e§(z)]+1> ef(2).

The corresponding numbers of Bl()a/\’T) (y) and E[()OKT) (y) are derived by taking y =
0, namely 6 (@T) . ﬁ(a T)( 0) and EE&T) = E;?‘XT)(O), respectively. Also, the
probabilistic Bernoulh and Euler polynomials are obtained when o = 1 and A
approaches to 0 as limy_,g BEJ?XT)(y) = 5§(y) and limy_, E,gi\’T) (y) = Eg(y), cf.
[16,23]. Moreover, when a = 1 in (3.1), we acquire the probabilistic forms of the
degenerate Bernoulli and the Euler polynomials as follows

= 2P z
;) 5;%(2/)5 = W‘ﬁ(z)

(a T Zp 2 y
d E e — .
an Z = BT 1

The corresponding numbers of /BZA(?/) and EZ)\(y) are derived by taking y = 0,
namely BZA = BZ/\(O) and Egj)\ = EZ/\(O), respectively.
We observe from (3.1) that

o a2 2 S
2P W (=) 4

ex



958 W. A. KHAN, U. DURAN, AND N. AHMAD

= Zﬁ(?T p|z pA

p=u

oo p
= 2 (2 () ) 5

'7
=0 \ =0 \H p-

pl

and

> (1), 27 2 @
ZEP,A )~ = (E[%)]H) ex(2)

ex

00 (aT)Zp 00 2P
- ZEW\ 72(3/),0,/\7!
p=u P =0 P

00 P 4
- Z Z(p>E’(ﬁ)"T) (y)P—u,A Z

p!’
which yield

and

We observe from (1.26) and (3.2) that

> -5 : > £
A = = A0
2 T e 5

which gives

Foa(=

T
A (=5) = Ep

1
2 p7

More properties of ,B(CY/\’T (y) and E( )( ) can be examined similar to those of
completed for S( )(p,u y) in (2.6) and J,;":)\(y) in (2.16). We here provide a

correlation as follows

Theorem 3.1. We possess, for p > u >0, that
(3. 3)

p+1 (x1) (x,T)
p+ 1\ BN (y+1) =B, ()
Zbu/\ )STA(ps 1) = (P+1)Z< i ) P : -

pu=0

Proof. Substituting z by ex(E[el](z) — 1) — 1 in (1.8), then we note from (1.22),
(1.25), and (3.2) that

ex(Elel'(2)]—1) -1 . 1
A EL[Q;(;]H = i e/ ([T ()] - 1) = #Z:Obu,x(%(eA(E[eEC (2)] = 1) = 1"

A
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D o
P
_ T <
= § bu(y) E SJ,,\(/%M)H
p=0 p=H )

00 P
(3.4) =3 L bawsiaem | 5

p=0 \ u=0
and
ea(Blex ()] 1)1 ,
E —1
Fel -1 a1
_ ( z ) 1 (Elef(2)] = 1) — e} (Blef (2)] = 1)
Elel(2)] -1/ = Elel(2)] -1
s ) IS (D (=T (v} 2
= (Z Bp,)\ﬁ B > (Bu,A (y+1)—B,} (y)) i
p=0 u=0
o0 [e'e) *,T *,T
_ ZBT zP Z BL)\ )(y +1) - B,(A,A )(y) P
= =
pr p! s w+1 u!
0o 4 B(*’T)( + 1) _ IB(*»T)( ) p—1
P ,Uq)\ Y Mv)‘ Y T z
3.5 = Bo—pr | ——
M P
From (3.4) and (3.5), we discover the claimed equality (3.3). O

4. CONCLUSIONS

In recent years, probabilistic special polynomials and numbers such as probabilis-
tic Bell, probabilistic Fubini, and probabilistic Stirling numbers and polynomials
associated with random variables have been defined and studied in detail. In this
work, we have considered a probabilistic degenerate Jindalrae-Stirling polynomials
of the second kind and a probabilistic degenerate Jindalrae polynomials. Then,
we have derived some of their properties and formulas, including explicit expres-
sions, symmetric identity, recurrence relations, and summation formulas. Moreover,
we have investigated diverse correlations with the probabilistic degenerate Stirling
numbers of the second kind associated with T, the Stirling numbers of the first
kind, the partial Bell polynomials, the derangement polynomials, the degenerate
Bernoulli polynomials of the second kind and the degenerate Euler polynomials.
Finally, we have defined probabilistic higher-order degenerate Bernoulli and Euler
polynomials and then provided some properties and relations.
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